Gravitational Wave Observatories I: History, Status \& Future Basic Theory

Neil J. Cornish

Gravitational Wave Detection

Mechanical/Acoustic

Time of flight

Gravitational Wave Astronomy

$10^{-16} \mathrm{~Hz}$
Inflation Probe

$10^{3} \mathrm{~Hz}$
Ground interferometers

Early History

(Saving PTA history, status and future for Friday)

Detection and Generation of Gravitational Waves*

J. Weber

University of Maryland, College Park, Maryland
(Received February 9, 1959; revised manuscript received July 20, 1959)

SOVIET PHYSICS JETP

'VOLUME $1 \cdot 6$, NUMBER 2

ON THE DETECTION OF LOW FREQỤENCY GRA VITATIONAL WAVES
M. E. GERTSENSHTEĬN and .V. I. PUSTOVOĬT

November 1971 / Vol. 10, No. 11 / APPLIED OPTICS 2495

Photon-Noise-Limited Laser Transducer for Gravitational Antenna

First description of using a mechanical (acoustic) detector

First description of using a Michelson interferometer

Rai Weiss, 1972 design for what became LIGO

QUARTERLY PROGRESS REPORT
No. 105

APRIL 15, 1972

MASSACHUSETTS INSTITUTE OF TECHNOLOGY RESEARCH LABORATORY OF ELECTRONICS CAMBRIDGE, MASSACHUSETTS 02139
(V. GRAvitation research)
B. Electromagnetically coupled broadband GRavitational antenna

1. Introduction

The prediction of gravitational radiation that travels at the speed of light has been an essential part of every gravitational theory since the discovery of special relativity In 1918, Einstein, ${ }^{1}$ using a weak-field approximation in his very successful geometrical theory of gravity (the general theory of relativity), indicated the form that gravitational waves would take in this theory and demonstrated that systems with time-variant mass quadrupole moments would lose energy by gravitational radiation. It was evident to Einstein that since gravitational radiation is extremely weak, the most likely measurable adiation would come from astronomical sources. For many years the subject of sravitational radiation remained the province of a few dedicated theorists; however, the recent discovery of the pulsars and the pioneering and controversial experiments of Weber ${ }^{2,3}$ at the University of Maryland have engendered a new interest in the field.
Weber has reported coincident excitations in two gravitational antennas separated 1000 km . These antennas are high-Q resonant bars tuned to 1.6 kHz . He attributes these excitations to pulses of gravitational radiation emitted by broadband sources concentrated near the center of our galaxy. If Weber's interpretation of these events is correct, there is an enormous flux of gravitational radiation incident on the Earth. Several research groups throughout the world are attempting to confirm these results with resonant structure gravitational antennas similar to those of Weber. A proadband antenna of the type proposed in this report would give independent confirmaion or the existence of these events, as well as furnish new information about the pulse hapes.
The discovery of the pulsars may have uncovered sources of gravitational radiation which have extremely well-known frequencies and angular positions. The fastest known pusar is NP esc, in the Crab Nebula, which rotates at 30.2 Hz . The gravitational fux est on is etelion Tol
the times
tenna design can serve as a pulsar antenna and offers some distinct dvantages over high- Q acoustically coupled structures.
2. Description of a Gravitational Wave in the General Theory of Relativity

In his paper on gravitational waves (1918), Einstein showed by a perturbation argument that a weak gravitational plane wave has an irreducible metric tensor in an

GRAVITATIONAL-WAVE ASTRONOMY ${ }^{1,2}$

William H. Press ${ }^{3}$ and Kip S. Thorne
California Institute of Technology, Pasadena, California
\section*{1. INTRODUCTION}

The "windows" of observational astronomy have become broader. They now include, along with photons from many decades of the electromagnetic spectrum, extraterrestrial "artifacts" of other sorts: cosmic rays, meteorites, particles from the solar wind, samples of the lunar surface, and neutrinos. With gravitationalwave astronomy, we are on the threshold-or just beyond the threshold-of adding another window; it is a particularly important window because it will allow us to observe phenomena that cannot be studied adequately by other means: gravitational collapse, the interiors of supernovae, black holes, shortperiod binaries, and perhaps new details of pulsar structure. There is the further possibility that gravitational-wave astronomy will reveal entirely new phe-nomena-or familiar phenomena in unfamiliar guise-in trying to explain the observations of Joseph Weber.

