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Two Higgs Doublet Models

Several motivations

- New sources of CP violation
SM cannot account for BAU

- Possibility of having spontaneous CP violation
EW symmetry breaking and CP violation same footing
T. D. Lee 1973, Kobayashi and Maskawa 1973 

- Strong CP Problem, Peccei-Quinn

- Supersymmetry

LHC important role



In general two Higgs doublet models have FCNC

Neutral currents have played an important rôle in the  

EPS Prize in 2009 to Gargamelle, CERN

In the Standard Model Flavour changing neutral currents
(FCNC) are forbidden at tree level 

- in the gauge sector, no ZFCNC

- in the Higgs sector, no HFCNC

Models with two or more Higgs doublets 
have  potentially large HFCNC

Strict limits on FCNC processes!

construction and experimental tests of unified gauge theories 



Despite several good motivations,
there is the need to suppress potentially dangerous FCNC: 

Two Higgs Doublet Models

- discrete symmetry leading to NFC
Weinberg, Glashow (1977);  Paschos (1977)

- assume existence of suppression factors

Antaramian, Hall, Rasin (1992); Hall, Weinberg (1993); Joshipura, 
Rindani (1991)

- first models of this type

Without HFCNC

With HFCNC

obtaining in a natural way 
suppression by small elements of VCKM

Branco, Grimus, Lavoura (1996)

Minimal Flavour Violation

- aligned two Higgs doublet model Pich, Tuzon (2009)

Cheng and Sher (1987)



flavour changing neutral currents (FCNC) which have to be suppressed in order to avoid

conflict with experiment. The simplest way of avoiding FCNC in the context of 2HDM is

through the introduction of a discrete symmetry leading to natural flavour conservation

(NFC) [7]. Another possibility of avoiding tree-level FCNC is through the hypothesis of

aligned Yukawa couplings in flavour space [8]. A very interesting alternative to NFC is

provided by the so-called BGL models [9], [10], [11], where there are non-vanishing FCNC

at tree level, but they are naturally suppressed as a result of an exact symmetry of the

Lagrangian, which is spontaneously broken by the vevs of the neutral Higgs. The BGL

models are highly constrained since, in the quark sector, all couplings are fixed by V and

the ratio v2/v1 of the two vevs, with no other parameters. This is to be contrasted with

the situation that one encounters in the general 2HDM where there is a large number

of parameters which can be expressed in terms of various unitary matrices arising from

the misalignment in flavour space between pairs of Hermitian flavour matrices [12]. The

extension of BGL models to the leptonic sector is essential in order to allow for the study

of their phenomenological implications and, furthermore, to allow for a consistent analysis

of the renormalization group evolution. The relationship between BGL-type models and

the principle of Minimal Flavour Violation (MFV) [13], [14], [15] [16] has been studied

and a MFV expansion was derived for the neutral Higgs couplings to fermions [10]. In

this paper, we analyse the constraints on BGL type models and discuss some of their

phenomenological implications. This paper is organized as follows. In the next section, we

briefly review the BGL models and classify the various variants of these models while at the

same time settling the notation. In the third section, we analyse the constraints on BGL

models, derived from experiment. In section 4 we present our results. The explanation of

the profile likelihood method used in our analysis and the input data appear in appendices.

Finally, in section 5, we summarize our results and draw our conclusions.

2 Theoretical framework

We consider the extension of the SM consisting of the addition of two Higgs doublets

as well as three right-handed neutrinos. In this work we only consider explicitly scenarios

with Dirac type neutrinos, where no Majorana mass terms are added to the Lagrangian.

However, our analysis of the experimental implications does not depend on the nature of

the neutrinos, i.e., Majorana or Dirac. Therefore, our conclusions can be extended to the

case of neutrinos being Majorana fermions provided that deviations from unitarity of the

3 ⇥ 3 low energy leptonic mixing matrix are negligible, as it is the case in most seesaw

models. In order to fix our notation, we explicitly write the Yukawa interactions:

LY = �Q0
L �1�1d

0
R �Q0

L �2�2d
0
R �Q0

L �1�̃1u
0
R �Q0

L �2�̃2u
0
R

�L0
L ⇧1�1`

0
R � L0

L ⇧2�2`
0
R � L0

L ⌃1�̃1⌫
0
R � L0

L ⌃2�̃2⌫
0
R + h.c., (2.1)

where �i, �i ⇧i and ⌃i are matrices in flavour space.

