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Introduction
‣ 4 + 4 lectures to present observation systems and the way 

we analyse their data 

‣ Observation systems: 
• LIGO / Virgo 
• LISA 
• Pulsar Timing Array 

‣ Analysis 
• Bayesian / Bayesian 
• Sources: binaries, stochastic background
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Overview of Data Analysis I 
Statistic basis of DA

‣ Extracting signals from noisy data 
• the likelihood function 

‣ Noise weighted inner products, Match-filter, Signal to Noise 
Ratio and  

‣ Two approaches 
• Frequentist approach 
• Bayesian approach 

‣ Detection statistics and model evidence
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‣ BUT for identifying more (all) sources and their parameters 
we need more advanced statistical technics
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Data, signal and noise
‣ The time data d(t) contains: 

• h(t) : signals that can be characterized by a sets of parameters 
- deterministic / stochastic 
- resolvable or not  

• n(t) : noises from  
- instrument itself   
- other sources 

‣ Assumption 1: GW and noise are linearly independent: 

• h(t) : GW perturbation hab(t,x) convolved with instrument 
response 

8

d(t) = hreal(t) + n(t)
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Likelihood
‣ Goal: find the hmodel = hreal 

‣ Likelihood: found by demanding residual compatible with 
noise distribution pn(x): 
• The likelihood of observing d≣{d1,d2,…,dN} where di=d(ti) ,  

is given by: 

    p(d(t)|hreal(t)) = pn(r(t)) = pn(d(t)-hreal(t)) 

‣ So if p(d(t)|hmodel(t)) is compatible with the noise 
distribution: hmodel(t) = hreal(t) 
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Likelihood
‣ Usual case: noise is a multi-variate gaussian distribution:   

where the correlation matrix is : 

‣ Generalization for a network of detectors: 

where I, J  labels the detector and i, j the discrete time or 
frequency sample
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Likelihood
‣ Inner product: 

‣ Likelihood: 

‣ If Cn-1 is diagonal with 1/𝜎i2 the inner product is similar to 
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Likelihood
‣ If stationary noise  

➡ Cn only depend to |ti - tj|  
➡ Cn ∼ diagonal in the Fourier domain (Discrete Fourier 

Transform) with on the diagonal Sn,k T/2    

➡ Inner product: 

➡ Continuous limit: 

➡ Match-filtering
12
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Likelihood
‣ If noise Cn is known (i.e. known parameters) and stationary, 

the factor in front is neglected and we only consider the 
logarithm of likelihood:   

‣<d |d> is fixed so the relevant term that is usually used is 
the reduced likelihood:
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Maximum likelihood
‣ Considering the signal:  h = A hA 

‣ If the maximum likelihood corresponds to AML:  

‣ then the maximum likelihood is :
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Signal to Noise Ratio
‣We can define the SNR using the power ratio 

‣ Average noise power: 

‣ Average signal power:   

‣ Optimal SNR: 
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SNR vs likelihood
‣ “ Usual ” SNR: 

‣Maximum likelihood: 

‣ The relation between SNR and maximum likelihood is 
simply: 
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Statistical inference
‣ Our core tool: the likelihood: 𝓛 = p(d|h) 

‣ Likelihood measures the probability of having data d given 
the hypothesis/model h . 

‣ How to use it to infer about : 
• detectability of a signal in data ? 
• value of parameters of a signal ? 

‣ Depending where the uncertainty is put, 2 approaches: 
• the frequentist inference 
• the bayesian inference

17
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Frequentist inference
‣ General ideas: 

• Uncertainties in the data 
• Parameters of the system we want to observe are fixed 
• “long-run relative occurrence of an event in a set of identical 

experiments” 
• Probability related to the frequencies of events    

‣ Probability of observing the data d given the hypothesis H 

‣Measured data drawn from an underlying probability 
distribution p(d|H) .

18
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Frequentist inference
‣ Statistic: function of the data 

• Likelihood or something else 

‣ Required: 
• knowledge of the probability distribution of the statistic 

(analytic or simulation).  

