Data Analysis IV Data Analysis for PTA

Antoine Petiteau (APC – Université Paris-Diderot)

School on Gravitational Waves for Cosmology and Astrophysics Benasque - Spain 5 - 9 June 2017

Structure of the lectures

- > DA I: Statistic basis for DA: Likelihood, frequentist/Bayesian
- **GW** Obs I: History, response to GW
- **GW Obs II: LISA: LISAPathfinder, noises, ...**
- DA II: 3 main classes of signal, parameter estimations,
 Fisher Matrix
- **DA III: LISA DA: Global analaysis, MBHB, stochastic, ...**
- GW Obs III: LIGO
- GW Obs IV: PTA
- **DA IV: PTA data analysis**

Overview

- PTA data
- Fitting the model of the pulsar
- Continuous Gravitational Wave :
 - Frequentist
 - Bayesian
 - Upper limit
- Stochastic background
- Global analysis

Pulsar Timing Array Data

Pulsar model

Model of the observed arrival time of the pulsar and radio wave propagation:

PTA data

Residuals

- ► Time Of Arrivals (TOAs) are used to "fit" a model
- ► TOAs "best model" = residuals => input to GW analysis

Residuals

Error in position: annual effect

MJD

Residuals

Data Analysis IV : PTA - A. Petiteau - GW School - Benasque - 5 to 9 June 2017

DIDEROT

Francois Arago Cer

Model imperfection

- The fitting of the model is not perfect in particular because we did not consider GWs as the same time as other "pulsars" parameters
- We need to integrate these imprecisions in GWs data analysis.
 - Global analysis ... many parameters
 - Analytical marginalization based on a [van Haasteren et al. 2009, 2012] (see later)

Data analysis

• The general likelihood is:

$$p(\vec{\delta t}|\vec{\theta}) = \frac{1}{\sqrt{(2\pi)^n det(C)}} \exp\left(-\frac{1}{2}\left(\vec{\delta t} - \vec{h}\right)^T C^{-1}\left(\vec{\delta t} - \vec{h}\right)\right)$$

- n : number of data points
- *C* : correlation matrix
- $\vec{\delta t}$: residual = data points
- $\vec{\theta}$: parameters
- Unequally sample data

Including pulsar model errors [van Haasteren et al. 2009, 2012]

- During the fitting of the pulsar model some residual errors
- Assumption:
 - random Gaussian process $\vec{\delta t_i}^G$
 - + some contamination by several systematic signals with known functional forms $f_p(t_i)$ but a-priori unknown amplitudes ξ_p :

$$\delta \vec{t}_i = \delta \vec{t}_i^G + \sum_p \xi_p f_p(t_i)$$
$$= \delta \vec{t}_i^G + M \vec{\xi_p}$$

M : "design matrix" : n x m : m number of pulsar fitting parameters

DEROT

Data analysis [van Haasteren et al. 2009, 2012]

Then the likelihood can be rewritten as

$$p(\vec{\delta t}|\vec{\theta}) = \frac{1}{\sqrt{(2\pi)^{n-m}det(G^T C G)}} \exp\left(-\frac{1}{2}\left(\vec{\delta t} - \vec{h}\right)^T G(G^T C G)^{-1} G^T\left(\vec{\delta t} - \vec{h}\right)\right)$$

- n : number of data points
- *C* : correlation matrix
- $\vec{\delta t}$: residual = data points
- $\vec{\theta}$: parameters
- G derived from M:
 - $M = U \Sigma V$: $(n \times n) (n \times m) (m \times m)$
 - $U = (F G) : ((n \times m) (n \times (n-m)))$

$$p(\vec{\delta t}|\vec{\theta}) = \frac{1}{\sqrt{(2\pi)^{n-m}det(G^T C G)}}$$
$$\times \exp\left(-\frac{1}{2}\left(\vec{\delta t} - \vec{h}\right)^T G(G^T C G)^{-1} G^T\left(\vec{\delta t} - \vec{h}\right)\right)$$

$$p(\vec{\delta t}|\vec{\theta}) = \frac{1}{\sqrt{(2\pi)^{n-m} det(G^T C G)}}$$
$$\times \exp\left(-\frac{1}{2} \left(\vec{\delta t} - \vec{h}\right)^T G(G^T C G)^{-1} G^T \left(\vec{\delta t} - \vec{h}\right)\right)$$

GW in

$$p(\vec{\delta t}|\vec{\theta}) = \frac{1}{\sqrt{(2\pi)^{n-m}det(G^T C G)}}$$
$$\times \exp\left(-\frac{1}{2}\left(\vec{\delta t} + \vec{h}\right)^T G(G^T C G)^{-1} G^T\left(\vec{\delta t} + \vec{h}\right)\right)$$

GW in

• h : deterministic GW like binaries

$$p(\vec{\delta t}|\vec{\theta}) = \frac{1}{\sqrt{(2\pi)^{n-m} det(G^TCG)}} \times \exp\left(-\frac{1}{2}\left(\vec{\delta t} + \vec{h}\right)^T G(G^TCG)^{-1}G^T\left(\vec{\delta t} + \vec{h}\right)\right)$$

