GW Observatory II LISA

Antoine Petiteau (APC – Université Paris-Diderot)

School on Gravitational Waves for Cosmology and Astrophysics Benasque - Spain 5 - 9 June 2017

Structure of the lectures

- > DA I: Statistic basis for DA: Likelihood, frequentist/Bayesian
- **GW Obs I: History, response to GW**
- DA II: 3 main classes of signal, parameter estimations,
 Fisher Matrix
- **GW Obs II: LISA: LISAPathfinder, noises, ...**
- **DA III: LISA DA: Global analaysis, MBHB, stochastic, ...**
- **GW Obs III: LIGO**
- **GW Obs IV: PTA**
- **DA IV: PTA data analysis**

- Context and history
- LISA design
- Time Delay Interferometry
- LISAPathfinder
- Noise sources
- Sensitivity
- Orbital motion

Context and history

THE GRAVITATIONAL WAVE SPECTRUM

History of LISA

- ▶ 1978: first study based on a rigid structure (NASA)
- ▶ 1980s: studies with 3 free-falling spacecrafts(US)
- ► 1993: proposal ESA/NASA: 4 spacecrafts
- ► 1996-2000: pre-phase A report
- ► 2000-2010: LISA and LISAPathfinder: ESA/NASA mission
- ▶ 2011: NASA stops => ESA continue: reduce mission
- ► 2012: selection of JUICE L1 ESA
- ▶ 2013: selection of ESA L3 : « The gravitational Universe »
- > 2015-2016: success of LISAPathfinder + detection GWs

LISA à l'ESA

- ▶ 25/10/2016 : Call for mission
- > 13/01/2017 : submission of «LISA proposal» (LISA consortium)
- ▶ 8/3/2017 : Phase 0 mission (CDF 8/3/17 → 5/5/17)
- Juin 2017 : « mission proposal assessed » by SPC
- ▶ $2017 \rightarrow 2019$: competitive phase A : 2 companies compete
- ▶ $2019 \rightarrow 2020$: B1: start industrial implementation
- ► 2020-2021 : mission adoption
- During about 8.5 years : construction
- ► 2030-... : launch Ariane 6.4
- > 4 years of nominal mission
- Possible extension to 10 years

« The LISA Proposal »

LISA Laser Interferometer Space Antenna

A proposal in response to the ESA call for L3 mission concepts

Lead Proposer Prof. Dr. Karsten Danzmann https://www.elisascience.org/ files/publications/ LISA L3 20170120.pdf

2 Science performance

The science theme of The Gravitational Universe is addressed here in terms of Science Objectives (SOs) and (MRs) are expressed as linear spectral densities of the Science Investigations (SIs), and the Observational Re- sensitivity for a 2-arm configuration (TDI X). quirements (ORs) necessary to reach those objectives. etc. The majority of individual LISA sources will be biis the square root of this quantity, the linear spectral origin are also considered. density $\sqrt{S_b(f)}$, for a 2-arm configuration (TDI X). In

LISA - 2. SCIENCE PERFORMANCE

the following, any quoted SNRs for the Observational Requirements (ORs) are given in terms of the full 3arm configuration. The derived Mission Requirements

The sensitivity curve can be computed from the in-The ORs are in turn related to Mission Requirements dividual instrument noise contributions, with factors (MRs) for the noise performance, mission duration. that account for the noise transfer functions and the sky and polarisation averaged response to GWs. Requirenary systems covering a wide range of masses, mass ra-ments for a minimum SNR level, above which a source tios, and physical states. From here on, we use M to re- is detectable, translate into specific MRs for the obserfer to the total source frame mass of a particular system. vatory. Throughout this section, parameter estimation The GW strain signal, h(t), called the waveform, to- is done using a Fisher Information Matrix approach, gether with its frequency domain representation $\hat{h}(f)$, assuming a 4 year mission and 6 active links. For longencodes exquisite information about intrinsic param- lived systems, the calculations are done assuming a eters of the source (e.g., the mass and spin of the in- very high duty-cycle (> 95%). Requiring the capabilteracting bodies) and extrinsic parameters, such as inclination, luminosity distance and sky location. The curacy sets MRs that are generally more stringent than assessment of Observational Requirements (ORs) re- those for just detection. Signals are computed accordquires a calculation of the Signal-to-Noise-Ratio (SNR) ing to GR, redshifts using the cosmological model and and the parameter measurement accuracy. The SNR parameters inferred from the Planck satellite results, is approximately the square root of the frequency in- and for each class of sources, synthetic models driven tegral of the ratio of the signal squared, $\tilde{h}(f)^2$, to the by current astrophysical knowledge are used in order sky-averaged sensitivity of the observatory, expressed to describe their demography. Foregrounds from asas power spectral density Sh(f). Shown in Figure 2 trophysical sources, and backgrounds of cosmological

Figure 2: Mission constraints on the sky-averaged strain sensitivity of the observatory for a 2-arm configuration (TDI X), $\sqrt{S_b(f)}$, derived from the threshold systems of each observational requirement.

