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Phase transitions & cosmology

Phase transitions in early Universe:

Thermal Changing T (t) Vacuum Changing field σ(t)

I QCD phase transition
I Thermal (Confinement of strong interactions: quarks & gluons→ hadrons)

I Electroweak phase transition
I Thermal (First order: electroweak baryogenesis(1))
I Vacuum: cold electroweak baryogenesis(2)

I Grand Unified Theory & other high-scale phase transitions
I Thermal: topological defects(3)

I Vacuum: hybrid inflation, topological defects, ... (4)

(1)Kuzmin, Rubakov, Shaposhnikov 1988
(2)Smit and Tranberg 2002-6; Smit, Tranberg & Hindmarsh 2007
(3)Kibble 1976; Zurek 1985, 1996; Hindmarsh & Rajantie 2000
(4)Copeland et al 1994; Kofman, Linde, Starobinsky 1996
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Phase transitions and gravitational waves

I GWs require shear stress =⇒ departure from equilibrium(5)

I e.g. 1st order phase transition – c.f. water boiling
I What frequency GWs can we expect from a phase transition?
I Suppose process happens at a rate β at time t . Causality: (H/β) . 1

Frequency today: f0 '
a(t0)

a(t)
β

Event T t f0
QCD transition 100 MeV 10−3 s 10−8(β/H) Hz

Electroweak transition 100 GeV 10−11 s 10−5(β/H)) Hz
GUT/Hybrid inflation < 1016 GeV > 10−36 s < 108(β/H) Hz

I Electroweak transition most interesting for LISA
I QCD transition most interesting for Pulsar Timing Arrays

(5)Eqm g-wave production is small (Ghiglieri, Laine 2015)
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Conventions

I Natural Units: ~ = 1, c = 1, kB = 1
I Natural Unit converter:

Quantity Nat. U. S.I. Conversion
Energy: GeV 1.6022× 10−10 Joule
Temperature: GeV 1.1605× 1013 K
Mass: GeV 1.7827× 10−27 kg
Length: GeV−1 1.9733× 10−16 m
Time: GeV−1 6.5822× 10−25 s

I Planck Mass (Energy): MP =
√

~c5/G = 1.2211× 1019 GeV

I Reduced Planck Mass mP =
√

~c5/8πG = 2.436× 1018 GeV
I dp = dp

2π

I δ̄(p) = 2πδ(p)

I Metric −+ ++
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Thermodynamics of harmonic oscillators 1: bosons

Partition function:
Z = Tr[e−βĤ ]

Leading to:

free energy F = −T ln Z

entropy S = −∂F/∂T

energy E = Z−1 Tr[Ĥe−βĤ ] = F + TS

Bosonic harmonic oscillator
I Ĥ = 1

2ω(â†â + ââ†)
I [â, â†] = 1
I â|n〉 =

√
n|n − 1〉

I â†|n〉 =
√

n + 1|n + 1〉,

B.h.o. partition function

ZBho =
∑∞

n=0〈n|e
−βĤ |n〉

=
∑∞

n=0 exp[−βω(n + 1
2 )]

= e−βω/2/(1− e−βω)

FBho = 1
2ω + T ln(1− e−βω)
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Free scalar field

Field operator:

φ̂(x) =

∫
d

3
k

2ωk

(
âke−ik·x + â†keik·x

)
, [âk, â†k′ ] = 2ωk δ̄

3(k− k′).

Field equation:

(�−m2)φ̂(x) = 0 =⇒ (k0)2 = ωk
2 = k2 + m2

Free scalar field is a collection of harmonic oscillators, one for each momentum k

Partition function: ZB =
∏

k ZBho

Free energy: FB = −T
∑

k ln ZBho =⇒ FB =
∑

k

( 1
2ωk + T ln(1− e−βωk )

)
Quantum statistics of fields:

∑
k → V

∫
d

3
k
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Thermodynamics of harmonic oscillators 2: fermions

Partition function:
Z = Tr[e−βĤ ]