GW in

- h : deterministic GW like binaries
- C : stochastic background as correlation between pulsars

$$p(\vec{\delta t}|\vec{\theta}) = \frac{1}{\sqrt{(2\pi)^{n-m} \det(G(C\theta))}} \times \exp\left(-\frac{1}{2}\left(\vec{\delta t}+\vec{h}\right)^T G(G(C\theta))^{-1} G^T\left(\vec{\delta t}+\vec{h}\right)\right)$$

GW in

- h : deterministic GW like binaries
- C : stochastic background as correlation between pulsars
- Noises in C

Gravitational wave signal

• GW signal in the pulsar residual:

- n : direction of the pulsar
- *L* : distance Earth pulsar
- k : direction of the GW propagation
- h_{ij} : GW strain

Continous GWs

Sources

- SuperMassive Black Hole Binaries (SMBHB)
 - 10^7 to 10^9 solar masses
 - far from the merger =>
 - quasi-monochromatic sources
 - spins can be neglected

Continuous waves: sources that can be resolved individually

Distribution of sources

► GW waveform: $h_+(t) = \mathcal{A} \left(1 + \cos^2 i\right) \cos \left(\phi(t) + \phi_0\right)$ $h_\times(t) = -2\mathcal{A} \cos i \sin \left(\phi(t) + \phi_0\right)$

• with
$$\mathcal{A} = 2 \frac{\mathcal{M}_c^{5/3}}{D_L} (\pi f)^{2/3}$$

- Parameters:
 - \mathcal{M}_c : chirp mass
 - D_L : luminosity distance
 - $f=2\ \pi\ \omega$: frequency of GW
 - *i* : inclination
 - $\phi(t)$: phase
 - ϕ_0 : initial phase

GW signal in the residual: 2 terms pulsar term & Earth term

D

e(I)

$$r_{a}(t) = r_{a}^{2}(t) - r_{a}(t)$$

$$e_{a}^{e}(t) = \frac{\mathcal{A}}{\omega} \left\{ (1 + \cos^{2} \iota) F_{a}^{+} \left[\sin(\omega t + \Phi_{0}) - \sin \Phi_{0} \right] + 2\cos \iota F_{a}^{\times} \left[\cos(\omega t + \Phi_{0}) - \cos \Phi_{0} \right] \right\},$$

$$r_{a}^{p}(t) = \frac{\mathcal{A}_{a}}{\omega_{a}} \left\{ (1 + \cos^{2} \iota) F_{a}^{+} \left[\sin(\omega_{a} t + \Phi_{a} + \Phi_{0}) - \sin(\Phi_{a} + \Phi_{0}) \right] + 2\cos \iota F_{a}^{\times} \left[\cos(\omega_{a} t + \Phi_{a} + \Phi_{0}) - \cos(\Phi_{a} + \Phi_{0}) \right] \right\}.$$
Parameters

$$F_{a}^{+} = \frac{1}{2} \frac{(\hat{n}^{a} \cdot \hat{p})^{2} - (\hat{n}^{a} \cdot \hat{q})^{2}}{1 + \hat{n}^{a} \cdot \hat{k}}$$
$$F_{a}^{\times} = \frac{(\hat{n}^{a} \cdot \hat{p})(\hat{n}^{a} \cdot \hat{q})}{1 + \hat{n}^{a} \cdot \hat{k}}$$

- ϕ_0 : initial phase at Earth
- ϕ_a : initial phase at pulsar
- F_a^+ , F_a^{\times} : beam patterns depending on direction & polarisation

- ► Beam patterns F_{a}^{+} , F_{a}^{\times} are: $F_{a}^{+} = \frac{1}{2} \frac{(\hat{n}^{a} \cdot \hat{p})^{2} (\hat{n}^{a} \cdot \hat{q})^{2}}{1 + \hat{n}^{a} \cdot \hat{k}}$ $F_{a}^{\times} = \frac{(\hat{n}^{a} \cdot \hat{p})(\hat{n}^{a} \cdot \hat{q})}{1 + \hat{n}^{a} \cdot \hat{k}}$
- ▶ with $\hat{k} = -\{\sin\theta_S \cos\phi_S, \sin\theta_S \sin\phi_S, \cos\theta_S\}$ $\hat{p} = \hat{u}\cos\psi + \hat{v}\sin\psi$ $\hat{q} = \hat{u}\cos\psi + \hat{v}\sin\psi$ $\hat{u} = \{\cos\theta_S \cos\phi_S, \cos\theta_S \sin\phi_S, -\sin\theta_S\}$ $\hat{v} = \{\sin\phi_S, -\cos\phi_S, 0\}$ ▶ Parameters:
- Parameters.
 - θ_S, ϕ_S : equatorial sky position of GW source
 - ψ : polarisation
 - p^a : direction of the pulsar

DA pipeline (EPTA)