Page 7

DIDEROT

LISA design

LISA

Laser Interferometer Space Antenna

10

- ▶ 3 spacecrafts on heliocentric orbits and distant from few millions kilometers (2.5 Mom in the proposal L3)
- ► Goal: detect relative distance changes of 10⁻²¹: few picometers

DIDEROT

LISA

- Spacecraft (SC) should only be sensible to gravity:
 - the spacecraft protects test-masses (TMs) from external forces and always adjusts itself on it using micro-thrusters
 - Readout:
 - interferometric (sensitive axis)
 - capacitive sensing

LISA

- Spacecraft (SC) should only be sensible to gravity:
 - the spacecraft protects test-masses (TMs) from external forces and always adjusts itself on it using micro-thrusters
 - Readout:
 - interferometric (sensitive axis)
 - capacitive sensing

LISA : Measurements

- Problem with 2.5x10⁹ m : A laser beam cannot make a round trip because too much intensity is lost.
 - 100pW received for 1 Watt emitted.
- Measurement with one arm
 and interference between
 two incoherent lasers in phase :
 - Distant laser
 - Local laser.
- ▶ 6 measurements ... at least!

LISA : Measurements

- Problem with 2.5x10⁹ m : A laser beam cannot make a round trip because too much intensity is lost.
 - 100pW received for 1 Watt emitted.
- Measurement with one arm
 and interference between
 two incoherent lasers in phase :
 - Distant laser
 - Local laser.
- ▶ 6 measurements ... at least!

- Phase shift between the two beams measured by phasemeter.
- Beams from an external spacecraft, are delayed :
 - delay operator D_i^{real} : $D_i^{real} x(t) = x \left(t \frac{L_i^{real}}{c} \right)$
- The measurement :

$$s_1 = s_1^{GW} + s_1^{ShotNoise} + D_3^{real} p'_2^{lasernoise} - p_1^{lasernoise} - 2\delta^{Acc.Noise}$$

- Phase shift between the two beams measured by phasemeter.
- Beams from an external spacecraft, are delayed :
 - delay operator D_i^{real} : $D_i^{real} x(t) = x \left(t \frac{L_i^{real}}{c} \right)$
- The measurement :

- Phase shift between the two beams measured by phasemeter.
- Beams from an external spacecraft, are delayed :
 - delay operator D_i^{real} : $D_i^{real} x(t) = x \left(t \frac{L_i^{real}}{c} \right)$
- The measurement :

13

- Phase shift between the two beams measured by phasemeter.
- Beams from an external spacecraft, are delayed :
 - delay operator D_i^{real} : $D_i^{real} x(t) = x \left(t \frac{L_i^{real}}{c} \right)$
- The measurement :

- Phase shift between the two beams measured by phasemeter.
- Beams from an external spacecraft, are delayed :
 - delay operator D_i^{real} : $D_i^{real} x(t) = x \left(t \frac{L_i^{real}}{c} \right)$
- The measurement :

- Phase shift between the two beams measured by phasemeter.
- Beams from an external spacecraft, are delayed :
 - delay operator D_i^{real} : $D_i^{real} x(t) = x \left(t \frac{L_i^{real}}{c} \right)$
- The measurement :

- Phase shift between the two beams measured by phasemeter.
- Beams from an external spacecraft, are delayed :
 - delay operator D_i^{real} : $D_i^{real} x(t) = x \left(t \frac{L_i^{real}}{c} \right)$
- The measurement :

- Phase shift between the two beams measured by phasemeter.
- Beams from an external spacecraft, are delayed :
 - delay operator D_i^{real} : $D_i^{real} x(t) = x \left(t \frac{L_i^{real}}{c} \right)$
- The measurement :

eliminating laser noise but keeping the GW signal

Pre-processing of the science data,

Tinto & Durandhar, Revue *Living Rev. Rel. 8 p 4* (2005) Durandhar, Nayak & Vinet, *PRD 65 102002* (2002)

eliminating laser noise but keeping the GW signal

Pre-processing of the science data,

Tinto & Durandhar, Revue *Living Rev. Rel. 8 p 4* (2005) Durandhar, Nayak & Vinet, *PRD 65 102002* (2002)

eliminating laser noise but keeping the GW signal

Pre-processing of the science data,

Tinto & Durandhar, Revue *Living Rev. Rel. 8 p 4* (2005) Durandhar, Nayak & Vinet, *PRD 65 102002* (2002)

eliminating laser noise but keeping the GW signal

Pre-processing of the science data,

Tinto & Durandhar, Revue *Living Rev. Rel. 8 p 4* (2005) Durandhar, Nayak & Vinet, *PRD 65 102002* (2002)

eliminating laser noise but keeping the GW signal

Pre-processing of the science data,

Tinto & Durandhar, Revue *Living Rev. Rel. 8 p 4* (2005) Durandhar, Nayak & Vinet, *PRD 65 102002* (2002)

• Time Delay Interferometry:

Tinto & Durandhar, Revue *Living Rev. Rel. 8 p 4* (2005) Durandhar, Nayak & Vinet, *PRD 65 102002* (2002) Vallisneri, *gr-qc/0504145* (2005)

- Combine delayed measurements to reduce laser noises, optical bench noises, ... ?
- Algebraic development: many combinations (generators)

$$X = -s_1 - D_3 s'_2 - D_3 D_{3'} s'_1 - D_3 D_{3'} D_{2'} s_3$$

+s'_1 + D_{2'} s_3 - D_{2'} D_2 s_1 - D_{2'} D_2 D_3 s_3
\simeq 0

- Different precisions level
 - 1st generation: rigid formation of LISA : $D_{i'} s = D_i \overline{s}$,
 - generation 1.5: Sagnac effect : $D_{i'} s \neq D_i s$ but $D_j D_i s = D_i D_j s$,
 - 2nd generation: flexing and Sagnac effect : $D_j D_i s \neq D_i D_j s$

