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» 4 4+ 4 lectures to present observation systems and the way
we analyse their data

» Observation systems:
e LIGO / Virgo
e LISA

e Pulsar Timing Array
» Analysis
e Bayesian / Bayesian

e Sources: binaries, stochastic background
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Overview of Data Analysis |
Statistic basis of DA

» Extracting signals from noisy data

e the likelihood function

» Noise weighted inner products, Match-filter, Signal to Noise
Ratio and

» Two approaches

e Frequentist approach

e Bayesian approach

» Detection statistics and model evidence
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» Example of eLISA simulated data (LISACode):
e about 100 SMBHEs,

e (Galactic binaries
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e low pass + zoom : we can « see »

end of waveform for powerful sources
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Extracting signal from data

» Example of eLISA simulated data (LISACode):
e about 100 SMBHEs,

e Galactic binaries

» First « simple data analysis » :

Signal in X-channel (x1074")

e low pass + zoom : we can « see »
end of waveform for powerful sources
e wavelet transform :
- chirps

- Galactic binaries
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Extracting signal from data

» Example of eLISA simulated data (LISACode):
e about 100 SMBHEs,

e Galactic binaries

el (x10720)

» First « simple data analysis » :
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e low pass + zoom : we can « see »

end of waveform for powerful sources
e wavelet transform :
- chirps

- Galactic binaries

» BUT for identifying more (all) sources and their parameters
we need more advanced statistical technics

uara Anatysis I -



» The time data d(t) contains:

e h(t) : signals that can be characterized by a sets of parameters
- deterministic / stochastic
- resolvable or not

e n(t) : noises from
- instrument itself

- other sources

» Assumption 1: GW and noise are linearly independent:

d(t) — hreal(t) -+ n(t)
e h(t): GW perturbation h.(t,z) convolved with instrument

response y
. D7
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» Likelihood: found by demanding residual compatible with
noise distribution p,(x):

e The likelihood of observing d={d;,ds,...,dn} where di=d(t;) ,
IS given by:

p(d(t)[hrear(t)) = pa(r(t)) = pu(d(t)-hrea(t))

» So if p(d(t)/hmodei(t)) is compatible with the noise
distribution: Amodei(t) = hreal(t)
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» Usual case: noise is a multi-variate gaussian distribution:
_ ]. —% i, T3 (Cgl)” T4
Vdet(2mC),)

€

p(d|h) = pn(r)

where the correlation matrix is :  C,, = (n;n;) — (n;) (n;)

» Generalization for a network of detectors:

1 —3 g TIi )Ty
p(d|h) = o7 % riay 1 (Cat) 5 T
V/det(2wC,,)

where I, J labels the detector and i, ; the discrete time or
frequency sample
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» Inner product:

< $|y >= Z LTq (Cf;l)u,Jj YJj
Ii,Jj
» Likelihood:
L = p(d|h) = —_Hd-hidn
Vdet(2mC,,)

» If C)-1is diagonal with 7 /0 the inner product is similar to

> di —hi\° L —=C —2(d—h|d—h) __ O —Ix°
=3 (7o) = L=Ce = Ce
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» If stationary noise
= (', only depend to /t; - t;/

= (), ~ diagonal in the Fourier domain (Discrete Fourier
Transform) with on the diagonal S, T'/2

7
= Inner product: < Z|y > =2 Z Af-?

= Continuous limit: _ 717~ _ 2/00 g T M)
0

.y %e/()wdfi*(fi

= Match-filtering
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» If noise C), is known (i.e. known parameters) and stationary,
the factor in front is neglected and we only consider the
logarithm of likelihood:

1
log £ = —7 (d — hld — )

= (dlh) — 5 (hlh) — 5 {dld)

» <d |d> is fixed so the relevant term that is usually used is
the reduced likelihood:
1
log £ = (d|h) — 5 (h|h)
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Maximum likelihood

» Considering the signal: 7~ = A ha

A2
log £ = A(d|ha) — = (halha)

» If the maximum likelihood corresponds to Awm:

(d|ha)
(halha)