‣ Problem: 
• Distribution is constructed on non observed data

19
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Frequentist: hypothesis testing 
‣ Hypothesis: 

• H0 : no signal 
• H1 : signal: composite hypothesis => several parameter’s values 

‣ Argue for H1 by arguing against H0 

‣ Construct a statistic 𝚲, called a test or detection statistic 

‣ Calculate p(𝚲|H0): the sampling distribution of 𝚲 under 
assumption of null hypothesis 

‣ If data distribution different => reject H0 and accept H1 at 
p x 100% level

20
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Frequentist: hypothesis testing 
‣ If data distribution ≠ p(𝚲|H0) => reject H0 and accept H1 at 

p x 100% level 

‣ p-value required to reject the null hypothesis determines a 
threshold 𝚲* . 
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Fig. 3 Definition of the p-value (or significance) for frequentist hypothesis testing. The value of p equals
the area under the probability distribution p(Λ|H0) for Λ ≥ Λobs

out. The so-called stopping problem of frequentist statistics is an example of such a
problem (Howson and Urbach 2006).

3.2.1 Frequentist hypothesis testing

Suppose, as a frequentist, you want to test the hypothesis H1 that a gravitational-wave
signal, having some fixed but unknown amplitude a > 0, is present in the data. Since
you cannot assign probabilities to hypotheses or to parameters like a as a frequentist,
you need to introduce instead an alternative (or null) hypothesis H0, which, for this
example, is the hypothesis that there is no gravitational-wave signal in the data (i.e., that
a = 0). You then argue for H1 by arguing against H0, similar to proof by contradiction
in mathematics. Note that H1 is a composite hypothesis since it depends on a range
of values of the unknown parameter a. It can be written as the union, H1 = ∪a>0Ha ,
of a set of simple hypotheses Ha each corresponding to a single fixed value of the
parameter a.

To rule either in favor or against H0, you construct a statistic Λ, called a test or
detection statistic, on which the statistical test will be based. As mentioned above,
you will need to calculate analytically or via Monte Carlo simulations the sampling
distribution for Λ under the assumption that the null hypothesis is true, p(Λ|H0). If
the observed value of Λ lies far out in the tails of the distribution, then the data are
most likely not consistent with the assumption of the null hypothesis, so you reject
H0 (and thus accept H1) at the p ∗ 100% level, where

p ≡ Prob(Λ > Λobs|H0) ≡
∫ ∞

Λobs

p(Λ|H0) dΛ. (3.3)

This is the so-called p-value (or significance) of the test; it is illustrated graphically in
Fig. 3. The p-value required to reject the null hypothesis determines a threshold Λ∗,
above which you reject H0 and accept H1 (e.g., claim a detection). It is related to the
false alarm probability for the test as we explain below.

The above statistical test is subject to two types of errors: (i) type I or false alarm
errors, which arise if the data are such that you reject the null hypothesis (i.e., Λobs >

123

Ro
m

an
o 

&
 C

or
nis

h,
 L

RR
 2

01
7



         Data Analysis I - A. Petiteau  -  GW School - Benasque - 5 to 9 June 2017

Frequentist: hypothesis testing 
‣ If data distribution ≠ p(𝚲|H0) => reject H0 and accept H1 at 

p x 100% level 

‣ p-value required to reject the null hypothesis determines a 
threshold 𝚲* .  

‣ Errors: 2 types: 
• FAP: false alarm error: 𝚲obs > 𝚲* : reject H0 but no signal: 

• FDP: false dismissal error: 𝚲obs < 𝚲* : accept H0 but signal: 
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Frequentist: hypothesis testing 
‣ Ideally: FAP and FDP as small as possible … but compete 

• GW: FAP very small 
• Medical: FDP very small 

‣ Newman-Pearson criterion: for fixed FAP, the best statistic 
is the one minimizing FDP: FAP => 𝚲* . 