TDI generation 1 TDI generation 1

 $X_{1st} = \left(1 - D_2^2, 0, -D_2 + D_2 D_3^2, -1 + D_3^2, D_3 - D_2^2 D_3, 0\right)$

► TDI generation 1.5

 $X_{1.5} = (1 - D_2 D'_2, 0, -D'_2 + D'_2 D'_3 D_3, -1 + D'_3 D_3, D_3 - D_2 D'_2 D_3, 0)$

► TDI 2nd generation: until 7 delay operators combined $X_{2nd} = (1 + D_3D'_3D'_2D_2D'_2D_2 - D'_2D_2 - D'_2D_2D_3D'_3,$ 0,

 $\begin{array}{c} \overline{D_3D'_3D'_2 + D_3D'_3D'_2D_2D'_2 - D'_2 - D'_2D_2D_3D'_3D_3D'_3D'_2}, \\ \overline{D_3D'_3 + D_3D'_3D'_2D_2 - 1 - D'_2D_2D_3D'_3D_3D'_3}, \\ \overline{D_3 + D_3D'_3D'_2D_2D'_2D_2D_3 - D'_2D_2D_3 - D'_2D_2D_3D'_3D_3}, \\ 0) \end{array}$

GW Obs. II: LISA - A. Petiteau - GW School - Benasque - 5 to 9 June 2017

DEROT

Reduction of laser noises by 8 orders of magnitude !

A GW is hidden here !

Reduction of laser noises by 8 orders of magnitude !

Reduction of laser noises by 8 orders of magnitude !

Current design

- Exchange of laser beam to form several interferometers
- Phasemeter measurements on each of the 6 Optical Benches:
 - Distant OB vs local OB
 - Test-mass vs OB
 - Reference using adjacent OB
 - Transmission using sidebands
 - Distance between spacecrafts
- Noises sources:
 - Laser noise : 10⁻¹³ (vs 10⁻²¹)
 - Clock noise (3 clocks)
 - Acceleration noise (see LPF)
 - Read-out noises

EROT

Current design

- Exchange of laser beam to form several interferometers
- Phasemeter measurements on each of the 6 Optical Benches:
 - Distant OB vs local OB
 - Test-mass vs OB
 - Reference using adjacent OB
 - Transmission using sidebands
 - Distance between spacecrafts
- Noises sources:
 - Laser noise : 10⁻¹³ (vs 10⁻²¹)
 - Clock noise (3 clocks)
 - Acceleration noise (see LPF)
 - Read-out noises

DEROT

- Use sidebands to transfer clock noise
- Modulation of laser with a pseudo-random code to measure the absolute distance at a precision of 30cm.

GW Obs. II: LISA - A. Petiteau - GW School - Benasque - 5 to 9 June 2017

DIDEROT

Current design

- s_i^c : scientific interferometer measurement at the carrier frequency,
- s_i^{sb} : scientific interferometer measurement at the sideband frequency,
- τ_i : reference interferometer measurement
- ϵ_i : test-mass interferometer measurement
- θ_i^j : factor to track of the sign of the phasemeter input
- h_i : gravitational wave signal on the link
- p_i : laser noise
- Δ_i : optical bench displacement noise projected along the arm :

François Arago Centre

Current design

• δ_i : test mass displacement noise projected along the arm (acceleration noise):

$$\delta_i = 2\pi \vec{\delta}_i \cdot \vec{n}_{i'+2} \quad \text{and} \quad \delta_{i'} = -2\pi \vec{\delta}_{i'} \cdot \vec{n}_{i+1} \tag{10}$$

- $N_i^{ro,s}$, $N_i^{ro,\tau}$, $N_i^{ro,\epsilon}$, $N_i^{ro,sb}$: Read-out noises, i.e. all noises from the photodiode to the output of the phasemeter
- $N_i^{opt,s}$, $N_i^{opt,\tau}$, $N_i^{opt,\epsilon}$, $N_i^{opt,sb}$: Optical noise, i.e. all noises on the two interfering beams before the photodiode of the scientific interferometer at the carrier frequency
- μ_i : noise of the back link optical fiber from optical bench *i* to optical bench *i'*
- q_i : noise of the clock of spacecraft i
- a_i : translation factor of the clock noise for the scientific interferometer at the carrier frequency:

$$a_i = \frac{|f_{i'+1\to i} - f_i|}{f_{PT,i}}$$
 and $a_{i'} = \frac{|f_{i+2\to i'} - f_{i'}|}{f_{PT,i}}$ (11)

• b_i : translation factor of the clock noise for the reference interferometer and the test-mass interferometer :

$$b_i = \frac{|f_{i'} - f_i|}{f_{PT,i}}$$
 and $b_{i'} = \frac{|f_i - f_{i'}|}{f_{PT,i}}$ (12)

• c_i : translation factor of the clock noise for the scientific interferometer at the sideband frequency:

$$c_{i} = \frac{\left|f_{i'+1\to i}^{sb} - f_{i}^{sb}\right|}{f_{PT,i}} \quad \text{and} \quad c_{i'} = \frac{\left|f_{i+2\to i'}^{sb} - f_{i'}^{sb}\right|}{f_{PT,i}} \tag{13}$$