The quark mass matrices generated after spontaneous gauge symmetry breaking are

given by:

Md =
1p
2
(v1�1 + v2e

i✓�2), Mu =
1p
2
(v1�1 + v2e

�i✓�2), (2.2)
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Notation
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Diagonalised by:

where vi/
p
2 ⌘ |h0|�0

i |0i| and ✓ denotes the relative phase of the vacuum expectation values

(vevs) of the neutral components �0
i of �i. The matrices Md,Mu are diagonalized by the

usual bi-unitary transformations:

U †
dLMdUdR = Dd ⌘ diag (md,ms,mb) , (2.3)

U †
uLMuUuR = Du ⌘ diag (mu,mc,mt) . (2.4)

The neutral and the charged Higgs interactions obtained from the quark sector of Eq. (2.1)

are of the form:

LY (quark, Higgs) = �d0L
1

v
[MdH

0 +N0
dR+ iN0

d I] d
0
R

�u0L
1

v
[MuH

0 +N0
uR+ iN0

uI]u
0
R (2.5)

�
p
2H+

v
(u0LN

0
d d

0
R � u0RN

0
u
†
d0L) + h.c.

where v ⌘
p

v21 + v22, and H0, R are orthogonal combinations of the fields ⇢j , arising

when one expands [3] the neutral scalar fields around their vacuum expectation values,

�0
j = ei✓jp

2
(vj + ⇢j + i⌘j), choosing H0 in such a way that it has couplings to the quarks

which are proportional to the mass matrices, as can be seen from Eq. (2.5). The required

rotation is given by Eq. (2.27). Similarly, I denotes the linear combination of ⌘j orthogonal

to the neutral Goldstone boson. The matrices N0
d and N0

u are given by:

N0
d =

1p
2
(v2�1 � v1e

i✓�2), N0
u =

1p
2
(v2�1 � v1e

�i✓�2). (2.6)

In terms of the quark mass eigenstates u, d, the Yukawa couplings are:

LY (quark, Higgs) =

�
p
2H+

v
ū
⇣

V Nd�R �N †
u V �L

⌘

d+ h.c.� H0

v

�

ūDuu+ d̄Dd d
�

�

� R

v

h

ū(Nu�R +N †
u�L)u+ d̄(Nd�R +N †

d�L) d
i

+

+ i
I

v

h

ū(Nu�R �N †
u�L)u� d̄(Nd�R �N †

d�L) d
i

(2.7)

where �L and �R are the left-handed and right-handed chirality projectors, respectively,

and Nd ⌘ U †
dLN

0
dUdR, Nu ⌘ U †

uLN
0
uUuR, V ⌘ U †

uLUdL.

The flavour structure of the quark sector of two Higgs doublet models is characterized

by the four matrices Md, Mu, N0
d , N

0
u . For the leptonic sector we have the corresponding

matrices which we denote by M`, M⌫ , N0
` , N

0
⌫ .

In order to obtain a structure for �i, �i such that there are FCNC at tree level with

strength completely controlled by the Cabibbo – Kobayashi – Maskawa (CKM) mixing

matrix V , Branco, Grimus and Lavoura (BGL) imposed the following symmetry on the

quark and scalar sector of the Lagrangian [9]:

Q0
Lj ! exp (i⌧) Q0

Lj , u0Rj ! exp (i2⌧)u0Rj , �2 ! exp (i⌧)�2 , (2.8)

– 3 –

�̃i = �i⌧2�
⇤
i



Leptonic Sector

flavour changing neutral currents (FCNC) which have to be suppressed in order to avoid

conflict with experiment. The simplest way of avoiding FCNC in the context of 2HDM is

through the introduction of a discrete symmetry leading to natural flavour conservation

(NFC) [7]. Another possibility of avoiding tree-level FCNC is through the hypothesis of

aligned Yukawa couplings in flavour space [8]. A very interesting alternative to NFC is

provided by the so-called BGL models [9], [10], [11], where there are non-vanishing FCNC

at tree level, but they are naturally suppressed as a result of an exact symmetry of the

Lagrangian, which is spontaneously broken by the vevs of the neutral Higgs. The BGL

models are highly constrained since, in the quark sector, all couplings are fixed by V and

the ratio v2/v1 of the two vevs, with no other parameters. This is to be contrasted with

the situation that one encounters in the general 2HDM where there is a large number

of parameters which can be expressed in terms of various unitary matrices arising from

the misalignment in flavour space between pairs of Hermitian flavour matrices [12]. The

extension of BGL models to the leptonic sector is essential in order to allow for the study

of their phenomenological implications and, furthermore, to allow for a consistent analysis

of the renormalization group evolution. The relationship between BGL-type models and

the principle of Minimal Flavour Violation (MFV) [13], [14], [15] [16] has been studied

and a MFV expansion was derived for the neutral Higgs couplings to fermions [10]. In

this paper, we analyse the constraints on BGL type models and discuss some of their

phenomenological implications. This paper is organized as follows. In the next section, we

briefly review the BGL models and classify the various variants of these models while at the

same time settling the notation. In the third section, we analyse the constraints on BGL

models, derived from experiment. In section 4 we present our results. The explanation of

the profile likelihood method used in our analysis and the input data appear in appendices.

Finally, in section 5, we summarize our results and draw our conclusions.

2 Theoretical framework

We consider the extension of the SM consisting of the addition of two Higgs doublets

as well as three right-handed neutrinos. In this work we only consider explicitly scenarios

with Dirac type neutrinos, where no Majorana mass terms are added to the Lagrangian.