Continous GWs Frequentist analysis

F-statistic Earth term only

- We consider only the Earth term which is the coherent term between all pulsars
- To apply F-statistic we want to rewrite the signal in the form

$$r_a^E(t) = \sum_j a_{(j)} h^a_{(j)}$$

• Beam patterns F_a^+ , F_a^{\times} can be rewritten in the form:

$$F_a^+ = F_c^a \cos(2\psi) + F_s^a \sin(2\psi)$$
$$F_a^{\times} = -F_s^a \cos(2\psi) + F_c^a \sin(2\psi)$$

$$\begin{aligned} \bullet \text{ with } \qquad F_c^a &= \left\{ \frac{1}{4} (\sin^2(\theta_a) - 2\cos^2(\theta_a)) \sin^2(\theta_S) - \\ &\quad \frac{1}{2} \cos(\theta_a) \sin(\theta_a) \sin(2\theta_S) \cos(\phi_S - \phi_a) + \\ &\quad \frac{1}{4} (1 + \cos^2(\theta_S)) \sin^2(\theta_a) \cos(2\phi_S - 2\phi_a) \right\} \frac{1}{1 + \hat{n}^a.\hat{k}} \\ F_s^a &= \left\{ \cos(\theta_a) \sin(\theta_a) \sin(\theta_S) \sin(\phi_S - \phi_a) + \\ &\quad \frac{1}{2} \sin^2(\theta_a) \cos(\theta_S) \sin(2\phi_a - 2\phi_S) \right\} \frac{1}{1 + \hat{n}^a.\hat{k}}. \end{aligned}$$

Data Analysis IV : PTA - A. Petiteau - GW School - Benasque - 5 to 9 June 2017

DIDEROT

Francois Arago Ce

F-statistic Earth term only Thus, we have $r_a^E(t) = \sum a_{(j)}h_{(j)}^a$

▶ with

$$h_{(1)} = F_c^a \sin(\Phi(t)), \quad h_{(2)} = F_s^a \sin(\Phi(t)),$$

$$h_{(3)} = F_c^a \cos(\Phi(t)), \quad h_{(4)} = F_s^a \cos(\Phi(t)),$$

) and

$$a_{(1)} = \frac{\mathcal{A}}{2\pi f} [(1 + \cos^2 \iota) \cos(2\psi) \cos(\Phi_0) - 2\cos\iota\sin(2\psi)\sin(\Phi_0)],$$

$$a_{(2)} = \frac{\mathcal{A}}{2\pi f} [(1 + \cos^2 \iota) \sin(2\psi) \cos(\Phi_0) + 2\cos\iota\cos(2\psi)\sin(\Phi_0)],$$

$$a_{(3)} = \frac{\mathcal{A}}{2\pi f} [(1 + \cos^2 \iota) \cos(2\psi)\sin(\Phi_0) + 2\cos\iota\sin(2\psi)\cos(\Phi_0)],$$

$$a_{(4)} = \frac{\mathcal{A}}{2\pi f} [(1 + \cos^2 \iota) \sin(2\psi)\sin(\Phi_0) - 2\cos\iota\cos(2\psi)\cos(\Phi_0)].$$

Data Analysis IV : PTA - A. Petiteau - GW School - Benasque - 5 to 9 June 2017

DIDEROT

Francois Ara

F-statistic Earth term only

• We parametrize only the deterministic signal h, not the noises and the stochastic background

$$p(\vec{\delta t}|\vec{\theta}) = \frac{1}{\sqrt{(2\pi)^{n-m}det(G^T C G)}} \exp\left(-\frac{1}{2}\left(\vec{\delta t} - \vec{r}\right)^T G(G^T C G)^{-1} G^T\left(\vec{\delta t} - \vec{r}\right)\right)$$

=> the log likelihood is: $\log \mathcal{L} = <\delta \vec{t}_a | \vec{r_a} > -\frac{1}{2} < \vec{r_a} | \vec{r_a} >$

with inner product: $\langle \vec{x} | \vec{y} \rangle = \vec{x} G(G^T C G)^{-1} G^T \vec{y}$

F-statistic Earth term only

- Analytic maximisation of the likelihood over $a_{(j)}$: $\frac{\partial \log(\mathcal{L})}{\partial a_{(j)}} = 0$
- Solution: $a_{(j)} = M_{kj}^{-1} X_j$
 - with $X_j \equiv \sum_{\alpha=1}^P \langle x_\alpha | h_{(j)}^{\alpha} \rangle$ and $M_{jk} \equiv \sum_{\alpha=1}^P \langle h_{(j)}^{\alpha} | h_{(k)}^{\alpha} \rangle$
- New statistic: $\mathcal{F}_e = \{\log(\mathcal{L})\}_{max} = \frac{1}{2}X_k M_{jk}^{-1} X_j$
- To be maximized over the 3 remaining parameters (intrinsic):
 - Equatorial latitude: θ_S ,
 - Equatorial latitude: ϕ_S
 - Frequency: f

Search algorithm MS-GA: Multi Search

Framework to run in parallel several dedicated search methods :

- → "Global searches" looks for new good candidates avoiding the ones already found.
- "Local searches" explores in details the best candidates found at the previous step.
- "Modes separation" : the results are combined to find a new set of best candidates using some criterions (high SNR and not to close to the others).
- Each search is done by a GA with a special tuning or a parallel MCMC (EMCEE)

Individual sources and data

Template :

- Several individual sources : Earth term only, non-eccentric, fixed frequencies.
- Fstatistic : analytic maximisation over 4 parameters (Petiteau & al. 2012, Babak & Sesana 2012, Ellis & al. 2012) ⇒ search for Nsrc x 3 parameters (sky positions & frequencies).
 - GW background (GWB) and red-noise on pulsars (RN) can be taken into account in likelihood computation (use of design matrix based on Van Hasterren & Levin 2012) ...
 MS-GA can search for GWB + RN + individual source parameters (ex. in Stas Babak's talk).
 Search :
- MS-GA coupled with several technics for removing «ghost detections» (checking of correlation between pulsars, high-pass filtering, cyclic removing of pulsars).
 - Characterisation of errors and likelihood distribution via MCMC (Antoine Lassus's talk).