Fermionic harmonic oscillator
I Ĥ = 1

2ω(â†â + ââ†)
I {â, â†} = 1
I â|0〉 = 0, â|1〉 = |0〉
I â†|0〉 = |1〉, â†|1〉 = 0,

F.h.o. partition function

ZFho =
∑1

n=0〈n|e
−βĤ |n〉

=
∑1

n=0 exp[−βω(n + 1
2 )]

= eβω/2/(1 + e−βω)

FFho = − 1
2ω − T ln(1 + e−βω)
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Free fermionic field

Field operator (Dirac 4-component field):

ψ̂(x) =

∫
d

3
k

2ωk

(
uA(k)b̂A

k e−ik·x + v̄A(k)d̂A†
k eik·x

)
,
{b̂A

k , b̂
B†
k′ } = 2ωkδ

AB δ̄3(k− k′)
{d̂A

k , d̂
B†
k′ } = 2ωkδ

AB δ̄3(k− k′)

Field equation:

(iγµ∂µ + m)ψ̂(x) = 0 =⇒
(k0)2 = ωk

2 = k2 + m2

( 6k −m)uA(k) = 0
( 6k + m)v̄A(k) = 0

Free fermionic field is a collection of harmonic oscillators, 4 for each momentum k

Partition function: ZF =
∏

k ZFho

Free energy: FF = −T
∑

k ln ZFho =⇒ F =
∑

k

(
− 1

2ωk − T ln(1 + e−βωk )
)

Quantum statistics of fields:
∑

k → V
∫

d
3
k
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Free energy (density) of an ideal gas

Free relativistic particles of mass m in equilibrium (zero chemical potential)

f = −ηT
∫

d
3
k ln(1 + ηe−E/T )

where η = ±1 (Fermi-Dirac/Bose-Einstein).

I Entropy density: s = − ∂f
∂T

I Energy density: e = f + Ts
I Thermodynamic pressure: p = Ts − e ( Note p = −f )

To find equilibrium state we minimise free energy

I Dimensions: f = T 4φ(m/T ) with φ(0) = −geffπ
2/90.

Defines effective number of relativistic degrees of freedom geff.
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Free energy: exact formulae in high T expansion

Bosons:

fB = −π
2

90
T 4 +

m2T 2

24
− (m2)

3
2 T

12π
− m4

64π2 ln
(

m2

abT 2

)
− m4

16π
5
2

∑
`

(−1)`
ζ(2`+ 1)

(`+ 1)!

(
m2

4π2T 2

)`
Fermions:

fF = −π
2

90
7
8

T 4 +
m2T 2

48
+

m4

64π2 ln
(

m2

af T 2

)
+

m4

16π
5
2

∑
`

(−1)`
ζ(2`+ 1)

(`+ 1)!
(1− 2−2`−1)Γ(`+ 1

2 )
(

m2

4π2T 2

)`
ab = 16π2 ln( 3

2 − 2γE ), af = ab/16, γE = 0.5772 . . . (Euler’s constant)
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Effective potential for scalar field with gauge fields and fermions

Let scalar field give masses to

I scalars (MS(φ̄)),
I vectors (MV (φ̄))
I (Dirac) fermions (MF (φ̄))

Define effective potential VT (φ̄) = V0(φ̄) + f (φ̄) + geffπ
2T 4/90

VT (φ̄) = V0(φ̄) +
T 2

24

(∑
S

M2
S(φ̄) + 3

∑
V

M2
V (φ̄) + 2

∑
F

M2
F (φ̄)

)

− T
12π

(∑
S

(M2
S(φ̄))

3
2 + 3

∑
V

(M2
V (φ̄))

3
2

)

+
1

64π2

∑
S

M4
S(φ̄) ln

(
M2

S

abT 2

)
+

3
64π2

∑
V

M4
V (φ̄) ln

(
M2

V

abT 2

)

− 2
64π2

∑
F

M4
F (φ̄) ln

(
M2

F

af T 2

)
+ · · ·

Neglect higher order terms where M2(φ)/T 2 � 1.
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Phase transition (weakly coupled field theory)