The future of gravitational-wave astronomy looks bright whether or not

Early claim of detection

EVIDENCE FOR DISCOVERY OF GRAVITATIONAL RADIATION*

J. Weber

Department of Physics and Astronomy, University of Maryland, College Park, Maryland 20742
(Received 29 April 1969)
Coincidences have been observed on gravitational-radiation detectors over a base line of about 1000 km at Argonne National Laboratory and at the University of Maryland. The probability that all of these coincidences were accidental is incredibly small. Experiments imply that electromagnetic and seismic effects can be ruled out with a high level of confidence. These data are consistent with the conclusion that the detectors are being excited by gravitational radiation.

LIGO Timeline

- Conceived in the early 70's, Chapman, Forward, Weiss
- I984, Caltech and MIT form LIGO collaboration, jointly lead by Drever, Weiss and Thorne Tr Ti
- 1989 proposal to the National Science Foundation
- I99| construction approved
- 1998 facility construction complete
- 2002 first observing run for the first generation detectors
- 2015 first observing run for the second generation detectors
R. E. Vogt, R. W. P. Drever, K. S. Thorne, F. J. Raab and R. Weiss (Caltech \& MIT), "Construction, operation, and supporting research and development of a Laser Interferometer Gravitational-wave Observatory", proposal to NSF, 1989

LIGO sensitivity over time

GWI509|4: At last a signal!

 right column panels) detectors. Times are shown relative to September 14, 2015 at 09:50:45 UTC. For visualization, all time series

Time from $30 \mathrm{~Hz}(\mathrm{~s})$

GWI 509I4: A story 40+ years in the making

Rai Weiss

Kip Thorne

Ron Drever

GWI 509I4: A story 40+ years in the making

Rai Weiss

Kip Thorne

Ron Drever

Next steps - a worldwide network

3rd and 4th generation ground-based instruments

LIGO Upgrade Timeline

A+: aLIGO upgrade, freq. dep. squeezing, heavier mirrors, more powerful lasers Voyager: aLIGO upgrade, same facility, cryogenic, more powerful lasers
Einstein Telescope: Underground, 10 km, triangular, cryogenic
Cosmic Explorer: New facility, 40 km arms, squeezing etc

Space Interferometers

Gravitational Wave Interferometer: 1974

1978 Design - 16.5 t, \$49.5M. Shuttle Launched. To be built in space. Aluminum extruding machine.

The Weiss Report: 1975

MANAGEMENT AND ORERATIONS
TORKING GROUP FOR SHUTTIE ASTRONOMY

Pound

Misner

The Weiss Report: 1975

TABLE OF CONTENTS

1. Wistory of Submpanel 1
2. Introduction 1
3. Fundmantal Imsues in Reabtivity and Gravitation 4
4. Solax System Measamements of Relativituta Gravita- 4ional Effects 10
a) Planetary Rancing zxperiments 1.1
1) Mexcury Oxbiter Mission 1.7
2) Close Solar Probe Mjsmion 20
b) Deflection of Electromagnetic waves by the Sun 22
 24
5. Treaty of the principle of zquivalence 28
8) "EDtvds" Experiments 28
b) Rec shift Measurement 33
c) Other Clock Experimenss 33
a) Second order Red shift 35
6. Gravitational Radiation 35
 43
日. Commology amit Gravitatjon 45
7. Summary anc Mecommendations 48

Battelle Workshop, Seattle July 24-August 4, 1978

Laser Antenna for Gravitational-radiation Observation in Space (LAGOS): |98|

Faller \& Bender 198 ।
Faller, Bender, Hall, Hils \& Vincent I 985

Laser Interferometer Space Antenna (LISA): I 993

ESA M3 candidate MayI993

Spaceborne Astronomical Gravitational-wave InterferometerTo Test Aspects of Relativity and Investigate Unknown Sources (SAGITTARIUS): I993

ESA M3 candidate (Hellings) 1993

Laser Interferometer Space Antenna for Gravity (LISAG): I 993

ESA Cornerstone candidate December 1993

Laser Interferometer Space Antenna (LISA)

LISA

Laser Interferometer Space Antenna for the detection and observation of gravitational waves

An international project in the field of
Fundamental Physics in Space

Pre-Phase A Report
Second Edition July 1998

Orbiting Medium Explorer for Gravitational-wave Astrophysics (OMEGA): 1998

1998 NASA MIDEX proposal (Hellings et al)

ESA/NASA LISA mission: official start 200|

Full Cost NASA Funding (excluding ST-7)