[Data : simplified dataset or par/tim dataset (\Rightarrow MS-GA can work with real dataset).

Results on simulated data

Npulsars	noise	dataset	Nsrc	ind. src SNR	signal	Results
30-50	noiseless or white 50-100 ns	simplified	1-5	> 10	earth term, same frequency	Pilot study Babak & Sesana 2012
30-50	white 30-200 ns	simplified	3-8	> 10	earth term, ≠ freq.	OK Petiteau & al. 2012

- MS-GA successfully identified all the injected sources in all datasets
- MS-GA found all source parameters : sky position offset by less than few degrees and frequencies found with precision better than 0.1 nHz (errors characterisation : Antoine Lassus' talk)

▶ 2 Fe is distributed as X² with n degrees of freedom [Janaroski & Krolak LRR, 15 (2012)]

$$p'_{0}(\mathcal{F}) = p_{\chi^{2}}(2\mathcal{F}) = \frac{(2\mathcal{F})^{n/2-1}e^{-(2\mathcal{F})/2}}{2^{n/2} \Gamma(n/2)} = \frac{(\mathcal{F})^{n/2-1}e^{-\mathcal{F}}}{2 \Gamma(n/2)}$$

• After normalization and approximations:

$$p_0(\mathcal{F}) = e^{-\mathcal{F}} \frac{\mathcal{F}^{n/2-1}}{(n/2-1)!} \left(\text{exact} : e^{-\mathcal{F}} \frac{\mathcal{F}^{n/2-1}}{\Gamma(n/2)} \right)$$

► The false alarm probability, P_F that \mathcal{F}_e exceed \mathcal{F}_{th} when there is no signal is $P_F(\mathcal{F}_{th}) = \int_{\mathcal{F}_{th}}^{\infty} p_0(\mathcal{F}) d\mathcal{F}$

$$= e^{-\mathcal{F}_{th}} \sum_{k=0}^{n/2-1} \frac{\mathcal{F}_{th}^k}{k!} \left(\text{exact} : \frac{\Gamma(n/2, \mathcal{F}_{th})}{\Gamma(n/2)} \right)$$

- Probability that $\mathcal{F} < \mathcal{F}_{th}$ for one template is: $1 P_F(\mathcal{F}_{th})$
- Probability that $\mathcal{F} < \mathcal{F}_{th}$ for one template is: $[1 P_F(\mathcal{F}_{th})]^{N_{cell}}$
- ▶ Finally, probability that 𝓕>𝓕_{th} for at least one template is the total false alarm probability:

$$P_F^T(\mathcal{F}_{th}) = 1 - [1 - P_F(\mathcal{F}_{th})]^{N_{cell}}$$

In the case of *Fe*, we marginalize over 4 parameters per source so $N = 4 N_{src}$ then : $\sum_{2N_{src}-1} \mathcal{F}_{a,th}^{k}$

$$P_F(\mathcal{F}_{e,th}) = e^{-\mathcal{F}_{e,th}} \sum_{k=0} \frac{\mathcal{F}_{e,th}}{k!}$$

• The total false alarm probability is than

$$P_{F}^{T} = 1 - \left[1 - e^{-\mathcal{F}_{e,th}} \sum_{k=0}^{2N_{src}-1} \frac{\mathcal{F}_{e,th}^{k}}{k!}\right]^{N_{cell}}$$

• We need N_{cell} the total number of templates ?

- We need N_{cell} the total number of templates:
 - criterion for considering that 2 templates defined by parameters ξ and ξ' are independent is that the autocovariance function is

$$C(\xi,\xi') \le \rho C(\xi,\xi) = \rho \frac{n}{2}$$

- with ho=0.5
- Stochastic template bank
- ▶ 1 source: False Alarm Probabilty

$$P_F^T = 1 - [1 - e^{-\mathcal{F}_{e,th}} (1 + \mathcal{F}_{e,th})]^{N_{cell,1}}$$

By inverting, we got the threshold corresponding to the false alarm probability

EROT

Apply on real-data

- Data: EPTA data release 2
 - 10- of 41 millisecond pulsars
- Noises analysis:
 - Hardest part: estimate C
 - Estimation of the noise contribution for each pulsar using various technics:
 - Red noise
 - Dispersion measurements
 - White noise component per back-end per pulsar
 - EFAC
 - EQUAD

Apply on real-data

Detection results of Fp on real data

DIDEROT

Upper limit

Data Analysis IV : PTA - A. Petiteau - GW School - Benasque - 5 to 9 June 2017

Francois Arago Ce

Results

Babak et al. EPTA MNRAS 455.2 (2016)

PARIS DIDEROT

Francois Ara

Fp statistic

Ellis et al. (2012)