Effective potential: expand in φ̄/T

VT '
D
2

(T 2 − T 2
0 )|φ̄|2 − A

3
T |φ̄|3 +

λT

4!
|φ̄|4

I High temperature: equilibrium at φ̄ = 0.
I Second minimum develops at T1, φb(T ).
I Critical temperature Tc: f (0) = f (φ̄b).
I System can supercool below Tc (until T0).
I First order transition (apparently)
I Latent heat L = Tc ∆s(Tc)

I 1st order from cubic term (bosons only)

T>Tc

T=T2

T=T1

T=0

+v

V

|φ|

T

T=Tc
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Degrees of freedom of SM: mostly coloured

M(T = 0) g M(T = 0) g
γ 0 2 g 0 16
νe <∼ 1 eV 2 u 3 MeV 12
νµ <∼ 1 eV 2 d 7MeV 12
ντ <∼ 1 eV 2 s 76 MeV 12
e 0.5 MeV 4 c 1.2 GeV 12
µ 106 MeV 4 b 4.2 GeV 12
τ 1.7 GeV 4 t 174 GeV 12
W 80 GeV 6
Z 91 GeV 3
h 125 GeV 1

>1 TeV: 7
8 18 + 8 7

8 72 + 16 72/106.75
40 GeV: 7

8 18 + 2 7
8 60 + 16 68.5/84.25

0.4 GeV: 7
8 14 + 2 7

8 36 + 16 47.5/61.75

QCD interactions important, especially around 1GeV
W, Z, t, h contribute most to VT around 100GeV: largest mass change
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Standard Model effective potential in weak coupling approximation

h W± Z t
M/GeV 125 80.4 91.2 174
d.o.f. 1 6 3 7

8 12

M(φ̄)
√

V ′′0 (φ̄) 1
2 gw φ̄

1
2

√
g2

w + g′2φ̄
√

2yt φ̄

Form of effective potential: VT ' D
2 (T 2 − T 2

0 )|φ̄|2 − A
3 T |φ̄|3 + λT

4! |φ̄|
4

D =
1

12φ̄2

(
6M2

W + 3M2
Z + 6M2

t

)
A =

1
12πφ̄2

(
6M3

W + 3M3
Z

)
λT = λ− 1

16π2φ̄4

(
6M4

W ln
(

M2
W

abT 2

)
+ 3M4

Z ln
(

M2
Z

abT 2

)
− 4M4

t ln
(

M2
t

af T 2

))
Predicts: Tc = 166 GeV, T0 = 165 GeV

Transition is very weak.
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Standard Model effective degrees of freedom

Ideal gas, model QCD transition(6) (dashed)
With interactions, lattice QCD(7) (solid)

Temp. Event
100 GeV t non-relativistic

1 GeV b non-relativistic
500 GeV c, τ non-relativistic
200 MeV QCD phase transition

30 MeV µ non-relativistic
2 MeV ν freeze-out

0.2 MeV e non-relativistic
1 eV matter = radiation

0.1 eV photon decoupling

(6)Olive 1981
(7)Hindmarsh & Philipsen 2005, Laine & Schroder 2006, Borsanyi et al 2016
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Electroweak phase transition in the Standard Model

Interactions are important!

Standard Model phase diagram
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QCD phase diagram

I ηB = nB/nγ = (6.10± 0.04)× 10−10 (Planck)(8)

I Low ηB =⇒ low chemical potential

250 500 750 1000 1250 1500 1750 2000
Baryon chemical potential @MeVD

25

50

75

100

125

150

175

200

T
e

m
p

e
ra

tu
re
@M

e
V
D

Quark-gluon plasma

Hadron phase 2SC

NQ
CFL

Ruester et al hep-ph/0503184

(8)Ade et al 2015
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QCD equation of state

I Budapest-Marseille-Wuppertal lattice (physical quark masses)(9)

I Shown: pressure and trace anomaly I(T ) = ρ(T )− 3p(T ) (with fit)

I Can model with hadronic resonance gas at low T

(9)Borsányi et al. (2010)
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1st order phase transitions in SM extensions

I 2HDM (2 Higgs doublet model)
I Extra scalars (A0, H0, H±) increase strength of cubic term.
I Strong phase transition when mA0 & 400 GeV(10)

I Extra singlet scalars
I Tree level first order phase transition
I Strong phase transition with SM-like phenomenology allowed(11)

I Effective field theory with h6 operator(12)

I e.g. by integrating out singlet(13)

I VT (φ) ' c0 + c1(T )h2 + c2h4 + c3h6 + · · ·
I c2 < 0 gives 1st order transition at tree level.