0log L’
0A

=0 = Apyp=

AmL
» then the maximum likelihood is :

y_ {dlha)® by’
maz(log L) = 2(halha)  2(h|h)
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Signal to Noise Ratio

» We can define the SNR using the power ratio

Psignal

SNR? =
Pnoise

» Average noise power: Proise = / df Sp(f)
0
» Average signal power: Psigna = 2/ df [h(f)|”
0

» Optimal SNR:

: R LIOAl
SNRopt /O df Sn(f) _<h‘h>
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SNR vs likelihood

(d|h)
,“ Usual " SNR: SN R =
v/ (h|h)
, d|h)°
» Maximum likelihood: ~ maz(logL’) = 2<<|h|2>

» The relation between SNR and maximum likelihood is
simply:

SNR = +/2 maxz(logL')
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Statistical inference
» Our core tool: the likelihood: £ = p(d/h)

» Likelihood measures the probability of having data d given
the hypothesis/model / .

» How to use it to infer about :

o detectability of a signal in data ?

e value of parameters of a signal ?

» Depending where the uncertainty is put, 2 approaches:

e the frequentist inference

e the bayesian inference

Data Analysis | - A. Petiteau - GW School - Benasque - 5 to 9 June 2017



» General ideas:
e Uncertainties in the data
e Parameters of the system we want to observe are fixed

e “long-run relative occurrence of an event in a set of identical
experiments”

e Probability related to the frequencies of events
» Probability of observing the data d given the hypothesis H

» Measured data drawn from an underlying probability
distribution p(d/H) .
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Frequentist inference

» Statistic: function of the data

e Likelihood or something else

» Required:

e knowledge of the probability distribution of the statistic
(analytic or simulation).

» Problem:

e Distribution is constructed on non observed data

Data Analysis | - A. Petiteau - GW School - Benasque - 5 to 9 June 2017 .
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» Hypothesis:
e Hy : no signal

e H;: signal: composite hypothesis => several parameter’s values
» Argue for H; by arguing against Hy
» Construct a statistic A, called a test or detection statistic

» Calculate p(A/Hy): the sampling distribution of A under
assumption of null hypothesis

» If data distribution different => reject Hy and accept H; at
p x 100% level

Data Analysis | - A. Petiteau - GW School - Benasque - 5 to 9 June 2017
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» If data distribution =+ p(A|Ho) => reject Hy and accept H; at
p x 100% level

O

p = prob(A > Agps|Hp) = / dAp(A|Hyp)
Aobs

» p-value required to reject the null hypothesis determines a
threshold A+ .
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Frequentist: hypothesis testing

» If data distribution = p(A|Ho) => reject Hy and accept H; at
p x 100% level

O

p = prob(A > Agps|Hp) = / dAp(A|Hyp)
Aobs

» p-value required to reject the null hypothesis determines a
threshold A+ .

» Errors: 2 types:

e FAP: false alarm error: Aops > A+ : reject Hp but no signal:

FAP = a = prob(A > A |Hp)

o FDP: false dismissal error: Agps < A+ : accept Hp but signal:

FDP = ((a) = prob(A < A|H,)
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» Ideally: FAP and FDP as small as possible ... but compete
e GW: FAP very small
e Medical: FDP very small

» Newman-Pearson criterion: for fixed FAP, the best statistic
Is the one minimizing FDP: FAP => A+« .

» Detection probability: 1-B(a) = 1 - prob(A<A+/Hp)
e Independent from data

e Depends only on
- sampling distribution
- FAP
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Frequentist: upper limit

» No detection => set an upper limit (amplitude) based on:

e A, observed detection statistic

e Confidence level

» Example:

e 90% confidence-level upper-limit 0% UL

= minimal value of a for which A > A, at least 90% of the
time
prob(A > Agpsla > a0 UL H,) > 0.9
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e 90% confidence-level upper-limit a%7.UL

— minimal a for which A > A, at least 90% of the time

prob(A > Aps|a > a 07U L H,) > 0.9

’ ( A| 4= a90%,UL, Ha)

area = 0.90

Romano & Cornish, LRR 2017
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» In practice, you can use injection in your data