The x_{i} correspond to the application of a **real** delay :

$$x_{\mathbf{i}}(t) \equiv \mathcal{D}_{\mathbf{i}}x(t) \equiv x\left(t - \frac{\mathbf{L}_{\mathbf{i}}(t)}{c}\right)$$
(14)

Current design

Optical bench 1 :

$$s_{1}^{c}(t) = \theta_{1}^{2'} \left[h_{1} + p_{2';3} - p_{1} + \frac{\Delta_{2';3}}{\lambda_{2'}} - \frac{\Delta_{1}}{\lambda_{2'}} + N_{1}^{opt,s} \right] + a_{1}q_{1} + N_{1}^{ro,s}$$

$$\tau_{1}(t) = \theta_{1}^{1'} \left[p_{1'} - p_{1} + \mu_{1'} + N_{1}^{opt,\tau} \right] + b_{1}q_{1} + N_{1}^{ro,\tau}$$

$$\epsilon_{1}(t) = \theta_{1}^{1'} \left[p_{1'} - p_{1} + 2 \left(\frac{\delta_{1}}{\lambda_{1'}} - \frac{\Delta_{1}}{\lambda_{1'}} \right) + \mu_{1'} + N_{1}^{opt,\epsilon} \right] + b_{1}q_{1} + N_{1}^{ro,\epsilon}$$

$$s_{1}^{sb}(t) = \theta_{1}^{2'} \left[h_{1'} + p_{2';3} - p_{1} + m_{2'}q_{2;3} - m_{1}q_{1} + \frac{\Delta_{2';3}}{\lambda_{2'}} - \frac{\Delta_{1}}{\lambda_{2'}} + N_{1}^{opt,sb} \right] + c_{1}q_{1} + N_{1}^{ro,sb}$$

Optical bench 1'

$$\begin{split} s_{1'}^{c}(t) = & \theta_{1'}^{3} \left[h_{1'} + p_{3;2'} - p_{1'} - \frac{\Delta_{3;2'}}{\lambda_{3}} + \frac{\Delta_{1'}}{\lambda_{3}} + N_{1'}^{opt,s} \right] + b_{1'}q_{1} + N_{1'}^{ro,s} \\ \tau_{1'}(t) = & \theta_{1'}^{1} \left[p_{1} - p_{1'} + \mu_{1} + N_{1'}^{opt,\tau} \right] + b_{1'}q_{1} + N_{1'}^{ro,\tau} \\ \epsilon_{1'}(t) = & \theta_{1'}^{1} \left[p_{1} - p_{1'} + 2 \left(-\frac{\delta_{1'}}{\lambda_{1}} + \frac{\Delta_{1'}}{\lambda_{1}} \right) + \mu_{1} + N_{1'}^{opt,\epsilon} \right] + b_{1'}q_{1} + N_{1'}^{ro,\epsilon} \\ s_{1'}^{sb}(t) = & \theta_{1'}^{3} \left[h_{1'} + p_{3;2'} - p_{1'} + m_{3}q_{3;2'} - m_{1'}q_{1} - \frac{\Delta_{3;2'}}{\lambda_{3}} + \frac{\Delta_{1'}}{\lambda_{3}} + N_{1'}^{opt,sb} \right] + c_{1'}q_{1} + N_{1'}^{ro,sb} \\ \\ \mathbf{GW} \ \text{Obs. II: USA-A. Petiteau - GW \ School - \ \text{Benasque - 5 to 9 \ June \ 2017} \end{split}$$

GW Obs. II: LISA - A. Petiteau - GW School - Benasque - 5 to 9 June 2017

François Arago Centre

TDI with current design

Intermediate TDI: first step

M. Otto, PhD thesis (2016)

- Step 1: Combine science and test mass interferometers
 - => Suppression of optical bench displacement noises
- Step 2: Combine with reference interferometers
 - => Suppression of 3 free running laser noises
- Step 3: Combine with sidebands
 - => Clock noise removable
- Then apply on the results of step 3 the regular TDI combination. With real orbits you need at least the generation 2

TDI generators

- With 6 links, there is a large numbers of possible TDI combinations: generators
- Usual ones:
 - X, Y, Z: Michelson equivalent
 - A, E: the 2 noises uncorrelated channel = equivalent to 2 independent detectors
 - T: "Sagnac" or "null channel": very weak response to GW

Technological demonstrator for LISA

LISA :

- ► 3 spacecraft separated by millions of km
- Role of each spacecraft is to protect the fiducial test masses from external forces

Technological demonstrator for LISA

LISA :

Locally measure distance from TM to SC using:

- Laser interferometry along sensitive axis (between SC)
- Capacitive sensing on orthogonal axes
- TM displacement measurements are used as input to DFACS which controls position and attitude of SC respect to the TM

Technological demonstrator for LISA

LISA :

Measure distance along using laser interferometry

 $(TM1 \rightarrow SC1) + (SC1 \rightarrow SC2) + (SC2 \rightarrow TM2)$

Technological demonstrator for LISA

LISAPathfinder:

- 2 test masses / 2 inertial sensors
- Laser readout of TM1 \rightarrow SC and TM1 \rightarrow TM2
- Capacitive readout of all 6 d.o.f. of TM
- Drag-Free and Attitude Control System.
- Micro-newton thrusters