- Excess power in which we basically search for extra power at a given frequency in each pulsar data
- Maximisation over all parameters except frequency f

$$r_a(t) = \sum_{j=1}^2 b_{(j,a)}(\mathcal{A}, \theta_S, \phi_S, \Psi, \iota, \Phi_0, \Phi_a) \kappa_{(j)}(\omega, t)$$

- Distribution of Fp statistic:
 - Gaussian noise: central : $p_0(\mathcal{F}_p) = \frac{\mathcal{F}_p^{n/2-1}}{(n/2-1)!} \exp(-\mathcal{F}_p)$
 - Signal: non-central with optimal SNR ρ :

$$p_1(\mathcal{F}_p, \rho) = \frac{(2\mathcal{F}_p)^{(n/2-1)/2}}{\rho^{n/2-1}} I_{n/2-1}(\rho \sqrt{2\mathcal{F}_p}) e^{-\mathcal{F}_p - \frac{1}{2}\rho}$$

Fe detection results Babak et al. EPTA MNRAS 455.2 (2016)

- Fp evaluated at 99 independent frequencies
- ▶ p-value = 0.93
- Take into account the uncertainty in the noise parameters by sampling from their posterior distribution derived from the single pulsar analysis

Results

Babak et al. EPTA MNRAS 455.2 (2016)

PARIS DIDEROT

Francois Ara

Continous GWs Bayesian analysis

Bayesian analysis 1

- No evolving sources: frequency at the pulsar is the same as the earth frequency.
 - we should sample on $7+N_{pulsar}$ parameters

$$(\mathcal{A}, \theta_S, \phi_S, \Psi, \iota, \omega, \Phi_0, \Phi_a)$$

- numerical marginalization over the pulsar phase φ_a [Taylor et al., 2014]
- MultiNest
- Analysis:
 - 41 pulsars with fixed noise
 - 6 pulsars with varying noise

Bayesian analysis 2

Full response:

- $7 + 2 N_{pulsar}$ parameter space
- Parallel tempering MCMC
- Analysis:
 - 41 pulsars with Earth term only
 - 6 pulsars with pulsar and Earth terms

Results

- Bayes factor $\mathcal{B} = \frac{\int \mathcal{L}(\vec{\theta}, \vec{\lambda} | \vec{\delta t}) \pi(\vec{\theta}, \vec{\lambda}) d\vec{\theta} d\vec{\lambda}}{\int \mathcal{L}(\vec{\theta} | \vec{\delta t}) \pi(\vec{\theta}) d\vec{\theta}}.$
 - Non evolving: $\log(\mathcal{B}) = -0.27$
 - Earth term only: $\log(\mathcal{B}) = -0.31$
 - => no detection
 - => upper limit

Results EPTA

PARIS DIDEROT

49

Upper limit

Horizon

Invert amplitude

Data Analysis IV : PTA - A. Petiteau - GW School - Benasque - 5 to 9 June 2017

PARIS DIDEROT

François Arago Centre

Results from NANOGrav Arzoumanian et al. NANOGrav (2014)

DIDEROT

Stochastic background

Likelihood:

$$p(\vec{\delta t}|\vec{\theta}) = \frac{1}{\sqrt{(2\pi)^{n-m}det(G^T C G)}}$$
$$\times \exp\left(-\frac{1}{2}\left(\vec{\delta t} - \vec{h}\right)^T G(G^T C G)^{-1} G^T\left(\vec{\delta t} - \vec{h}\right)\right)$$

- Stochastic background shape: power-law
- Parametrization of the correlation matrix:

$$C_{GWB} = \zeta_{\alpha\beta} A^2 \left(\frac{1yr^{-1}}{f_L}\right)^{\gamma-1} \left[\Gamma(1-\gamma) \sin\frac{\pi\gamma}{2} (f_{L\tau_{ij}})^{\gamma-1} - \sum_{n=0}^{\infty} \frac{(f_{L\tau_{ij}})^{2n}}{(2n)!(2n+1-\gamma)} \right]$$
$$\zeta_{\alpha\beta} = \frac{3}{2} y \ln y - \frac{1}{4} y + \frac{1}{2} + \frac{1}{2} \delta_{\alpha\beta} , \quad y = \frac{1-\cos\theta_{\alpha\beta}}{2} , \quad \tau_{ij} = 2\pi |t_i - t_j|$$

DEROJ

Likelihood:

$$p(\vec{\delta t}|\vec{\theta}) = \frac{1}{\sqrt{(2\pi)^{n-m} det(GTCG)}} \times \exp\left(-\frac{1}{2}\left(\vec{\delta t} - \vec{h}\right)^T G(GTCG)^{-1}G^T\left(\vec{\delta t} - \vec{h}\right)\right)$$

Stochastic background shape: power-law

Parametrization of the correlation matrix:

$$C_{GWB} = \zeta_{\alpha\beta} A^2 \left(\frac{1yr^{-1}}{f_L}\right)^{\gamma-1} \left[\Gamma(1-\gamma) \sin\frac{\pi\gamma}{2} (f_{L\tau_{ij}})^{\gamma-1} - \sum_{n=0}^{\infty} \frac{(f_{L\tau_{ij}})^{2n}}{(2n)!(2n+1-\gamma)} \right]$$
$$\zeta_{\alpha\beta} = \frac{3}{2} y \ln y - \frac{1}{4} y + \frac{1}{2} + \frac{1}{2} \delta_{\alpha\beta} , \quad y = \frac{1-\cos\theta_{\alpha\beta}}{2} , \quad \tau_{ij} = 2\pi |t_i - t_j|$$

