Standard Sirens

Standard Sirens

• We look at GWs emitted by **coalescing binaries**

- From the waveform we measure the luminosity distance.
- If we have in addition a measurement of the redshift, we have a point of the curve $d_L(z)$.

Outline

- Derivation of the **waveform** for inspiraling binaries.
- Propagation of GWs in our universe, assuming a homogeneous and isotropic metric.

→ dependence in the **luminosity distance**

- What can we learn from the luminosity distance?
- Expression of $d_L(z)$ in a FLRW metric.
- Forecasts on dark energy from LISA.

Outline

Propagation of GWs in an inhomogeneous universe.

Two relevant effects

• Inhomogeneities change the **luminosity distance**

• Inhomogeneities change the **waveform**

What is this impact of inhomogeneities on GWs detection and interpretation?

M. Maggiore Gravitational Waves

Inspiraling binaries

See lectures by Luc Blanchet

GWs are defined as $g_{\mu\nu} = \bar{g}_{\mu\nu} + h_{\mu\nu}$

We study the propagation in a flat space-time, i.e. $\bar{g}_{\mu\nu} = \eta_{\mu\nu}$

$$\bar{h}_{\mu\nu} \equiv h_{\mu\nu} - \frac{1}{2}\eta_{\mu\nu}h$$
 obeys a wave equation $\Box \bar{h}_{\mu\nu} = -16\pi G T_{\mu\nu}$

Inspiraling binaries

We calculate the solution outside the source.

We use the TT (transverse-traceless) gauge

 $\rightarrow h_{\mu\nu}$ described by two polarisations h_+ and h_{\times}

• We expand at lowest order in v/c

• GWs are generated by variations of the **quadrupole** moment of the source

$$M^{ij} = \int d^3x \, T^{00}(t, \mathbf{x}) x^i x^j$$

Quadrupole formula

$$h_{+}(t,\theta,\varphi) = \frac{G}{r} \Big[\ddot{M}_{11}(\cos^{2}\varphi - \sin^{2}\varphi\cos^{2}\theta) + \ddot{M}_{22}(\sin^{2}\varphi - \cos^{2}\varphi\cos^{2}\theta) \\ - \ddot{M}_{33}\sin^{2}\theta - \ddot{M}_{12}\sin 2\varphi(1 + \cos^{2}\theta) + \ddot{M}_{13}\sin\varphi\sin 2\theta \\ + \ddot{M}_{23}\cos\varphi\sin 2\theta \Big]$$

$$h_{\times}(t,\theta,\varphi) = \frac{G}{r} \Big[(\ddot{M}_{11} - \ddot{M}_{22}) \sin 2\varphi \cos \theta + 2\ddot{M}_{12} \cos 2\varphi \cos \theta \\ - 2\ddot{M}_{13} \cos \varphi \sin \theta + 2\ddot{M}_{23} \sin \varphi \sin \theta \Big]$$

Quadrupole of a binary system

$$\rho(t, \mathbf{x}) = m_1 \delta(\mathbf{x} - \mathbf{x}_1(t)) + m_2 \delta(\mathbf{x} - \mathbf{x}_2(t))$$

$$M^{ij}(t) = \int d^3x \, x^i x^j \rho(t, \mathbf{x}) = m_1 x_1^i x_1^j + m_2 x_2^i x_2^j$$

We can simplify the derivation by going to the reference frame of the **center of mass**

$$M^{ij}(t) = \mu x_0^i(t) x_0^j(t)$$

With $\mu = \frac{m_1 m_2}{m_1 + m_2}$ and $\mathbf{x}_0(t) = \mathbf{x}_1 - \mathbf{x}_2$