GW Obs. II: LISA - A. Petiteau - GW School - Benasque - 5 to 9 June 2017

Francois Arago Centre

- ► 3/12/2015: Launch from Kourou
- ▶ 22/01/2016: arrived on final orbit & separation of propulsion module
- ▶ $17/12/2015 \rightarrow 01/03/2016$: commissioning
- ▶ $01/03/2016 \rightarrow 27/06/2016$: LTP operations (Europe)
- ▶ $27/06/2016 \rightarrow 11/2016$: DRS operations (US) + few LTP weeks
- ▶ $01/12/2016 \rightarrow 31/06/2017$: extension of LTP operations

- ► 3/12/2015: Launch from Kourou
- ▶ 22/01/2016: arrived on final orbit & separation of propulsion module
- ▶ $17/12/2015 \rightarrow 01/03/2016$: commissioning
- ▶ $01/03/2016 \rightarrow 27/06/2016$: LTP operations (Europe)
- ▶ $27/06/2016 \rightarrow 11/2016$: DRS operations (US) + few LTP weeks
- $01/12/2016 \rightarrow 31/06/2017$: extension of LTP operations

- ► 3/12/2015: Launch from Kourou
- ▶ 22/01/2016: arrived on final orbit & separation of propulsion module
- ▶ $17/12/2015 \rightarrow 01/03/2016$: commissioning
- ▶ $01/03/2016 \rightarrow 27/06/2016$: LTP operations (Europe)
- ▶ $27/06/2016 \rightarrow 11/2016$: DRS operations (US) + few LTP weeks
- ▶ $01/12/2016 \rightarrow 31/06/2017$: extension of LTP operations

Last command: 18/07/2017

- Basic idea: Reduce one LISA arm in one SC.
- LISAPathfinder is testing :
 - Inertial sensor,
 - Drag-free and attitude control system
 - Interferometric measurement between 2 free-falling test-masses,
 - Micro-thrusters

- Basic idea: Reduce one LISA arm in one SC.
- LISAPathfinder is testing :
 - Inertial sensor,
 - Drag-free and attitude control system
 - Interferometric measurement between 2 free-falling test-masses,
 - Micro-thrusters

The instrument - LTP

- Gravitational Reference
 Sensor
- Optical Bench
- Lampe UV
- Laser
- Compensation mass
- Under vacuum
- Caging Mechanism
- Thermal and magnetic monitoring

Optical bench

by Joseph Martino

François Arago Centre

by Joseph Martino

François Arago Centre

by Joseph Martino

Trançois Arago Centre

Suspension (f<1mHz)

DIDEROT

by Joseph Martino

Suspension (f<1mHz)

 $deltaG = d^{2}(o12)/dt^{2} - Stiff * o12 - Gain * Fx2$

by Joseph Martino

Requirements: LPF vs LISA

• Main LISAPathfinder (LPF) measurement : Δg : differential acceleration between the 2 test-masses

Requirements: LPF vs LISA

Why the LISAPathfinder requirements are restricted compare to LISA ones ?

- We understand limitations with LISAPathfinder and correct for them in LISA
- Short arm limitation :
 - Gravitational field not perfectly flat
 => constant electrostatic actuation
 on test- mass 2
- f > 1 mHz : limit duration of industrial testing
- Industrial margin

Δg - raw

Differential acceleration Test Mass1 - Test Mass2

PARIS

Δg - raw

Differential acceleration Test Mass1 - Test Mass2

DIDEROT

Δg - raw

Differential acceleration Test Mass1 - Test Mass2

DIDEROT

System-Identification

- Measure gains and stiffness
- $\Delta g = d^2(o12)/dt^2 Stiff * o12 Gain * Fx2$

Centrifugal Forces

 $\vec{\Omega}\times\vec{\Omega}\times\vec{r}$

Angle Decorrelation - Euler Forces

 $\Delta \vec{g}_{\text{tang}} = \vec{g}_{\text{tang},2} - \vec{g}_{\text{tang},1}$ $=(ec{r_2}-ec{r_1}) imesec{\Omega}$

Angle Decorrelation - Euler Forces

$$\Delta \vec{g}_{\text{tang}} = \vec{g}_{\text{tang},2} - \vec{g}_{\text{tang},1}$$
$$= (\vec{r}_2 - \vec{r}_1) \times \dot{\vec{\Omega}}$$

Angle Decorrelation - Euler Forces

$$\Delta \vec{g}_{\text{tang}} = \vec{g}_{\text{tang},2} - \vec{g}_{\text{tang},1}$$
$$= (\vec{r}_2 - \vec{r}_1) \times \dot{\vec{\Omega}}$$

de-Glitch

de-Glitch

M. Armano et al. PRL 116, 231101 (2016)

M. Armano et al. PRL 116, 231101 (2016)

M. Armano et al. PRL 116, 231101 (2016)

Interferometric noise

Not real test-mass motion

High frequency limit

Testmass2

PDA2

PDR/

WIN:

PDA1

WIN1

Testmass1

BS1

BS6

BS5

BS9

BS1

BS8

BS3

- Optical measurement system:
 - Interferometric precision: **30** fm.Hz^{-1/2}
 - Orientation of test-masses

M. Armano et al. PRL 116, 231101 (2016)

Francois Arago Centr

Mid-frequency limit

- Noise in 1–10 mHz: brownian noise due to residual pressure:
 - Molecules within the housing hitting the test-masses
 - Possible residual outgassing
- Evolution:
 - Pressure decreases with time
 => constant improvement ...
 if we don't hit something
 else.