‣ Detection probability: 1-𝜷(a) = 1 - prob(𝚲<𝚲*|H0) : 
• Independent from data 
• Depends only on 

- sampling distribution 
- FAP

23
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Fig. 4 Detection probability as a function of the signal amplitude for a false alarm probability equal to
10%. The value of a needed for 90% detection probability is indicated by the dashed vertical line and is
denoted by a90%,DP

Fig. 5 Graphical representation of a frequentist 90% confidence level upper limit. When a = a90%,UL,
the probability of obtaining a value of the detection statistic Λ ≥ Λobs is equal to 0.90

3.2.3 Frequentist upper limits

In the absence of a detection (i.e., if the observed value of the test statistic is less
than the detection threshold Λ∗), one can still set a bound (called an upper limit) on
the strength of the signal that one was trying to detect. The upper limit depends on
the observed value of the test statistic, Λobs, and a choice of confidence level, CL,
interpreted in the frequentist framework as the long-run relative occurrence for a set
of repeated identical experiments. For example, one defines the 90% confidence-level
upper limit a90%,UL as the minimum value of a for which Λ ≥ Λobs at least 90% of
the time:

Prob(Λ ≥ Λobs|a ≥ a90%,UL, Ha) ≥ 0.90. (3.6)

In other words, if the signal has an amplitude a90%,UL or higher, we would have
detected it in at least 90% of repeated observations. A graphical representation of a
frequentist upper limit is given in Fig. 5.
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Frequentist: upper limit 
‣ No detection => set an upper limit (amplitude) based on: 

• 𝚲obs: observed detection statistic 
• Confidence level 

‣ Example:  
• 90% confidence-level upper-limit a90%,UL  

= minimal value of a for which 𝚲 > 𝚲obs at least 90% of the 
time

24
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Frequentist: upper limit 
‣ In practice, you can use injection in your data 

‣ Example: GW signal from binary described by amplitude a + 
other parameters  
1. Test amplitude a 

1.1. Produce fake data by injecting a signal in your data signal 
with a given a randomizing other parameters  

1.2. Calculate 𝚲 for the fake data 
1.3. Repeat 1.1 large number of time 

2. Compute the ratio N(𝚲>𝚲obs) / Ntotal 
3. If adjust a and restart from 1. until you get                          
N(𝚲>𝚲obs)/Ntotal  = confidence level

26
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Frequentist: parameter estimation 
‣ Construct the estimator â of the parameter a : it’s a statistic  

that can be maximum likelihood or others estimators. 

‣ Calculate the sampling distribution p(â|a,Ha)  

‣ Using p(â|a,Ha) + a confidence level of 95%, construct the 
frequentist confidence interval [â-𝚫,â+𝚫], such as  

‣ Interpretation:  
• in a set of many repeated experiments, in 95% of the case the 

true value of a is in the intervals 
• a not a random variable so its not a probability on a.

27

prob(â�� < a < â+�) = 0.95
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Frequentist: parameter estimation 
‣ Using p(â|a,Ha) + a frequentist confidence interval of 95%, 

construct interval [â-𝚫,â+𝚫], such as  

‣ Not physical value are                                                    
allowed.

28
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3.2.4 Frequentist parameter estimation

The frequentist prescription for estimating the value of a particular parameter a, like
the amplitude of a gravitational-wave signal, is slightly different than the method used
to claim a detection. You need to first construct a statistic (called an estimator) â of the
parameter a you are interested in. (This might be a maximum-likelihood estimator of
a, but other estimators can also be used). You then calculate its sampling distribution
p(â|a, Ha). Note that statements like

Prob(a − ∆ < â < a + ∆) = 0.95, (3.7)

which one constructs from p(â|a, Ha) make sense in the frequentist framework, since
â is a random variable. Although the above inequality can be rearranged to yield

Prob(â − ∆ < a < â + ∆) = 0.95, (3.8)

this should not be interpreted as a statement about the probability of a lying within a
particular interval [â − ∆, â + ∆], since a is not a random variable. Rather, it should
be interpreted as a probabilistic statement about the set of intervals {[â − ∆, â + ∆]}
for all possible values of â. Namely, in a set of many repeated experiments, 0.95 is the
fraction of the intervals that will contain the true value of the parameter a. Such an
interval is called a 95% frequentist confidence interval. This is illustrated graphically
in Fig. 6.