DEROJ

Likelihood:

$$p(\vec{\delta t}|\vec{\theta}) = \frac{1}{\sqrt{(2\pi)^{n-m} det(GTCG)}} \times \exp\left(-\frac{1}{2}\left(\vec{\delta t} - \vec{h}\right)^T G(GTCG)^{-1} G^T\left(\vec{\delta t} - \vec{h}\right)\right)$$

- Stochastic background shape: power-law
- Parametrization of the correlation matrix:

$$C_{GWB} = \zeta_{\alpha\beta} A^2 \left(\frac{1yr^{-1}}{f_L} \right)^{\gamma-1} \left[\Gamma(1-\gamma) \sin \frac{\pi\gamma}{2} (f_{L\tau_{ij}})^{\gamma-1} - \sum_{n=0}^{\infty} \frac{(f_{L\tau_{ij}})^{2n}}{(2n)!(2n+1-\gamma)} \right]$$
$$\zeta_{\alpha\beta} = \frac{3}{2} y \ln y - \frac{1}{4} y + \frac{1}{2} + \frac{1}{2} \delta_{\alpha\beta} , \quad y = \frac{1-\cos\theta_{\alpha\beta}}{2} , \quad \tau_{ij} = 2\pi |t_i - t_j|$$

DEROJ

Likelihood:

$$p(\vec{\delta t}|\vec{\theta}) = \frac{1}{\sqrt{(2\pi)^{n-m} det(GTCG)}} \times \exp\left(-\frac{1}{2}\left(\vec{\delta t} - \vec{h}\right)^T G(GTCG)^{-1} G^T\left(\vec{\delta t} - \vec{h}\right)\right)$$

- Stochastic background shape: power-law
- Parametrization of the correlation matrix:

$$C_{GWB} = \zeta_{\alpha\beta} A^2 \left(\frac{1yr^{-1}}{f_L} \right)^{\gamma - 1} \left[\Gamma(1 - \gamma) \sin \frac{\pi(\gamma)}{2} (f_{L\tau_{ij}})^{\gamma - 1} - \sum_{n=0}^{\infty} \frac{(f_{L\tau_{ij}})^{2n}}{(2n)!(2n+1-\gamma)} \right]$$
$$\zeta_{\alpha\beta} = \frac{3}{2} y \ln y - \frac{1}{4} y + \frac{1}{2} + \frac{1}{2} \delta_{\alpha\beta} , \quad y = \frac{1 - \cos \theta_{\alpha\beta}}{2} , \quad \tau_{ij} = 2\pi |t_i - t_j|$$

Likelihood:

$$p(\vec{\delta t}|\vec{\theta}) = \frac{1}{\sqrt{(2\pi)^{n-m} det(GTCG)}} \times \exp\left(-\frac{1}{2}\left(\vec{\delta t} - \vec{h}\right)^T G(GTCG)^{-1} G^T\left(\vec{\delta t} - \vec{h}\right)\right)$$

- Stochastic background shape: power-law
- Parametrization of the correlation matrix:

$$C_{GWB} = \zeta_{\alpha\beta} A^{2} \left(\frac{1yr^{-1}}{f_{L}} \right)^{\gamma - 1} \left[\Gamma(1 - \gamma) \sin \frac{\pi(\gamma)}{2} (f_{L\tau_{ij}})^{\gamma - 1} - \sum_{n=0}^{\infty} \frac{(f_{L\tau_{ij}})^{2n}}{(2n)!(2n+1-\gamma)} \right]$$
$$\left(\zeta_{\alpha\beta} = \frac{3}{2}y \ln y - \frac{1}{4}y + \frac{1}{2} + \frac{1}{2}\delta_{\alpha\beta} \right), \quad y = \frac{1 - \cos\theta_{\alpha\beta}}{2} , \quad \tau_{ij} = 2\pi |t_{i} - t_{j}|$$

Hellings Downs curve

Hellings Downs curve

 Overlap reduction function: expected correlation in pulsar timing residuals due to an isotropic stochastic GW background

Data Analysis IV : PTA - A. Petiteau - GW School - Benasque - 5 to 9 June 2017

DIDEROT

Search for stochastic background

- Parameterization of C and inverting C is time consuming because its a matrix n x n, with n the total number of measurements.
- Several methods:
 - Bayesian / Frequentist
 - Fixed noise / varying noise
 - Fixed slope / varying slope
 - Various samplers

Search for stochastic background

Bayesian:

- Use the likelihood previously define
- Sampling algorithm:
 - MultiNest [EPTA]
 - parallel tempering MCMC [Ellis]
- Inputs: priors
- Results: posterior distribution for:
 - amplitude and slope of the background
 - noises parameters for individual pulsars
 - common noises

Search for stochastic background Bayesian: Lentati et al. EPTA (2015)