M. Armano et al. PRL 116, 231101 (2016)

Low frequency noise: actuation noie + ...

Results

Brownian noise Molecules within the noise hit test-masses

Interferometric noise

Not real test-mass motion

Low-frequency limit

- Noise in 0.1 1 mHz: not yet understood but seems:
 - to evolve with time
 - to have 1/f slope ?
 - **Temperature ? Actuation ?**
- Work in progress ...
- For f < 0.1 mHz:
 - Need long noise measurements
 - => mission extension

Noise sources

Acceleration noise

- Due to residual forces acting on the test-mass
- Obtain via LISAPathfinder measurements

$$S_{acc}(f) = S_{acc,unmodelled} + S_{acc,brownian} \label{eq:sacc} \mathbf{h}$$

 $S_{acc,brownian} = \text{constant}$

$$S_{acc,unmodelled}(f) = (c_{acc,red})^2 \left(\left(\frac{2 \times 10^{-5}}{f} \right)^{10} + \left(\frac{1 \times 10^{-4}}{f} \right)^2 \right) + (c_{acc,flat})^2 \left(1 + \left(\frac{f}{8 \times 10^{-3}} \right)^4 \right)$$

DEROT

wit

Readout noise

Composition of a number of effects:

$$S_{ro,k,m} = \left(\frac{\lambda}{2\pi}\kappa_k\right)^2 \left(\left\langle\phi_{r/o}^{sn}\right\rangle^2 + \left\langle\phi_{r/o}^{rin}\right\rangle^2 + \left\langle\phi_{r/o}^{el}\right\rangle^2 + \left\langle\phi_{r/o}^{PMc}\right\rangle^2 + \left\langle\phi_{r/o}^{PMu}\right\rangle^2\right)$$
(10)

with $k = \{s, sb, \tau, \epsilon\}$ referring to the interferometers. κ_k is the inverse of the fraction of the laser power at frequency of interest :

$$\kappa_{s} = \frac{1}{J_{0}(m)^{2}} \qquad \text{science interferometer at the carrier frequency} \tag{11}$$

$$\kappa_{sb} = \frac{1}{\sqrt{2}} \frac{f_{het}}{f_{mod}} \frac{1}{J_{1}(m)^{2}} \qquad \text{science interferometer at the sideband frequency} \qquad (11)$$

$$\kappa_{\epsilon} = 1 \qquad \text{test-mass interferometer} \qquad (12)$$

$$\kappa_{\tau} = 1 \qquad \text{reference interferometer} \qquad (13)$$

• If
$$k = s$$
 or $sb \Rightarrow P_1 = P_{rec}$ and $P_2 = P_{local,1}$

• If
$$k = \tau$$
 or $\varepsilon \Longrightarrow P_2 = P_{local,1}$ and $P_2 = P_{local,2}$

Readout: shot noise

• Due to the small number of photons in the incoming beam

- Emitted laser power: $P_{tel} = \eta_{TX} P_{laser}$
- Received laser intensity:

$$I_{red} = \frac{\pi P_{tel} d_{tel}^2}{2 L_{arm}^2 \lambda_{laser}^2} \times \alpha^2 e^{-\frac{2}{\alpha^2}} \left(e^{\frac{1}{\alpha^2}} - 1 \right)^2$$

• Received laser power on the optical bench:

$$P_{red} = \pi \left(\frac{d_{tel}}{2}\right)^2 \eta_{opt} I_{rec}$$

• Shot noise:

$$\left\langle \phi_{r/o}^{sn} \right\rangle = M_{IMS}(f) \sqrt{\frac{q_e \left(P_1 + P_2\right)}{R_{pd} \eta_{het} P_1 P_2}}$$

- P_{laser} : P₋laser : laser power output
- η_{TX} : eta_TX : transmission from laser to telescope
- d_{tel} : d_tel : telescope diameter
- L_{arm} : L_arm : armlength
- λ_{laser} : lambda_laser : laser wavelength
- η_{opt} : eta_opt : optical efficiency

Readout: electronic noise

Electronic noise associated to the photodiode

$$\left\langle \phi_{r/o}^{el} \right\rangle = M_{IMS}(f) \frac{\sqrt{N_{seg} N_{pd}}}{R_{pd} \sqrt{2}} \sqrt{\frac{\frac{4k_B T}{R_{FB}} + I_{pd}^2 + \left(\frac{U_{pd}}{Z_{pd}}\right)^2}{\eta_{het} P_2 P_1}}$$

$$Z_{pd} = \frac{1}{2\pi C_{pd} f_{het}}$$

- R_{FB} : Rfb : feedbask resistor
- T: $T_{-}preamp$: temperature at the photodiode preamplifier
- I_{pd} : $I_{-}pd$: input current noise
- U_{pd} : $U_{-}pd$: intrinsic voltage noise
- C_{pd} : C_{-pd} : photodiode capacitance
- f_{het} : f_{-het} : heterodyne maximal frequency

Readout: RIN & phase meter

- ► RIN: Relative Intensity Noise:
 - For a balanced detection, the phase noise contribution from RIN is

$$\left\langle \phi_{r/o}^{rin} \right\rangle = \phi_{r/o}^{rin} = M_{IMS}(f) \frac{RIN_{laser}}{\sqrt{2}} \frac{\sqrt{1 + (P_1/P_2)^2}}{1 + P_1/P_2}$$