It is important to point out that an estimator can sometimes take on a value of the
parameter that is not physically allowed. For example, if the parameter a denotes the
amplitude of a gravitational-wave signal (so physically a ≥ 0), it is possible for â < 0
for a particular realization of the data. Note that there is nothing mathematically wrong
with this result. Indeed, the sampling distribution for â specifies the probability of

Fig. 6 Definition of the frequentist confidence interval for parameter estimation. Each circle and line
represents a measured interval [â−∆, â+∆]. The set of all such intervals will contain the true value of the
parameter a (indicated here by the dotted vertical line) CL ∗ 100% of the time, where CL is the confidence
level
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Frequentist: summary 
‣ Uncertainty in the data => define a statistic 𝚲 for the data 

and define its sampling distribution 

‣ p-value required to reject H0 => 𝚲* : 

‣ Detection: compare 𝚲obs  and 𝚲* 
• 𝚲obs >𝚲* => H0 rejected => detection 

- Parameter estimation: estimator â → distribution p(â|a,Ha) + 
confidence level → frequentist confidence interval   

• 𝚲obs <𝚲* => H0 accepted => no detection 
- Upper limit: minimal value of a for which 𝚲 > 𝚲obs at least CL% 

of the time, with CL the confidence interval
29
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Bayesian inference
‣ Data are given 

‣ The uncertainties are on the model / parameters 

‣ Our prior knowledge is updated by what we learn from the 
data, as measured by the likelihood to give our posterior 
state of knowledge.

30
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Bayesian inference
‣ Bayes theorem: 

‣ “Everything” about the parameters is in the posterior 
distribution 

p(a|d) = p(a) p(d|a)
p(d)

posterior distribution evidence

likelihood  prior
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Bayesian inference
‣ Confidence interval = credible interval (degree of belief): 

area under the posterior between one parameter value and 
another 2 Page 30 of 223 Living Rev Relativ  (2017) 20:2 

Fig. 8 Definition of a Bayesian credible interval for parameter estimation. Here we construct a symmetric
95% credible interval centered on the mode of the distribution

3.3.1 Bayesian parameter estimation

In Bayesian inference, a parameter, e.g., a, is estimated in terms of its posterior dis-
tribution, p(a|d), in light of the observed data d. As discussed in the introduction to
this section, the posterior p(a|d) can be calculated from the likelihood p(d|a) and the
prior probability distribution p(a) using Bayes’ theorem

p(a|d) = p(d|a)p(a)
p(d)

. (3.14)

The posterior distribution tells you everything you need to know about the parameter,
although you might sometimes want to reduce it to a few numbers—e.g., its mode,
mean, standard deviation, etc.

Given a posterior distribution p(a|d), a Bayesian confidence interval (often called
a credible interval given the Bayesian interpretation of probability as degree of belief,
or state of knowledge, about an event) is simply defined in terms of the area under
the posterior between one parameter value and another. This is illustrated graphically
in Fig. 8, for the case of a 95% symmetric credible interval, centered on the mode of
the distribution amode. If the posterior distribution depends on two parameters a and
b, but you really only care about a, then you can obtain the posterior distribution for
a by marginalizing the joint distribution p(a, b|d) over b:

p(a|d) =
∫

db p(a, b|d) =
∫

db p(a|b, d)p(b), (3.15)

where the second equality follows from the relationship between joint probabilities
and conditional probabilities, e.g., p(a|b, d)p(b) = p(a, b|d). Variables that you
don’t particularly care about (e.g., the variance of the detector noise as opposed to
the strength of a gravitational-wave signal) are called nuisance parameters. Although
nuisance parameters can be handled in a straight-forward manner using Bayesian
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Bayesian: marginalization 
‣More than one parameter in your model but there are 

parameters we don’t care about => marginalized over them 

‣ Example with 2 parameters a,b: 
• care only about a => marginalized over b 

•   

• relation between joint probabilities and conditional probabilities 

• => the marginalization over b is simply

33

p(a|d) =
Z

db p(a, b|d)

p(a|d) =
Z

db p(a|b, d) p(b)

p(a, b) = p(a|b) p(b)
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Bayesian: information 
‣ Information gain: 

‣ If there no gain of information from the data, likelihood 
𝓛(a) is constant  

=> p(a|d) = p(a) 
=> I = 0

34

I =

Z
da p(a|d) log

✓
p(a|d)
p(a)

◆



         Data Analysis I - A. Petiteau  -  GW School - Benasque - 5 to 9 June 2017

Bayesian: upper limit 
‣ If the Bayesian credible interval is compatible with the 

minimum value for the parameter, we can set un upper limit 
for a “confidence level”:

35
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inference, they are problematic to deal with (i.e., they are a nuisance!) in the context
of frequentist statistics. The problem is that marginalization doesn’t make sense to a
frequentist, for whom parameters cannot be assigned probability distributions.