If we know the **trajectory** $\mathbf{x}_0(t)$ we know \ddot{M}^{ij}

Step 1: circular orbit

We assume that the relative coordinate $\mathbf{x}_0(t)$ describes a circle

The trajectory is fixed -> no backreaction from GW emission

$$x_{0}(t) = R \cos \left(\omega_{B}t + \pi/2\right)$$

$$y_{0}(t) = R \sin \left(\omega_{B}t + \pi/2\right)$$
hirp mass
$$M_{c} = \frac{(m_{1}m_{2})^{3/5}}{(m_{1} + m_{2})^{1/5}}$$

$$f_{GW} = \frac{\omega_{GW}}{2\pi} = \frac{2\omega_{B}}{2\pi}$$

C

$$h_{+}(t,\theta,\varphi) = \frac{4}{r} (GM_{c})^{5/3} (\pi f_{\rm GW})^{2/3} \frac{1+\cos^{2}\theta}{2} \cos\left(2\pi f_{\rm GW}t_{\rm ret} + 2\varphi\right)$$

$$h_{\times}(t,\theta,\varphi) = \frac{4}{r} (GM_c)^{5/3} (\pi f_{\rm GW})^{2/3} \cos\theta \sin\left(2\pi f_{\rm GW} t_{\rm ret} + 2\varphi\right)$$

Step 2: inspiral orbit

Emitting GWs costs energy the orbit decreases

$$\frac{dE_{\text{orbit}}}{dt} = -P$$

• We assume a quasi-circular motion $|\dot{R}| \ll R \cdot \omega_B \rightarrow \dot{\omega}_B \ll \omega_B^2$

$$E_{\rm orbit} = E_{\rm kin} + E_{\rm pot} = -\frac{Gm_1m_2}{2R}$$

• Energy decreases $\rightarrow R$ decreases $\rightarrow \omega_B$ increases

→ more loss of energy → coalescence

Step 2: inspiral orbit

$$E_{\rm orbit} = -\left(\frac{G^2 M_c^5 \,\omega_{\rm GW}^2}{32}\right)^{1/3} \rightarrow \frac{dE_{\rm orbit}}{dt} = -\left(\frac{G^2 M_c^5}{32}\right)^{1/3} \frac{2 \,\dot{\omega}_{\rm GW}}{3 \,\omega_{\rm GW}^{1/3}}$$

We compare this with the **power** carried away by **GWs**

• Energy-momentum tensor
$$t_{\mu\nu} = \frac{1}{32\pi G} \langle \partial_{\mu} h_{\alpha\beta} \partial_{\nu} h^{\alpha\beta} \rangle$$

 $\rho = t^{00} = \frac{1}{16\pi G} \langle \dot{h}_{+}^{2} + \dot{h}_{\times}^{2} \rangle$
average over many periods

The power is the energy carried away per unit of time

$$P = \frac{32}{5G} \left(\frac{GM_c \,\omega_{\rm GW}}{2}\right)^{10/3}$$

Evolution of the frequency

$$\frac{dE_{\text{orbit}}}{dt} = -P \quad \longrightarrow \quad \dot{f}_{\text{GW}} = \frac{96}{5} \pi^{8/3} (GM_c)^{5/3} f_{\text{GW}}^{11/3}$$

plution
$$f_{\text{GW}} = \frac{1}{\pi} (GM_c)^{-5/8} \left(\frac{5}{256 \tau}\right)^{3/8} \quad \tau = t - t_c$$

What about the **waveform**?

$$x_0(t) = R(t)\cos\left(\int_{t_0}^t dt'\omega_S(t')\right) \qquad y_0(t) = R(t)\sin\left(\int_{t_0}^t dt'\omega_S(t')\right)$$

We define the **phase**

So

$$\phi(t) \equiv \int_{t_0}^t dt' \omega_{\rm GW}(t') = \int_{t_0}^t dt' 2\omega_S(t')$$

Wave-form

p. |3/33

Expanding universe

Friedmann-Lemaître-Robertson-Walker metric

$$ds^2 = -dt^2 + a^2(t)\delta_{ij}dx^i dx^j$$

We use our solution to describe the GW close to the source

 $r
ightarrow r_{
m phys} = a_S \, r \,\,
ightarrow \,\, {
m comoving \,\, coordinate}$

$$h_{+}(\tau_{S}) = \frac{4}{a_{S}r} (GM_{c})^{5/3} \left(\pi f_{S}(\tau_{S})\right)^{2/3} \frac{1 + \cos^{2}\theta}{2} \cos\left(\phi_{S}(\tau_{S})\right)$$

$$h_{\times}(\tau_S) = \frac{4}{a_S r} (GM_c)^{5/3} \left(\pi f_S(\tau_S)\right)^{2/3} \cos\theta \sin\left(\phi_S(\tau)\right)$$