I etc. etc. etc.

(10)Dorsch, Huber, No (2015)
(11)Ashoorioon, Konstandin (2009)
(12)Grojean, Servant, Wells (2005)
(13)Huber et al (2006)
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Standard Model plasma: semiclassical approximation

h W± Z t
M/GeV 125 80.4 91.2 174
Γ/GeV 4× 10−3 (*) 2.1 2.5 1.4
d.o.f. 1 6 3 7

8 12
(*) calculated from SM, not yet measured

I W, Z, t, h have largest mass change: geff = 20.5
I Each have frequent scatterings with “light” particles geff = 86.25
I Relatively narrow width of important particles
I Scattering more rapid than decays: semi-classical particles
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Relativistic Boltzmann equation

I Distribution function(14) (Lorentz scalar): f (p, x)

I Average number of particles in phase space volume element at (p, x, t)
I p0 = Ep =

√
(p2 + m2) is not independent

number density n(x)
∫

d
3
pf (p, x)

particle flux j i (x)
∫

d
3
p pi

E f (p, x)

energy density e(x)
∫

d
3
pEf (p, x)

momentum density Πi (x)
∫

d
3
p pi f (p, x)

momentum flux (j direction) Πij (x)
∫

d
3
p pi pj

E f (p, x)
Organise into 4-vector and 4-tensor:

jµ =

∫
d

3
p

2E
2pµf (p, x) Tµν =

∫
d

3
p

2E
2pµpν f (p, x)

Manifestly covariant form:
∫ d3p

2E =
∫

d
4
pθ(p0) δ̄(p2 + m2)

(14)Bad notation: not to be confused with free energy density
Mark Hindmarsh GWs from phase transitions
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Particle flow in phase space with forces

p

x

xµ → xµ +
dXµ

dτ
∆τ

pµ → pµ + Fµ∆τ

Force must preserve p2 + m2 = 0

I Fµpµ = 0
I or Fµ + ∂µm(x) = 0

Without collisions: f (p + F∆τ, x + 1
m p∆τ) = f (p, x)

Hence (
pµ∂µ + mFµ

∂

∂pµ

)
θ(p0)δ(p2 + m2)f (p, x) = 0

where pµ are independent in f (p, x).
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Particle flow in phase space with collisions

2

1

p
2

p’
2

p’
1

P’ = p’ + p’  
1 2

P = p  + p
1

p Described by scattering function:

W (p1, p2|p′1, p′2) = sσ(s,Θ)δ(P′ − P)

cos Θ = 1 + 2t/(s − 4m2)
s = (p1 + p2)2, t = (p1 − p′1)2

W (p1, p2|p′1, p′2) = W (p′1, p
′
2|p1, p2)

R(p, x)d4x
d

3
p

2E
– Scatterings in which one of the initial particles

has momentum p at space-time point x

R′(p, x)d4x
d

3
p

2E
– Scatterings in which one of the final particles

has momentum p at space-time point x
pµ∂µf (p, x) = C[f ] = R′(p, x)− R(p, x) =

Classical statistics:

R(p, x) =

∫
d

3
p2

2E2

d
3
p′1

2E ′1

d
3
p′2

2E ′2
f (p1, x)f (p2, x)W (p1, p2|p′1, p′2)
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Collision invariants and conservation laws

2-body collisions conserve
I Particle number
I Momentum

}
Can show

{ ψ(x) = a(x) + bµ(x)pµ∫
d

3
p

2E
ψ(x)C[f ] = 0

for arbitrary a(x), b(x).