The interpretation of Bayes’ theorem (3.14) is that our prior knowledge is updated
by what we learn from the data, as measured by the likelihood, to give our posterior
state of knowledge. The amount learned from the data is measured by the information
gain

I =
∫

da p(a|d) log
(
p(a|d)
p(a)

)
. (3.16)

Using a natural logarithm gives the information in nats, while using a base 2 logarithm
gives the information in bits. If the data tells us nothing about the parameter, then
p(d|a) = constant, which implies p(a|d) = p(a) and thus I = 0.

3.3.2 Bayesian upper limits

A Bayesian upper limit is simply a Bayesian credible interval for a parameter with the
lower end point of the interval set to the smallest value that the parameter can take.
For example, the Bayesian 90% upper limit on a parameter a > 0 is defined by:

Prob(0 < a < a90%,UL|d) = 0.90, (3.17)

where probability is interpreted as degree of belief, or state of knowledge, that the
parameter a has a value in the indicated range. One usually sets an upper limit on a
parameter when the mode of the distribution for the parameter being estimated is not
sufficiently displaced from zero, as shown in Fig. 9.

3.3.3 Bayesian model selection

Bayesian inference can easily be applied to multiple models or hypotheses, each with
a different set of parameters. In what follows, we will denote the different models

Fig. 9 Bayesian 90% credible upper limit for the parameter a
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Bayesian: upper limit 
‣ If the parameter is the amplitude 

• Confidence interval exclude 0 => potential detection … 
• Confidence interval include 0 => result compatible with no 

detection => upper limit

36
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The interpretation of Bayes’ theorem (3.14) is that our prior knowledge is updated
by what we learn from the data, as measured by the likelihood, to give our posterior
state of knowledge. The amount learned from the data is measured by the information
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I =
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Using a natural logarithm gives the information in nats, while using a base 2 logarithm
gives the information in bits. If the data tells us nothing about the parameter, then
p(d|a) = constant, which implies p(a|d) = p(a) and thus I = 0.

3.3.2 Bayesian upper limits

A Bayesian upper limit is simply a Bayesian credible interval for a parameter with the
lower end point of the interval set to the smallest value that the parameter can take.
For example, the Bayesian 90% upper limit on a parameter a > 0 is defined by:

Prob(0 < a < a90%,UL|d) = 0.90, (3.17)

where probability is interpreted as degree of belief, or state of knowledge, that the
parameter a has a value in the indicated range. One usually sets an upper limit on a
parameter when the mode of the distribution for the parameter being estimated is not
sufficiently displaced from zero, as shown in Fig. 9.

3.3.3 Bayesian model selection

Bayesian inference can easily be applied to multiple models or hypotheses, each with
a different set of parameters. In what follows, we will denote the different models

Fig. 9 Bayesian 90% credible upper limit for the parameter a
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Bayesian: model selection 
Goal: use Bayes theorem to compare models 

‣ℳ𝛼 : models            𝛳𝛼 : parameters  

‣ Posterior distribution for given the model : 

‣ Evidence given a model: 

37

p (✓↵|d,M↵) =
p (d|✓↵M↵) p (✓↵|M↵)

p (d|M↵)

p (d|M↵) =

Z
d✓↵ p (d|✓↵,M↵) p (✓↵,M↵)
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Bayesian: model selection 
‣ Posterior probability of models ℳ𝛼 : 

‣ Evidence: sum of all possible model … but total number 
unknown => use a subset 

‣ Odds ratio between 2 models:

38

p (M↵|d) =
p (d|M↵) p (M↵)

p(d)

p(d) =
X

↵

p (d|M↵) p (M↵)