Propagation in an expanding universe

$$\Box \bar{h}_{\mu\nu} = 0 \qquad \qquad \frac{1}{r} \to \frac{1}{ar}$$

The wavelength is stretched by the expansion

$$f_O = \frac{f_S}{1+z}$$

Redshift:
$$1 + z = \frac{a_O}{a_S}$$

• Time intervals are affected by the expansion $dt_O = (1+z)dt_S$

$$\frac{df_S}{dt_S} = \frac{96}{5} \pi^{8/3} (GM_c)^{5/3} f_S^{11/3}$$
$$(1+z) \frac{d[f_O(1+z)]}{dt_O} = \frac{96}{5} \pi^{8/3} (GM_c)^{5/3} f_O^{11/3} (1+z)^{11/3}$$

◆ If the redshift is **constant** during the time of observation

$$\frac{df_O}{dt_O} = \frac{96}{5} \pi^{8/3} (G\mathcal{M}_c(z))^{5/3} f_O^{11/3} \qquad \qquad \mathcal{M}_c = (1+z)M_c$$

$$f_O(\tau_O) = \frac{1}{\pi} (G\mathcal{M}_c)^{-5/8} \left(\frac{5}{256\,\tau_O}\right)^{3/8}$$

Phase at the observer
$$\phi_O(\tau_O) = -2\left(\frac{\tau_O}{5G\mathcal{M}_c}\right)^{5/8} + \phi_c$$

 \rightarrow The phase is **constant** along null geodesics $\phi_O(\tau_O) = \phi_S(\tau_S)$

$$k^{\mu} = \partial^{\mu}\phi$$
 and $k^{\mu}k_{\mu} = 0 \rightarrow k^{\mu}\partial_{\mu}\phi = 0$

$$h_{+}(\tau_{O}) = \frac{4}{a_{O}r(1+z)} (G\mathcal{M}_{c})^{5/3} \left(\pi f_{O}(\tau_{O})\right)^{2/3} \frac{1+\cos^{2}\theta}{2} \cos\left(\phi_{O}(\tau_{O})\right)$$

$$h_{\times}(\tau_{O}) = \frac{4}{a_{O}r(1+z)} (G\mathcal{M}_{c})^{5/3} (\pi f_{O}(\tau_{O}))^{2/3} \cos\theta \sin(\phi_{O}(\tau_{O}))$$

Phase at the observer
$$\phi_O(\tau_O) = -2\left(\frac{\tau_O}{5G\mathcal{M}_c}\right)^{5/8} + \phi_c$$

 \rightarrow The phase is **constant** along null geodesics $\phi_O(\tau_O) = \phi_S(\tau_S)$

$$k^{\mu} = \partial^{\mu}\phi$$
 and $k^{\mu}k_{\mu} = 0 \rightarrow k^{\mu}\partial_{\mu}\phi = 0$

luminosity distance

$$h_{+}(\tau_{O}) = \frac{4}{a_{O}r(1+z)} (G\mathcal{M}_{c})^{5/3} (\pi f_{O}(\tau_{O}))^{2/3} \frac{1+\cos^{2}\theta}{2} \cos\left(\phi_{O}(\tau_{O})\right)$$

$$h_{\times}(\tau_{O}) = \frac{4}{a_{O}r(1+z)} (G\mathcal{M}_{c})^{5/3} (\pi f_{O}(\tau_{O}))^{2/3} \cos\theta \sin(\phi_{O}(\tau_{O}))$$

Phase at the observer
$$\phi_O(\tau_O) = -2\left(\frac{\tau_O}{5G\mathcal{M}_c}\right)^{5/8} + \phi_c$$

 \rightarrow The phase is **constant** along null geodesics $\phi_O(\tau_O) = \phi_S(\tau_S)$

$$k^{\mu} = \partial^{\mu}\phi$$
 and $k^{\mu}k_{\mu} = 0 \rightarrow k^{\mu}\partial_{\mu}\phi = 0$

$$h_{+}(\tau_{O}) = \frac{4}{d_{L}} (G\mathcal{M}_{c})^{5/3} \left(\pi f_{O}(\tau_{O})\right)^{2/3} \frac{1 + \cos^{2}\theta}{2} \cos\left(\phi_{O}(\tau_{O})\right)$$

$$h_{\times}(\tau_O) = \frac{4}{d_L} (G\mathcal{M}_c)^{5/3} \left(\pi f_O(\tau_O)\right)^{2/3} \cos\theta \sin\left(\phi_O(\tau_O)\right)$$

Impact of the expansion

• The **amplitude** is diluted with the distance $d_L = \sqrt{\frac{L}{4\pi F}}$

The frequency is redshifted.