2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
Pre-Formulation (\$14M)																		
				Formulation (\$209M)								Costs are in real-year \$'s						
							Implementation (\$631M)											
											Cruise and Operations (\$219M)							

Pathfinder: European LIsa TEchnology (ELITE): I998

For launch in 2002

Small Missions for Advanced Research in Technology-2 (SMART-2): 2000

LISA/Darwin Pathfinder. For Launch in 2006

LISA Pathfinder - Space Technology Mission 7: Approved 2002

SMART-2 Descoped to single spacecraft. For launch in 200 K

March 20II, The Divorce

eLISA - Descoped LISA proposed for ESA-lead mission (201I)

Cosmic Visions LI Candidate

The Gravitational Universe selected as L3 science theme (2013)

eLISA as candidate mission concept: Launch in 2034

Near perfect free-fall demonstrated by the LISA Pathfinder mission in 2016

January 2017, LISA mission proposed for ESA L3 science theme

Time of flight detectors

Pulsar Timing

Spacecraft tracking

Laser Interferometers

Time of flight detectors

$\Delta T(t)$

Pulsar Timing
$\frac{\Delta \nu(t)}{\nu_{0}}=\frac{d \Delta T(t)}{d t}$

end mirror I

Spacecraft tracking

The Long and the Short of it

Beam detector	$L(\mathrm{~km})$	$f_{*}(\mathrm{~Hz})$	$f(\mathrm{~Hz})$	f / f_{*}	Relation
Ground-based interferometer	~ 1	$\sim 10^{5}$	10 to 10^{4}	10^{-4} to 10^{-1}	$f \ll f_{*}$
Space-based interferometer	$\sim 10^{6}$	$\sim 10^{-1}$	10^{-4} to 10^{-1}	10^{-3} to 1	$f \lesssim f_{*}$
Spacecraft Doppler tracking	$\sim 10^{9}$	$\sim 10^{-4}$	10^{-6} to 10^{-3}	10^{-2} to 10	$f \sim f_{*}$
Pulsar timing	$\sim 10^{17}$	$\sim 10^{-12}$	10^{-9} to 10^{-7}	10^{3} to 10^{5}	$f \gg f_{*}$

$$
f_{*}=\frac{c}{L}
$$

LIGO

LISA

PTA

Review: Gravitational Wave Theory

The Transverse-Traceless gauge is well suited for computing the GW response of time-of-flight detectors

Line element for a plane wave propagating in the $+z$ direction in a TT coordinate system

$$
\begin{gathered}
d s^{2}=-d t^{2}+d x^{2}\left(1+h_{+}\right)+d y^{2}\left(1-h_{+}\right)+2 h_{\times} d y d y+d z^{2} \\
h_{+}, h_{\times} \quad \text { are functions of } \quad u=t-z
\end{gathered}
$$

Any wave can be formed from a superposition of plane waves, so results derived using this metric are fully general. Results for other propagation directions and polarization frames can be found by a rotation

Review: Gravitational Wave Theory

$$
d s^{2}=-d t^{2}+d x^{2}\left(1+h_{+}\right)+d y^{2}\left(1-h_{+}\right)+2 h_{\times} d y d y+d z^{2}
$$

The metric describes flat space with small curvature ripples (time dependent tidal field)

$$
R_{t x t x}=R_{t y t y}=-\frac{1}{2} \ddot{h}_{+} \quad \quad R_{t x t y}=R_{t y t x}=-\frac{1}{2} \ddot{h}_{\times}
$$

Review: Gravitational Wave Theory

$$
d s^{2}=-d t^{2}+d x^{2}\left(1+h_{+}\right)+d y^{2}\left(1-h_{+}\right)+2 h_{\times} d y d y+d z^{2}
$$

The tidal effects can be seen in the acceleration of the separation between two nearby geodesics

Writing the separation vector as

$$
\boldsymbol{\xi} \rightarrow \xi(\cos \phi \sin \theta, \sin \phi \sin \theta, \cos \theta)
$$

The geodesic deviation equation yields $\quad \ddot{\zeta}=-\frac{1}{\xi} R_{t i t j} \xi^{i} \xi^{j}=\frac{\xi}{2} \sin ^{2} \theta\left(\ddot{h}_{+} \cos (2 \phi)+\ddot{h}_{\times} \sin (2 \phi)\right)$

Animation of $\zeta(t)$ for $\theta=\frac{\pi}{2}$

Review: Gravitational Wave Theory

$$
d s^{2}=-d t^{2}+d x^{2}\left(1+h_{+}\right)+d y^{2}\left(1-h_{+}\right)+2 h_{\times} d y d y+d z^{2}
$$

The tidal stretching picture is only valid for geodesics separated by much less than the wavelength of the gravitational wave. Applies to LIGO, but not pulsar timing or LISA.