- Phasemeter measurement noise:
 - Correlated term: $\left<\phi_{r/o}^{PMc}\right> = M_{IMS}(f)\phi_{r/o}^{PMc}$

• Uncorrelated term:
$$\left\langle \phi_{r/o}^{PMu} \right\rangle = M_{IMS}(f) \frac{\phi_{r/o}^{PMu}}{\sqrt{N_{pd}N_{seg}}}$$

Optical Path Noises

Noises on the optical path:

 $S_{opt,k,m}(f) = \left(M(f)x_{opn}^{tel}\right)^2$ telescope

$$+ \left(M(f) x_{opn}^{pointing} \right)^2 \dots \triangleright \text{ pointing (tilt to length)}$$

+
$$(M(f)x_{opn}^{align})^2$$
 line of sight
alignment (OB/TM)

$$+ (M(f)x_{opn}^{SLs})^2 \longrightarrow$$
 stray light science interferometer

$$+ \left(M(f) x_{opn}^{PAAM} \right)^2 \dots \rightarrow PAAM$$

Other noises

- Unmodelled interferometer noise
- Backlink noise
- Residual laser noise after TDI

Readout noise budget

Combined on half round trip

DIDEROT

Francois Arago

Noise budget in TDI

PARIS DIDEROT

Francois Arago Centr

- Noise budget in 3 points:
 - Low frequencies: acceleration noise (unperfect free-falling of the test)
 - High frequency: interferometric measurements noise
 - Pre-processing pour réduire une partie des bruits (TDI)

Standard sensitivity, so called "strain sensitivity" or "strain linear spectral density" is

$$S(f) = -\frac{Resp_{No}}{Resp_{O}}$$

 $\frac{Resp_{Noise}}{Resp_{GW}} = \frac{PSD_{Noise}}{PSD_{average \ GW}}$

• Response to GW:

- Depends on orbits (see later)
- Depends on frequency partially due to TDI
- Computation:
 - Analytic approximation
 - Using simulators: PSD of TDI X with as input 192 white stochastic GWs isotropically distributed on sky

Response to GWs

Noises

GW Obs. II: LISA - A. Petiteau - GW School - Benasque - 5 to 9 June 2017

François Arago Centre

Noises

Response of the detector to GWs

Francois Arago Centre

Noises

Response of the detector to GWs

Analytic approximation

$$\sqrt{S^X}(f) = \sqrt{\frac{20}{3} \left(1 + \left(\frac{f}{0.41\left(\frac{c}{2L}\right)}\right)^2\right)} \frac{4S_{acc,m} + S_{IMS,m}}{L^2}$$

GW Obs. II: LISA - A. Petiteau - GW School - Benasque - 5 to 9 June 2017

PARIS

Francois Arago Cent

Characteristic strain

- Charceristic strain sensitivity: $S_h(f) = \sqrt{f S(f)}$
- Useful to compare directly with sources

DIDEROT

Energy density sensitivity

$$h^2 \Omega_{GW}(f) = \frac{4\pi^2}{3H_0^2} f^3 S(f)$$

with $H_0 = h h_0$ with $h_0 = 100 \text{ km}.\text{s}^{-1}.\text{Mpc}^{-1} = 3.24 \times 10^{-18} \text{Hz}.$

DIDEROT

Orbital motion and finite arm

• Between spacecraft at r_{em} and spacecraft at r_{rec} (arm unit vector n):

- GW change phase of received beam
- This phase is measured by a phasemeter
- Measurement : relative laser frequency shift :

$$\frac{\delta\nu}{\nu_{laser}}(t) = \frac{1}{2\left(1 - \overrightarrow{k} \cdot \overrightarrow{n}\right)} \left[H\left(t - \overrightarrow{k} \cdot \overrightarrow{r}_{rec}\right) - H\left(t - \overrightarrow{k} \cdot \overrightarrow{r}_{em} - L\right) \right]$$

with
$$H(t) = h_{B+}(t) \xi_+ \left(\overrightarrow{\theta}, \overrightarrow{\phi}, \overrightarrow{n}(t)\right) + h_{B\times}(t) \xi_{\times} \left(\overrightarrow{\theta}, \overrightarrow{\phi}, \overrightarrow{n}(t)\right)$$

spacecraft SC_{em}

spacecraft

 SC_{rec}

• Between spacecraft at r_{em} and spacecraft at r_{rec} (arm unit vector n):

- GW change phase of received beam
- This phase is measured by a phasemeter
- Measurement : relative laser frequency shift :

$$\frac{\delta\nu}{\nu_{laser}}(t) = \frac{1}{2\left(1 - \vec{k} \cdot \vec{n}\right)} \left[H\left(t - \vec{k} \cdot \vec{r}_{rec}\right) - H\left(t - \vec{k} \cdot \vec{r}_{em} - L\right) \right]$$
with $H(t) = h_{B+}(t) \ \xi_{+}\left(\vec{\theta}, \vec{\phi}, \vec{n}(t)\right) + h_{B\times}(t) \ \xi_{\times}\left(\vec{\theta}, \vec{\phi}, \vec{n}(t)\right)$

GW Obs. II: LISA - A. Petiteau - GW School - Benasque - 5 to 9 June 2017

spacecraft

rec

DEROT

• Between spacecraft at r_{em} and spacecraft at r_{rec} (arm unit vector n):