Benasque 2017 Standard Sirens Camille Bonvin p. 20/33

Impact of the expansion

• The amplitude is diluted with the distance $d_L = \sqrt{\frac{L}{4\pi E}}$

The frequent the change in the waveform is degenerated with a change in the chirp mass

Information

• What can we **learn** if we measure h_+ and h_{\times} ?

• We measure
$$\frac{df_O}{dt_O} = \frac{96}{5} \pi^{8/3} (G\mathcal{M}_c(z))^{5/3} f_O^{11/3}$$

 \rightarrow measurement of the redshifted chirp mass \mathcal{M}_c

• Ratio of the amplitude
$$\frac{A_+}{A_{\times}} = \frac{1 + \cos^2 \theta}{2 \cos \theta}$$

measurement of the orientation of the binary

$$h_{+}(\tau_{O}) = \frac{4}{d_{L}} (G\mathcal{M}_{c})^{5/3} \left(\pi f_{O}(\tau_{O})\right)^{2/3} \frac{1 + \cos^{2}\theta}{2} \cos\left(\phi_{O}(\tau_{O})\right)$$

Information

• What can we **learn** if we measure h_+ and h_{\times} ?

• We measure
$$\frac{df_O}{dt_O} = \frac{96}{5} \pi^{8/3} (G\mathcal{M}_c(z))^{5/3} f_O^{11/3}$$

 \rightarrow measurement of the redshifted chirp mass \mathcal{M}_c

• Ratio of the amplitude
$$\frac{A_+}{A_{\times}} = \frac{1 + \cos^2 \theta}{2 \cos \theta}$$

We can measure directly the **luminosity distance**

$$h_{+}(\tau_{O}) = \frac{4}{d_{L}} (G\mathcal{M}_{c})^{5/3} \left(\pi f_{O}(\tau_{O})\right)^{2/3} \frac{1 + \cos^{2} \theta}{2} \cos\left(\phi_{O}(\tau_{O})\right)$$

Standard sirens

• Why the name: **standard sirens**?

In (bad) analogy with supernovae

Supernovae type Ia emit the same energy when exploding

we know their luminosity

from the flux we infer
$$d_L = \sqrt{\frac{L}{4\pi F}}$$

Standard candles = objects that emit same luminosity

Standard sirens

- By analogy we say: with GWs we can measure directly the luminosity distance -> standard sirens
- Not very good analogy because binary systems **do not** all emit the **same energy**: h_+ and h_{\times} depend on the system.
- We have enough information from the two polarisations and the waveform to **measure** the **distance**.
- Advantage: we do not rely on similarity between objects.
- Problem: we do not have a measurement of the redshift.

Standard sirens

Advantage: we do not rely on similarity between objects.

Problem: we do not have a measurement of the redshift.

Electro-magnetic counterpart

• To do **cosmology** we need $d_L(z)$

- With multiple detectors we can locate the position of the source (with some uncertainty).
- We can try and see if the system emits something in the optical.
 See lecture by Alexis Coleiro
- We can use cosmology to infer the redshift from the distance, use this to determine in which galaxy the binary is and then measure the redshift of the galaxy.

What can we learn from the luminosity distance?

Number of standard sirens with electro-magnetic counterpart

See lectures by Alberto Sesana

Tamanini et al., arXiv:1601.07112

Constraints on the amount of dark energy

Tamanini et al., arXiv:1601.07112

 $w = -1 \qquad \qquad \Omega_m + \Omega_\Lambda = 1$

Measurement of the Hubble constant 1%

Constraints on the equation of state

$$w = w_0 + w_a \frac{z}{1+z}$$

Tamanini et al., arXiv:1601.07112

Caprini and Tamanini, arXiv: 1607.08755

Early dark energy

Early dark energy

For $z_e < 10$ standard sirens give better constraints than the CMB.