If the detector is much smaller than the GW wavelength, then it is convenient to work in a locally inertial coordinate system (RNC):

$$
d s^{2}=-d t^{2}+d x^{2}+d y^{2}+d z^{2}+\frac{1}{2}(d t-d z)^{2}\left(\ddot{h}_{+}\left(x^{2}-y^{2}\right)-2 \ddot{h}_{\times} x y\right)
$$

Maggiore refers to this as the proper detector frame in his textbook (where he also includes the local gravitational acceleration and Coriolis forces)

Review: Gravitational Wave Theory

$$
d s^{2}=-d t^{2}+d x^{2}\left(1+h_{+}\right)+d y^{2}\left(1-h_{+}\right)+2 h_{\times} d y d y+d z^{2}
$$

A defining feature of the TT gauge is that the coordinate acceleration vanishes $\quad \ddot{x}^{i}=0$

Animation of a GW directed perpendicular to a ring of test particles in the TT gauge (this animation even works in PDF and printed format!)

Time of flight computed in TT gauge

$$
\begin{aligned}
d s^{2} & =-d t^{2}+d x^{2}\left(1+h_{+}(u)\right)+d y^{2}\left(1-h_{+}(u)\right)+2 h_{\times}(u) d y d y+d z^{2} \\
& =-d v d u+d x^{2}\left(1+h_{+}(u)\right)+d y^{2}\left(1-h_{+}(u)\right)+2 h_{\times}(u) d y d y
\end{aligned}
$$

where $u=t-z, \quad v=t+z$

All time-of-flight detectors require us to compute the time it takes a photon to travel from one event to another in the spacetime perturbed by a GW. Some require multiple trips

Time of flight computed in TT gauge

$$
d s^{2}=-d u d v^{2}+d x^{2}\left(1+h_{+}(u)\right)+d y^{2}\left(1-h_{+}(u)\right)+2 h_{\times}(u) d y d y+d z^{2}
$$

Have to solve for null geodesics in this metric. We could integrate the geodesic equations, but the spacetime has lots of symmetry, and hence conserved quantities. No integration needed!

Killing vectors $\vec{\partial}_{x}, \vec{\partial}_{y}, \vec{\partial}_{v}$
Photon worldline $x^{\alpha}(\lambda)$ Photon 4-velocity $S^{\alpha}=\frac{d x^{\alpha}}{d \lambda}$

Killing vectors yield three constants of motion

$$
S_{x}(\lambda)=\alpha_{x}, \quad S_{y}(\lambda)=\alpha_{y}, \quad S_{v}(\lambda)=\alpha_{z}
$$ and we have the fourth condition $\quad S_{\alpha} S^{\alpha}=0$

Time of flight computed in TT gauge

$$
d s^{2}=-d u d v^{2}+d x^{2}\left(1+h_{+}(u)\right)+d y^{2}\left(1-h_{+}(u)\right)+2 h_{\times}(u) d y d y+d z^{2}
$$

Path from $(0,0,0,0)$ to (L, x, y, z) in unperturbed spacetime has

$$
\alpha_{x}=\frac{x}{\lambda_{2}-\lambda_{1}}, \quad \alpha_{y}=\frac{y}{\lambda_{2}-\lambda_{1}}, \quad \alpha_{z}=-\frac{L-z}{2\left(\lambda_{2}-\lambda_{1}\right)}
$$

$$
t=L=\sqrt{x^{2}+y^{2}+z^{2}}
$$

Time of flight computed in TT gauge

$$
d s^{2}=-d u d v^{2}+d x^{2}\left(1+h_{+}(u)\right)+d y^{2}\left(1-h_{+}(u)\right)+2 h_{\times}(u) d y d y+d z^{2}
$$

When GWs are present we have to change our aim:

$$
\begin{aligned}
& \delta \alpha_{x}= \frac{1}{(L-z)\left(\lambda_{2}-\lambda_{1}\right)}\left(x H_{x x}+y H_{x y}\right) \\
& \delta \alpha_{y}= \frac{1}{(L-z)\left(\lambda_{2}-\lambda_{1}\right)}\left(y H_{y y}+x H_{x y}\right) \quad H_{i j}=\int_{0}^{L-z} h_{i j}(u) d u \\
& \delta \alpha_{z}=-\frac{\delta t}{2\left(\lambda_{2}-\lambda_{1}\right)} \\
& \delta t=\frac{1}{2 L(L-z)}\left(x^{2} H_{x x}+y^{2} H_{y y}+2 x y H_{x y}\right) \\
& \quad\left(h_{x x}=-h_{y y}=h_{+}, \quad h_{x y}=h_{x}\right)
\end{aligned}
$$