» Example: GW signal from binary described by amplitude a +
other parameters

1. Test amplitude a

1.1. Produce fake data by injecting a signal in your data signal
with a given a randomizing other parameters

1.2. Calculate A for the fake data

1.3. Repeat 1.1 large number of time
2. Compute the ratio N(A >Asbs) / Niotal

3. If adjust ¢ and restart from 1. until you get
N(A>Aobs)/Nioiar = confidence level

Data Analysis | - A. Petiteau - GW School - Benasque - 5 to 9 June 2017
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» Construct the estimator 4 of the parameter « : it's a statistic
that can be maximum likelihood or others estimators.

» Calculate the sampling distribution p(d/a,H,)

» Using p(d/a,H,) + a confidence level of 95%, construct the

frequentist confidence interval /d-A,d-+A/, such as
prob(a — A <a<a+A)=0.95

» Interpretation:

e in a set of many repeated experiments, in 95% of the case the
true value of a is in the intervals

e o not a random variable so its not a probability on a.

27 Data Analysis | - A. Petiteau - GW School - Benasque - 5 to 9 June 2017
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» Using p(d/a,H,) + a frequentist confidence interval of 95%,
construct interval /G-A,d+A/, such as

prob(a — A <a<a+A)=0.95

p(ala, Hy,)

» Not physical value are
allowed.

Data Analysis | - A. Petiteau - GW School - Benasque - 5 to 9 June 2017
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Frequentist: summary

» Uncertainty in the data => define a statistic A for the data
and define its sampling distribution

» p-value required to reject Hyp => A«
FAP = a = prob(A > A, |Hy)

» Detection: compare Agps and Ax

e Aobs >Ax => Hp rejected => detection

- Parameter estimation: estimator d¢ — distribution p(d/a,H,) +
confidence level — frequentist confidence interval

o Aops <Ax => Hp accepted => no detection

- Upper limit: minimal value of « for which A > A at least CL%
of the time, with CL the confidence interval
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Bayesian inference

» Data are given
» The uncertainties are on the model / parameters

» Our prior knowledge is updated by what we learn from the
data, as measured by the likelihood to give our posterior

state of knowledge.
Data

: Posterior:
Pnors ﬁ.ﬁ Updated PriOrS
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Bayesian inference

» Bayes theorem: prior likelihood
o) i
plald) =
/ p(d) \
posterior distribution evidence

» “Everything” about the parameters is in the posterior
distribution
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» Confidence interval = credible interval (degree of belief):
area under the posterior between one parameter value and
another

Romano & Cornish, LRR 2017
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» More than one parameter in your model but there are
parameters we don’t care about => marginalized over them

» Example with 2 parameters a,b:

e care only about a => marginalized over b
+ plald) = [ b pla,bla)

e relation between joint probabilities and conditional probabilities

p(a,b) = p(alb) p(b)

e => the marginalization over b is simply

plald) = / b p(alb, d) p(b)

Data Analysis | - A. Petiteau - GW School - Benasque - 5 to 9 June 2017
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Bayesian: information

» Information gain:

= /da p(ald) log (p(a‘d))

p(a)

» If there no gain of information from the data, likelihood
L(a) is constant

=> p(a/d) = p(a)
=> 1 =0
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» If the Bayesian credible interval is compatible with the
minimum value for the parameter, we can set un upper limit
for a “confidence level™:

prob(0 < a < aVE997%|d) = 0.9

area = (0.90

Romano & Cornish, LRR 2017
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Lassus & al.