× both sides of pµ∂µf (p, x) = C[f ] by ψ and integrate over momentum space

bµ = 0 =⇒
∫

d
3
p

2E
pµ∂µf = 0 =⇒ 1

2∂µ
∫

d
3
p pµ

E f = 0 =⇒ ∂µjµ = 0

a = 0 =⇒
∫

d
3
p

2E
pνpµ∂µf = 0 =⇒ 1

2∂µ
∫

d
3
p pν pµ

E f = 0 =⇒ ∂µTµν = 0
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Equilibrium distribution (classical statistics)

Recall pµ∂µf (p, x) = R′(p, x)− R(p, x) with:

R(p, x) =
∫ d3p2

2E2

d3p′1
2E′

1

d3p′2
2E′

2
f (p1, x)f (p2, x)W (p1, p2|p′1, p′2)

W (p1, p2|p′1, p′2) = W (p′1, p
′
2|p1, p2)

Local equilibrium (vanishing collision term) is established if

f (p1, x)f (p2, x) = f (p′1, x)f (p′2, x) for all (pa, p′a)

Hence
log f1 + log f2 = log f ′1 + log f ′2 for all (pa, p′a)

log f1 + log f2 is a conserved quantity, and must be ∝ ψ(x) = a(x) + bµ(x)pµ

f eq(p, x) = exp[a(x) + bµ(x)pµ]

Identify: a = β(x)µ(x), bµ = β(x)Uµ(x)
µ chemical potential – β inverse temperature – Uµ 4-velocity
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Equilibrium distribution (quantum statistics)

With quantum statistics:

R(p, x) =

∫
d

3
p2

2E2

d
3
p′1

2E ′1

d
3
p′2

2E ′2
f1f2(1±f1)(1±f2)W (p1, p2|p′1, p′2)

Bose enhancement
Fermi blocking

Local equilibrium (vanishing collision term) is established if

f1f2(1± f1)(1± f2) = f ′1f ′2(1± f ′1)(1± f ′2) for all (pa, p′a)

Hence

log f1(1± f1) + log f2(1± f2) = log f ′1(1± f ′1) + log f ′2(1± f ′2) for all (pa, p′a)

Now log f (1± f ) is conserved quantity ∝ ψ(x) = a(x) + bµ(x)pµ

f eq(p, x) = (exp[a(x) + bµ(x)pµ ± 1)−1

Identify: a = β(x)µ(x), bµ = β(x)Uµ(x)
µ chemical potential – β inverse temperature – Uµ 4-velocity
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Fluid energy-momentum tensor

Distribution function for system in local equilibrium:

f eq(p, x) =
1

eβ(Uµpµ−µ) ± 1

Energy-momentum tensor:

Tµν =

∫
d

3
p

2E
2pµpν f eq(p, x)

Tµν = (e + p)UµUν + pgµν

where

e =

∫
d

3
p E f eq

0 (p, x) rest frame energy density

p =

∫
d

3
p

p2

3E
f eq
0 (p, x) rest frame (kinetic) pressure
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EM (non)-conservation for particles with field-dependent mass

(
pµ∂µ + mFµ

∂

∂pµ

)
θ(p0)δ(p2 + m2)f (p, x) = C[f ]

I × both sides by pν and integrate over momenta
I Assume collisions occur “at a point” and still conserve momentum

1
2∂µTµν + mFµ

∫
d

4
p pν ∂

∂pµ θ(p0)δ(p2 + m2)f (p, x) = 0

Integration by parts, Fµ = −∂µm = ∂µφ̄ dm/d φ̄

∂µTµν = −∂ν φ̄ dm2

d φ̄

∫
d

3
p

2E
f (p, x)
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Fluid coupled to scalar field through mass 1

Model for the system near phase transition(15)

fluid Tµνf = (e + p)UµUν + pgµν

field Tµνφ = ∂µφ∂νφ− gµν
( 1

2 (∂φ)2 + V0(φ)
)