Time of flight computed in TT gauge

$$
\delta t=\frac{1}{2 L(L-z)}\left(x^{2} H_{x x}+y^{2} H_{y y}+2 x y H_{x y}\right)
$$

Coordinate independent version:

$$
\Delta \tau_{12}=\frac{(\hat{a} \otimes \hat{a}): \mathbf{H}\left[u_{1}, u_{2}\right]}{2(1-\hat{k} \cdot \hat{a})} \quad\left(u=k_{\alpha} x^{\alpha}\right)
$$

Here \hat{a} is a unit vector along the detector arm and \hat{k} is the GW propagation direction

$$
\mathbf{H}\left[u_{1}, u_{2}\right]=\int_{u_{1}}^{u_{2}} \mathbf{h}(u) d u \quad \mathbf{h}=h_{+}(u) \epsilon^{+}+h_{\times}(u) \epsilon^{\times}
$$

General coordinate system

$$
\begin{aligned}
& \hat{n}=\sin \theta \cos \phi \hat{x}+\sin \theta \sin \phi \hat{y}+\cos \theta \hat{z} \\
& \hat{u}=\cos \theta \cos \phi \hat{x}+\cos \theta \sin \phi \hat{y}-\sin \theta \hat{z} \\
& \hat{v}=\sin \phi \hat{x}-\cos \phi \hat{y}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{e}^{+}=\hat{u} \otimes \hat{u}-\hat{v} \otimes \hat{v} \\
& \mathbf{e}^{\times}=\hat{u} \otimes \hat{v}+\hat{v} \otimes \hat{u}
\end{aligned}
$$

$$
\mathbf{h}=h_{+} \boldsymbol{\epsilon}^{+}+h_{\times} \boldsymbol{\epsilon}^{\times}
$$

$$
\epsilon^{+}=\hat{p} \otimes \hat{p}-\hat{q} \otimes \hat{q}
$$

$$
=\cos 2 \psi \mathbf{e}^{+}-\sin 2 \psi \mathbf{e}^{\times}
$$

$$
\epsilon^{\times}=\hat{p} \otimes \hat{q}+\hat{q} \otimes \hat{p}
$$

$$
=\sin 2 \psi \mathbf{e}^{+}+\cos 2 \psi \mathbf{e}^{\times}
$$

Example: Laser interferometer in the long wavelength limit

$$
\begin{gathered}
\Delta T(t)=\Delta \tau_{12}+\Delta \tau_{24}-\Delta \tau_{13}-\Delta \tau_{34} \\
h(t) \equiv \frac{\Delta T(t)}{2 L} \approx \underbrace{\frac{1}{2}[\hat{a} \otimes \hat{a}-\hat{b} \otimes \hat{b}]}_{\text {Detector tensor }}: \mathbf{h}(t) \\
\mathbf{h}(t)=h_{+}(t) \boldsymbol{\epsilon}^{+}+h_{\times}(t) \boldsymbol{\epsilon}^{\times} \\
\text {Polarization tensors }
\end{gathered}
$$

Antenna Pattern Functions

$\hat{n}=\sin \theta \cos \phi \hat{x}+\sin \theta \sin \phi \hat{y}+\cos \theta \hat{z}$

$$
\begin{aligned}
& \mathbf{e}^{+}=\hat{u} \otimes \hat{u}-\hat{v} \otimes \hat{v} \\
& \mathbf{e}^{\times}=\hat{u} \otimes \hat{v}+\hat{v} \otimes \hat{u}
\end{aligned}
$$

$\hat{u}=\cos \theta \cos \phi \hat{x}+\cos \theta \sin \phi \hat{y}-\sin \theta \hat{z}$
$\hat{v}=\sin \phi \hat{x}-\cos \phi \hat{y}$

$$
\begin{aligned}
& (\hat{a} \otimes \hat{a}): \mathbf{e}^{+}=\cos ^{2} \theta \cos ^{2} \phi-\sin ^{2} \phi \\
& (\hat{a} \otimes \hat{a}): \mathbf{e}^{\times}=\cos \theta \sin 2 \phi \\
& (\hat{b} \otimes \hat{b}): \mathbf{e}^{+}=\cos ^{2} \theta \sin ^{2} \phi-\cos ^{2} \phi \\
& (\hat{b} \otimes \hat{b}): \mathbf{e}^{\times}=-\cos \theta \sin 2 \phi
\end{aligned}
$$