- GW change phase of received beam
- This phase is measured by a phasemeter
- Measurement : relative laser frequency shift :

$$\frac{\delta\nu}{\nu_{laser}}(t) = \frac{1}{2\left(1 - \vec{k} \cdot \vec{n}\right)} \left[H\left(t - \vec{k} \cdot \vec{r}_{rec}\right) - H\left(t - \vec{k} \cdot \vec{r}_{em} - L\right) \right]$$
with $H(t) = h_{B+}(t) \xi_{+} \left(\vec{\theta}, \vec{\phi}, \vec{n}(t)\right) + h_{B\times}(t) \xi_{\times} \left(\vec{\theta}, \vec{\phi}, \vec{n}(t)\right)$

spacecraft SC_{em}

DEROT

• Between spacecraft at r_{em} and spacecraft at r_{rec} (arm unit vector n):

- GW change phase of received beam
- This phase is measured by a phasemeter
- Measurement : relative laser frequency shift :

$$\frac{\delta\nu}{\nu_{laser}}(t) = \frac{1}{2\left(1 - \overrightarrow{k} \cdot \overrightarrow{n}\right)} \left[H\left(t - \overrightarrow{k} \cdot \overrightarrow{r}_{rec}\right) - H\left(t - \overrightarrow{k} \cdot \overrightarrow{r}_{em} - L\right) \right]$$

with
$$H(t) = h_{B+}(t) \xi_+\left(\overrightarrow{\theta}, \overrightarrow{\phi}, \overrightarrow{n}(t)\right) + h_{B\times}(t) \xi_{\times}\left(\overrightarrow{\theta}, \overrightarrow{\phi}, \overrightarrow{n}(t)\right)$$

Dependency :

— amplitude of source

- position of source
- position of arm

GW Obs. II: LISA - A. Petiteau - GW School - Benasque - 5 to 9 June 2017

spacecraft

 SC_{rec}

DEROT
- ▶ 3 spacecraft and 6 links (2 for each arm)
 - \Rightarrow 3 interferometers (one redundancy)
- Armlength = 2.5x10⁹m to detect GWs at 10⁻⁵ - 1 Hz
- ► 3 heliocentric orbits : spacecraft in free fall.
 - LISA centre follows the Earth (-20°).
 - 60° between LISA plane & ecliptic plane.
 - Variation of LISA during the year
 - $\Rightarrow Directional information \\ of GWs.$

- ▶ 3 spacecraft and 6 links (2 for each arm)
 - \Rightarrow 3 interferometers (one redundancy)
- Armlength = 2.5x10⁹m to detect GWs at 10⁻⁵ - 1 Hz

- ► 3 heliocentric orbits : spacecraft in free fall.
 - LISA centre follows the Earth (-20°).
 - 60° between LISA plane & ecliptic plane.
 - Variation of LISA during the year
 - \Rightarrow Directional information of GWs.

- ▶ 3 spacecraft and 6 links (2 for each arm)
 - \Rightarrow 3 interferometers (one redundancy)
- Armlength = 2.5x10⁹m to detect GWs at 10⁻⁵ - 1 Hz
- ► 3 heliocentric orbits : spacecraft in free fall.
 - LISA centre follows the Earth (-20°).
 - 60° between LISA plane & ecliptic plane.
 - Variation of LISA during the year
 - ⇒ Directional informationof GWs.

- ▶ 3 spacecraft and 6 links (2 for each arm)
 - \Rightarrow 3 interferometers (one redundancy)
- Armlength = 2.5x10⁹m to detect GWs at 10⁻⁵ - 1 Hz
- ► 3 heliocentric orbits : spacecraft in free fall.
 - LISA centre follows the Earth (-20°).
 - 60° between LISA plane & ecliptic plan
 - Variation of LISA during the year
 - ⇒ Directional informationof GWs.

- ▶ 3 spacecraft and 6 links (2 for each arm)
 - \Rightarrow 3 interferometers (one redundancy)
- Armlength = 2.5x10⁹m to detect GWs at 10⁻⁵ - 1 Hz

GW Obs. II: LISA - A. Petiteau - GW School - Benasque - 5 to 9 June 2017

- ▶ 3 spacecraft and 6 links (2 for each arm)
 - \Rightarrow 3 interferometers (one redundancy)
- Armlength = 2.5x10⁹m to detect GWs at 10⁻⁵ - 1 Hz

GW Obs. II: LISA - A. Petiteau - GW School - Benasque - 5 to 9 June 2017

- ▶ 3 spacecraft and 6 links (2 for each arm)
 - \Rightarrow 3 interferometers (one redundancy)
- Armlength = 2.5x10⁹m to detect GWs at 10⁻⁵ - 1 Hz

- ▶ 3 spacecraft and 6 links (2 for each arm)
 - \Rightarrow 3 interferometers (one redundancy)
- Armlength = 2.5x10⁹m to detect GWs at 10⁻⁵ - 1 Hz

72

- ▶ 3 spacecraft and 6 links (2 for each arm)
 - \Rightarrow 3 interferometers (one redundancy)
- Armlength = 2.5x10⁹m to detect GWs at 10⁻⁵ - 1 Hz

72

Modulation - sky position

Modulation - sky position

- Survey type instrument:
 - no pointing
 - observe "all sky every time"
- Depending on the source power and duration, the angular could go until 1 deg²
- ... but better resolution on other parameters!

Thank you

GW Obs. II: LISA - A. Petiteau - GW School - Benasque - 5 to 9 June 2017