O↵� =
p (M↵|d)
p (M� |d)



         Data Analysis I - A. Petiteau  -  GW School - Benasque - 5 to 9 June 2017

Bayesian: model selection 
‣ Odds ratio between 2 models:

39

B↵� =
p (d|M↵)

p (d|M�)

O↵� =
p (M↵|d)
p (M� |d)

O↵� =
p (d|M↵)

p (d|M�)

p (M↵)

p (M�)

Bayes factor evidence ratio
prior odds ratio
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Bayesian: Bayes factor
‣ Bayes factor: usual tool to compare model, in particular 

signal versus no signal ℳ 

‣ Problem: interpretation of Bayes factor 

‣ Need proper calibration (simulations, …)
40

𝓑𝛼𝛽 2 ln 𝓑𝛼𝛽(d) Evidence for model ℳ𝛼 relative to ℳ𝛽

< 1 < 0 Negative  (supports model ℳ𝛽)
1 - 3 0 - 2 Not worth more than a bare mention

3 - 20 2 - 6 Positive
2 - 150 6 - 10 Strong

>150 >10 Very strong
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Bayesian in practice
‣ In practice, we need to sample the parameters space 

computing likelihood to construct the posterior distribution 
of parameters.  

‣ Several methods: 
• Monte-Carlo Markov Chain, 
• Metropolis Hasting Markov Chain, 
• Multi-Nest, 
• EMCEE, 
• …

41
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Bayesian vs frequentist 

42

Frequentist Bayesian
Probabilities Probabilities assigned only to propositions 

about outcomes of repeatable experiments, 
not to hypotheses or parameters which 
have fixed but unknown values

Probabilities can be assigned to 
hypotheses and parameters since 
probability is degree of belief in any 
proposition  

Data Assumes measured data are drawn from an 
underlying probability distribution, which 
assumes the truth of a particular hypothesis 
or model (likelihood function)  
 

Same

Input Constructs a statistic to estimate a 
parameter or to decide whether or not to 
claim a detection  

Needs to specify prior degree of belief 
in a particular hypothesis or parameter 

Methods Calculates the probability distribution of the 
statistic (sampling distribution)  

Uses Bayes’ theorem to update the 
prior degree of belief in light of new 
data

Results Constructs confidence intervals and p-
values for parameter estimation and 
hypothesis testing  

Constructs posteriors and odds ratios 
for parameter estimation and 
hypothesis testing/model comparison  
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Bayesian vs frequentist: GW obs
‣ In the past, almost only frequentists 

‣ Now, Bayesian methods become more and more popular  

‣ For all GW observatories, we used the two approaches and  
hybrid approaches mixing the two. 
• LIGO:  

- methods based on Freq. or Bayesian 
• LISA:  

- mainly Bayesian methods 
• PTA:  

- methods based on Freq. or Bayesian
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Bayesian vs frequentist
‣ But at the end, what we need is computing a large number 

of likelihood, or equivalent estimators 
• Main computing cost 

‣ Joke about Bayesian inference from a colleague: 
•  “That’s the beauty of Bayesian inference: 

- likelihood*prior 
- realize that you have no idea how to pick the prior 
- assume flat prior 
- realize is a likelihood computation 

• Now you just computed a likelihood, but you are cool because 
you did it in a Bayesian way.”
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Likelihood / noise knowledge
‣ Depending on the level of knowledge of the noise, different 

flavors of likelihood. Some examples:  
• Perfectly known (Sn)  => reduced likelihood 

• Known shape components  
=> Cn described using parameters included in the search with 
model parameters 

• Partially known noise levels, and taking into account heavier tail 
distribution effects  

=> Student-t [Rover 2011]: each frequency bin follows a multi-
variate distribution with 𝜈j degrees of freedom.

45

logL = �
X

j

⌫j + 2

2

log

✓
1 +

1

⌫j
�2

◆



         Data Analysis I - A. Petiteau  -  GW School - Benasque - 5 to 9 June 2017

Likelihood / noise knowledge
• Partially known noise levels but fluctuations of Sn by segment 

=> one parameter per segment
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Thank you

47