Antenna Pattern Functions

$\hat{n}=\sin \theta \cos \phi \hat{x}+\sin \theta \sin \phi \hat{y}+\cos \theta \hat{z}$

$$
\begin{aligned}
& \mathbf{e}^{+}=\hat{u} \otimes \hat{u}-\hat{v} \otimes \hat{v} \\
& \mathbf{e}^{\times}=\hat{u} \otimes \hat{v}+\hat{v} \otimes \hat{u}
\end{aligned}
$$

$\hat{u}=\cos \theta \cos \phi \hat{x}+\cos \theta \sin \phi \hat{y}-\sin \theta \hat{z}$
$\hat{v}=\sin \phi \hat{x}-\cos \phi \hat{y}$

$$
\begin{aligned}
& h=F^{+} h_{+}+F^{\times} h_{\times} \\
F^{+}= & \frac{1}{2}(\hat{a} \otimes \hat{a}-\hat{b} \otimes \hat{b}): \epsilon^{+} \\
= & \frac{1}{2}\left(1+\cos ^{2} \theta\right) \cos (2 \phi) \cos 2 \psi-\cos \theta \sin 2 \phi \sin 2 \psi \\
F^{\times}= & \frac{1}{2}(\hat{a} \otimes \hat{a}-\hat{b} \otimes \hat{b}): \epsilon^{\times} \\
= & \frac{1}{2}\left(1+\cos ^{2} \theta\right) \cos (2 \phi) \sin 2 \psi+\cos \theta \sin 2 \phi \cos 2 \psi
\end{aligned}
$$

Antenna Pattern Functions

$$
F_{+}
$$

$F_{\text {× }}$

$$
F=\sqrt{F_{+}^{2}+F_{\times}^{2}}
$$

Polarization averaged

Terrestrial Network

Terrestrial Network

Terrestrial Network

Terrestrial Network

Terrestrial Network

Terrestrial Network

Laser Interferometer Space Antenna

Low frequency response

Beyond the low frequency approximation

$$
\Delta \tau_{12}=\frac{(\hat{a} \otimes \hat{a}): \mathbf{H}\left[u_{1}, u_{2}\right]}{2(1-\hat{k} \cdot \hat{a})} \quad \mathbf{H}\left[u_{1}, u_{2}\right]=\int_{u_{1}}^{u_{2}} \mathbf{h}(u) d u \quad\left(u=k_{\alpha} x^{\alpha}\right)
$$

Example: $\quad \mathbf{h}(u)=A \cos (\omega(t-\hat{k} \cdot \mathbf{x})) \boldsymbol{\epsilon}^{+}$

$$
\Delta \tau_{12}=\frac{L}{2}(\underbrace{\begin{array}{c}
\text { Finite arm-length } \\
\text { correction to } \\
\text { antenna pattern }
\end{array}}_{\left.\begin{array}{c}
\text { Long wavelength one- } \\
\text { arm antenna pattern }
\end{array}(\hat{a} \otimes \hat{a}): \boldsymbol{\epsilon}^{+}\right) \operatorname{sinc}}\left[\frac{\omega L}{2}(1-\hat{k} \cdot \hat{a})\right] \cos [\underbrace{\omega\left(t+\frac{L}{2}-\frac{\hat{k} \cdot\left(\mathbf{x}_{\mathbf{1}}+\mathbf{x}_{\mathbf{2}}\right)}{2}\right.}_{\begin{array}{c}
\text { Phase of the wave } \\
\text { at midpoint of arm }
\end{array}}]
$$

PulsarTiming

$$
\tau_{\mathrm{GW}}(t)=-\frac{L}{2} \int_{-1}^{0}(\hat{a} \otimes \hat{a}): \mathbf{h}(t+L \xi,-\hat{a} \xi L) d \xi \quad \hat{k}=-\hat{n}-\xi \frac{L}{D}(\hat{a}-\hat{n} \cos \mu)
$$

Short wavelength limit

$$
(\hat{a} \otimes \hat{a}): \mathbf{H}=(1+\cos \mu)\left(H_{+} \cos 2 \psi+H_{\times} \sin 2 \Psi\right)
$$