• Prior on parameters

Parameter	Description	Prior range		
White noise				
α	Global EFAC	uniform in [0.5 , 1.5]	1 parameter per pulsar (total 6)	
Spin-noise				
A _{SN}	Spin-noise power law amplitude	uniform in $[10^{-20}, 10^{-10}]$	1 parameter per pulsar (total 6)	
γsn	Spin-noise power law spectral index	uniform in [0,7]	1 parameter per pulsar (total 6)	
DM variations				
A _{DM}	DM variations power law amplitude	uniform in $[10^{-20}, 10^{-10}]$	1 parameter per pulsar (total 6)	
ΫDM	DM variations power law spectral index	uniform in [0,7]	1 parameter per pulsar (total 6)	
Common noise				
A _{CN}	Uncorrelated common noise power law amplitude	uniform in $[10^{-20}, 10^{-10}]$	1 parameter for the array	
γcn	Uncorrelated common noise power law spectral index	uniform in [0,7]	1 parameter for the array	
Aclk	Clock error power law amplitude	uniform in $[10^{-20}, 10^{-10}]$	1 parameter for the array	
Yclk	Clock error power law spectral index	uniform in [0,7]	1 parameter for the array	
$A_{\rm eph}$	Solar System ephemeris error power law amplitude	uniform in $[10^{-20}, 10^{-10}]$	3 parameters for the array (x, y, z)	
Yeph	Solar System ephemeris error power law spectral index	uniform in [0,7]	3 parameters for the array (x, y, z)	
Stochastic GWB				
Α	GWB power law amplitude	uniform in $[10^{-20}, 10^{-10}]$	1 parameter for the array	
γ	GWB power law spectral index	uniform in [0,7]	1 parameter for the array	
ρ_i	GWB power spectrum coefficient at frequency i/T	uniform in $[10^{-20}, 10^{0}]$	1 parameter for the array per frequency in	
			unparameterised GWB power spectrum model (total 20)	
Stochastic background angular correlation function				
c ₁₄	Chebyshev polynomial coefficient	uniform in [-1, 1]	see Eq. (36)	
Γ_{IJ}	Correlation coefficient between pulsars (I,J)	uniform in [-1, 1]	1 parameter for the array per unique pulsar pair (total 15)	

ARI

Francois Ara

Search for stochastic background

• Example: EPTA

Lentati et al. EPTA (2015)

• data

Pulsar	J0613-0200	J1012+5307	J1600-3053	J1713+0747	J1744-1134	J1909-3744
Dataspan (yr)	16.05	16.83	7.66	17.66	17.25	9.38
N _{sys} ^a	14	15	4	14	9	3
$\sigma(\mu s)^{b}$	1.691	1.610	0.563	0.679	0.801	0.131
Log ₁₀ A _{SN}	-13.58 ± 0.40 (-13.41)	$-13.05 \pm 0.09 (-13.04)$	-13.71 ± 0.54 (-13.42)	-14.31 ± 0.46 (-14.20)	-13.63 ± 0.27 (-13.60)	-14.22 ± 0.42 (-13.98)
γsn	2.50 ± 0.99 (2.09)	$1.56 \pm 0.37 (1.56)$	1.91 ± 1.05 (1.38)	$3.50 \pm 1.16 (3.51)$	2.21 ± 0.82 (2.16)	2.23 ± 0.89 (2.17)
Log ₁₀ A _{DM}	-11.61 ± 0.12 (-11.57)	-12.25 ± 0.47 (-11.92)	-11.75 ± 0.39 (-11.67)	-11.97 ± 0.14 (-11.90)	-12.19 ± 0.38 (-11.93)	-12.76 ± 0.53 (-12.51)
γ _{DM}	$1.36 \pm 0.48 (1.11)$	$1.26 \pm 0.97 (0.27)$	$1.64 \pm 0.80 (1.46)$	$2.03 \pm 0.55 (1.82)$	1.41 ± 1.09 (0.36)	2.23 ± 1.07 (2.16)
Global EFAC	$1.01 \pm 0.02 (1.01)$	$0.98 \pm 0.02 \ (0.98)$	$1.03 \pm 0.04 (1.03)$	$1.00 \pm 0.02 (1.00)$	$1.01 \pm 0.03 (1.00)$	$1.02 \pm 0.04 (1.01)$
95% upper limit ^c	9.7×10^{-15}	8.3×10^{-15}	2.1×10^{-14}	4.4×10^{-15}	7.0×10^{-15}	5.2×10^{-15}

Search for stochastic background Example: EPTA Lentati et al. EPTA (2015)

Search for stochastic background

Example: EPTA

Lentati et al. EPTA (2015)

Model	95% upper limit (×10 ⁻¹⁵)
Bayesian Analysis	
Fixed Noise - Fixed Spectral Index	1.7
Varying Noise - Fixed Spectral Index	3.0
Additional Common Signals - Fixed Spectral Index	3.0
Fixed Noise - Varying Spectral Index	8.0
Varying Noise - Varying Spectral Index	13
Additional Common Signals - Varying Spectral Index	13

Others bayesian methods

- Measure power in frequency bins [Lentati et al.]
- Unparameterised power spectrum analysis for a correlated Gravitational Wave Background

95% upper limits from an unparameterised power spectrum analysis for a correlated GWB (red points), and uncorrelated common red noise process (blue points) for the 6 pulsar