I Note: p = geffπ
2T 4/90−∆VT (φ) i.e. minus free energy of the fluid

I Conservation of energy-momentum: ∂µ
(

Tµνf + Tµνφ
)

= 0

Hence non-conservation of Tµνf must appear in Tµνφ

∂µTµνφ = +∂ν φ̄
dm2

d φ̄

∫
d

3
p

2E
f (p, x)

Implies for scalar field equation(16)

�φ− V ′0(φ) =
dm
d φ̄

∫
d

3
p

2E
f (p, x)

(15)Ignatius, Kajantie, Kurki-Suonio, Rummukainen 1991
(16)Also derivable from field theory, see Moore & Prokopec 1996
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Fluid coupled to scalar field through mass 2

�φ− V ′0(φ) =
dm
d φ̄

∫
d

3
p

2E
f (p, x)

Write f = f eq + ∆f

�φ− V ′0(φ) = ∆VT (φ) +
dm
d φ̄

∫
d

3
p

2E
∆f (p, x)

Put equilibrium part on LHS:

�φ− V ′T (φ) =
dm2

d φ̄

∫
d

3
p

2E
∆f (p, x)

Repackage all effective potential into fluid EM: p → p = geffπ
2T 4/90− VT (φ)

∂µTµνf + ∂νφ
∂VT (φ)

∂φ
= −∂νφdm2

d φ̄

∫
d

3
p

2E
∆f (p, x)
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IKKR model and entropy generation

�φ− V ′T (φ) =
dm2

d φ̄

∫
d

3
p

2E
∆f (p, x)

I Near equilibrium RHS a function of dynamical variables β, Uµ, (µ), φ
I Field gradients disturb eqm: expect RHS ∼ ∂µφ
I Isotropy: expect RHS ∼ Uµ∂µφ

I Field comes from m2(φ) so ∂µφ→ β∂µm2

Suggests:

�φ− V ′T (φ) = ηT (φ)U · ∂φ with ηT (φ) = η̃βφ2

Can show that entropy generation is always positive Exercise!:

∂µSµ = η̃(βφ)2(U · ∂φ)2 ≥ 0

Entropy current Sµ = sUµ, s = dp/dT
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Summary

I Electroweak symmetry is broken at T ' 100 GeV
I Standard Model plasma at T ' 100 GeV:

weakly-interacting and long-lived W, Z, t, h + “bath" of light particles
I In semi-classical picture SM phase transition is 1st order (just)
I Interactions (non-Abelian gauge bosons)→ cross-over
I Beyond the Standard Model: more scalars→ 1st order phase transition
I Model of coupled order-parameter φ and fluid Tµνf

�φ− V ′T (φ) =
dm2

d φ̄

∫
d

3
p

2E
∆f (p, x) ' η̃ φ

2

T
(U · ∂φ)

∂µTµνf + ∂νφ
∂VT (φ)

∂φ
= −∂νφdm2

d φ̄

∫
d

3
p

2E
∆f (p, x) ' η̃ φ

2

T
(U · ∂φ)∂νφ

Where p = geffπ
2T 4/90− VT (φ), ∆f (p, x) = f (p, x)− f eq(p, x)
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Reading

Statistical physics

I Statistical Mechanics, K Huang (Wiley, 1987)

Thermal quantum field theory

I Basics of Thermal Field Theory, M. Laine and A. Vuorinen (Springer,
2016) [arXiv:1701.01554]

Relativistic hydrodynamics

I Relativistic Hydrodynamics, L. Rezzolla and O. Zanotti (OUP, 2013)

Scalar field coupled to a fluid

I From Boltzmann equations to steady wall velocities, T. Konstantin, G.
Nardini, I. Rues [arXiv:1407.3132]

I Energy Budget of Cosmological First-order Phase Transitions, J.R.
Espinosa, T. Konstantin, J.M. No, G. Servant [arXiv:1004.4187]

I Growth of bubbles in cosmological phase transitions, J. Ignatius, K.
Kajantie, H. Kurki-Suonio, M. Laine [arXiv:astro-ph/9309059]
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