» If the parameter is the amplitude

e Confidence interval exclude 0 => potential detection ...

e Confidence interval include 0 => result compatible with no

etection => upper limi prob(0 < a < aV99%|q) = 0.9

area = 0.90

-13.9 -13.8
log1o



Bayesian: model selection

Goal: use Bayes theorem to compare models

» M, : models O, : parameters

» Posterior distribution for given the model :

p (dwa/\/loz) p (ea‘Ma)

el Ma) = 2 CMa)

» Evidence given a model:

p(dIM.) = / A0, p (d)f, M) p (6, M)
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Bayesian: model selection

» Posterior probability of models . #, :

p(dMa)p (Ma)
p(d)
» Evidence: sum of all possible model ... but total number

p(Mqald) =

unknown => use a subset
p(d) =Y p(dMa) p(Ma)

» Odds ratio between 2 models:
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Bayesian: model selection

» Odds ratio between 2 models:

Oa@ _ p(./\/la d)
p (Mgld)
O — p(dMa) p (Ma)
" p(dMg) p (Mp)

/ prior odds ratio

Bayes factor evidence ratio

By — p (d|My)
e

p(dMg)

b=

O

S - 4

> B
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Bayesian: Bayes factor

» Bayes factor: usual tool to compare model, in particular

signal versus no signal - #

» Problem: interpretation of Bayes factor

Boup 2 In Bgp(d) Evidence for model .#, relative to .
<1 <0 Negative (supports model .#;)
1-3 0-2 Not worth more than a bare mention
3-20 2-06 Positive

2 - 150 6-10 Strong

>150 >10 Very strong

» Need proper calibration (simulations, ...)

40 Data Analysis | - A. Petiteau - GW School - Benasque - 5 to 9 June 2017
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» In practice, we need to sample the parameters space
computing likelihood to construct the posterior distribution
of parameters.

» Several methods:
e Monte-Carlo Markov Chain,
e Metropolis Hasting Markov Chain,
o Multi-Nest,
e EMCEE,
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Bayesian vs frequentist

Frequentist Bayesian

Probabilities Probabilities assigned only to propositions éProbabiIities can be assigned to
-about outcomes of repeatable experiments, hypotheses and parameters since

not to hypotheses or parameters which probability is degree of belief in any
‘have fixed but unknown values _proposition
Data Assumes measured data are drawn from an Same

underlying probability distribution, which
§assumes the truth of a particular hypothesus
oor model (likelihood function) '

Input §Constructs a statistic to estimate a Needs to specify prior degree of belief
‘parameter or to decide whether or not to ém a particular hypothesis or parameter
claim a detection 5

Methods §Calculates the probability distribution of the Uses Bayes' theorem to update the

éstatlstlc (sampling distribution) éprlor degree of belief in light of new
5 ?data

Results §Constructs confidence intervals and p- Constructs posteriors and odds ratios
values for parameter estimation and éfor parameter estimation and

éhypothesis testing §hypothesis testing/model comparison
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Bayesian vs frequentist: GW obs

» In the past, almost only frequentists
» Now, Bayesian methods become more and more popular

» For all GW observatories, we used the two approaches and
hybrid approaches mixing the two.
e LIGO:

- methods based on Freq. or Bayesian
e LISA:

- mainly Bayesian methods
e PTA:

- methods based on Freq. or Bayesian
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» But at the end, what we need is computing a large number
of likelihood, or equivalent estimators

e Main computing cost

» Joke about Bayesian inference from a colleague:

“That’s the beauty of Bayesian inference:

- likelihood*prior

- realize that you have no idea how to pick the prior
- assume flat prior

- realize is a likelihood computation

e Now you just computed a likelihood, but you are cool because
you did it in a Bayesian way.”
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» Depending on the level of knowledge of the noise, different
flavors of likelihood. Some examples:

e Perfectly known (S;,) => reduced likelihood

e Known shape components
=> (', described using parameters included in the search with
model parameters

e Partially known noise levels, and taking into account heavier tail
distribution effects
=> Student-t [Rover 2011]: each frequency bin follows a multi-
variate distribution with v; degrees of freedom.

4 2 |
logﬁz—zyj; log <1+—X2)
V.

; J
J
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Partially known noise levels but fluctuations of S, by segment
—=> one parameter per segment

Sn,i = NjSn,i, 15 <t <1541

1 2
lOgL p— —5 X Nj,bifns Z lOg 77]
J

0.001 0.01 : /“,V,
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Thank you
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