- Example of frequentist method used: Optimal statistic
 - weak signal maximum likelihood for GWB spectral amplitude (Anholm et al. 2009; Siemens et al. 2013; Chamberlin et al. 2014)
 - The statistic is:

$$\hat{A}^{2} = \frac{\sum_{IJ} \delta \mathbf{t}_{I}^{\mathrm{T}} \mathbf{P}_{I}^{-1} \tilde{\mathbf{S}}_{IJ} \mathbf{P}_{J}^{-1} \delta \mathbf{t}_{J}}{\sum_{IJ} \mathrm{tr} \left[\mathbf{P}_{I}^{-1} \tilde{\mathbf{S}}_{IJ} \mathbf{P}_{J}^{-1} \tilde{\mathbf{S}}_{JI} \right]},$$

- with:
 - autocovariance of the post-fit residuals $\mathbf{P}_I = \langle \delta \mathbf{t}_I \delta \mathbf{t}_I^{\mathrm{T}} \rangle$
 - signal term $A^2 \tilde{\mathbf{S}}_{IJ} = \langle \delta \mathbf{t}_I \delta \mathbf{t}_J^{\mathrm{T}} \rangle = \mathbf{S}_{IJ}$

DA stochastic background

- Example of frequentist method used: Optimal statistic
 - weak signal maximum likelihood for GWB spectral amplitude (Anholm et al. 2009; Siemens et al. 2013; Chamberlin et al. 2014)
 - The statistic is:

$$\hat{A}^{2} = \frac{\sum_{IJ} \delta \mathbf{t}_{I}^{\mathrm{T}} \mathbf{P}_{I}^{-1} \tilde{\mathbf{S}}_{IJ} \mathbf{P}_{J}^{-1} \delta \mathbf{t}_{J}}{\sum_{IJ} \mathrm{tr} \left[\mathbf{P}_{I}^{-1} \tilde{\mathbf{S}}_{IJ} \mathbf{P}_{J}^{-1} \tilde{\mathbf{S}}_{JI} \right]},$$

- with:
 - autocovariance of the post-fit residuals $\mathbf{P}_I = \langle \delta \mathbf{t}_I \delta \mathbf{t}_I^{\mathrm{T}} \rangle$
 - signal term $A^2 \tilde{\mathbf{S}}_{IJ} = \langle \delta \mathbf{t}_I \delta \mathbf{t}_J^{\mathrm{T}} \rangle = \mathbf{S}_{IJ}$

DA stochastic background

- Example of frequentist method used: *Optimal statistic*
 - SNR is: $\rho = \frac{\hat{A}^2}{\sigma_0} = \frac{\sum_{IJ} \delta \mathbf{t}_I^{\mathrm{T}} \mathbf{P}_I^{-1} \tilde{\mathbf{S}}_{IJ} \mathbf{P}_J^{-1} \delta \mathbf{t}_J}{\left(\sum_{IJ} \operatorname{tr} \left[\mathbf{P}_I^{-1} \tilde{\mathbf{S}}_{IJ} \mathbf{P}_J^{-1} \tilde{\mathbf{S}}_{JI}\right]\right)^{1/2}}$

measures how likely it is that we have found a crosscorrelated signal in our data rather than an uncorrelated signal

• Measurement of cross-power values $\chi_{IJ} = \frac{\delta \mathbf{t}_I^T \mathbf{P}_I^{-1} \hat{\mathbf{S}}_{IJ} \mathbf{P}_J^{-1} \delta \mathbf{t}_J}{\operatorname{tr} \left[\mathbf{P}_I^{-1} \hat{\mathbf{S}}_{IJ} \mathbf{P}_J^{-1} \hat{\mathbf{S}}_{JI} \right]}$

with $\mathbf{S}_{IJ} = A^2 \zeta_{IJ} \hat{\mathbf{S}}_{IJ}$ and error $\sigma_{0,IJ} = \left(\operatorname{tr} \left[\mathbf{P}_I^{-1} \hat{\mathbf{S}}_{IJ} \mathbf{P}_J^{-1} \hat{\mathbf{S}}_{JI} \right] \right)^{-1/2}$

=> high SNR limit: cross-power values = Hellings Downs curve

Results

Results of optimal-statistic on EPTA data

Lentati et al. EPTA (2015) ⁶⁶ Data Analysis

Upper limit result EPTA data Lentati et al. EPTA (2015)

Upper limit on cosmic strings

- Background from cosmic string network.
- Parameters
 - string tension $G\mu/c^2$,
 - α_{cs} : the birth-scale of loops relative to the horizon.

Lentati et al. EPTA (2015)

Separated approach ...

Separated approach including noises

- Global analysis including:
 - Pulsar + propagation parameters
 - Noises
 - GWs: continuous wave sources + backgrounds

- Global analysis including:
 - Pulsar + propagation parameters
 - Noises
 - GWs: continuous wave sources + backgrounds
- Could also include the pulse template matching
- Work in progress

Future

More data:

- Continue to observe the pulsar
- Group all data in IPTA: EPTA, NANOGrav, PPTA
- Use more pulsars
- New instruments: SKA and it's precursor

Future

75

PARIS

Future

More data:

- Continue to observe the pulsar
- Group all data in IPTA: EPTA, NANOGrav, PPTA
- Use more pulsars
- New instruments:
 SKA and
 it's precursor

Thank you