However, our analysis of the experimental implications does not depend on the nature of

the neutrinos, i.e., Majorana or Dirac. Therefore, our conclusions can be extended to the

case of neutrinos being Majorana fermions provided that deviations from unitarity of the

3 ⇥ 3 low energy leptonic mixing matrix are negligible, as it is the case in most seesaw

models. In order to fix our notation, we explicitly write the Yukawa interactions:

LY = �Q0
L �1�1d

0
R �Q0

L �2�2d
0
R �Q0

L �1�̃1u
0
R �Q0

L �2�̃2u
0
R

�L0
L ⇧1�1`

0
R � L0

L ⇧2�2`
0
R � L0

L ⌃1�̃1⌫
0
R � L0

L ⌃2�̃2⌫
0
R + h.c., (2.1)

where �i, �i ⇧i and ⌃i are matrices in flavour space.

The quark mass matrices generated after spontaneous gauge symmetry breaking are

given by:

Md =
1p
2
(v1�1 + v2e

i✓�2), Mu =
1p
2
(v1�1 + v2e

�i✓�2), (2.2)

– 2 –

flavour changing neutral currents (FCNC) which have to be suppressed in order to avoid

conflict with experiment. The simplest way of avoiding FCNC in the context of 2HDM is

through the introduction of a discrete symmetry leading to natural flavour conservation

(NFC) [7]. Another possibility of avoiding tree-level FCNC is through the hypothesis of

aligned Yukawa couplings in flavour space [8]. A very interesting alternative to NFC is

provided by the so-called BGL models [9], [10], [11], where there are non-vanishing FCNC

at tree level, but they are naturally suppressed as a result of an exact symmetry of the

Lagrangian, which is spontaneously broken by the vevs of the neutral Higgs. The BGL

models are highly constrained since, in the quark sector, all couplings are fixed by V and

the ratio v2/v1 of the two vevs, with no other parameters. This is to be contrasted with

the situation that one encounters in the general 2HDM where there is a large number

of parameters which can be expressed in terms of various unitary matrices arising from

the misalignment in flavour space between pairs of Hermitian flavour matrices [12]. The

extension of BGL models to the leptonic sector is essential in order to allow for the study

of their phenomenological implications and, furthermore, to allow for a consistent analysis

of the renormalization group evolution. The relationship between BGL-type models and

the principle of Minimal Flavour Violation (MFV) [13], [14], [15] [16] has been studied

and a MFV expansion was derived for the neutral Higgs couplings to fermions [10]. In

this paper, we analyse the constraints on BGL type models and discuss some of their

phenomenological implications. This paper is organized as follows. In the next section, we

briefly review the BGL models and classify the various variants of these models while at the

same time settling the notation. In the third section, we analyse the constraints on BGL

models, derived from experiment. In section 4 we present our results. The explanation of

the profile likelihood method used in our analysis and the input data appear in appendices.

Finally, in section 5, we summarize our results and draw our conclusions.

2 Theoretical framework

We consider the extension of the SM consisting of the addition of two Higgs doublets

as well as three right-handed neutrinos. In this work we only consider explicitly scenarios

with Dirac type neutrinos, where no Majorana mass terms are added to the Lagrangian.

However, our analysis of the experimental implications does not depend on the nature of

the neutrinos, i.e., Majorana or Dirac. Therefore, our conclusions can be extended to the

case of neutrinos being Majorana fermions provided that deviations from unitarity of the

3 ⇥ 3 low energy leptonic mixing matrix are negligible, as it is the case in most seesaw

models. In order to fix our notation, we explicitly write the Yukawa interactions:

LY = �Q0
L �1�1d

0
R �Q0

L �2�2d
0
R �Q0

L �1�̃1u
0
R �Q0

L �2�̃2u
0
R

�L0
L ⇧1�1`

0
R � L0

L ⇧2�2`
0
R � L0

L ⌃1�̃1⌫
0
R � L0

L ⌃2�̃2⌫
0
R + h.c., (2.1)

where �i, �i ⇧i and ⌃i are matrices in flavour space.

The quark mass matrices generated after spontaneous gauge symmetry breaking are

given by:

Md =
1p
2
(v1�1 + v2e

i✓�2), Mu =
1p
2
(v1�1 + v2e

�i✓�2), (2.2)

– 2 –

flavour changing neutral currents (FCNC) which have to be suppressed in order to avoid

conflict with experiment. The simplest way of avoiding FCNC in the context of 2HDM is

through the introduction of a discrete symmetry leading to natural flavour conservation

(NFC) [7]. Another possibility of avoiding tree-level FCNC is through the hypothesis of

aligned Yukawa couplings in flavour space [8]. A very interesting alternative to NFC is

provided by the so-called BGL models [9], [10], [11], where there are non-vanishing FCNC

at tree level, but they are naturally suppressed as a result of an exact symmetry of the

Lagrangian, which is spontaneously broken by the vevs of the neutral Higgs. The BGL

models are highly constrained since, in the quark sector, all couplings are fixed by V and

the ratio v2/v1 of the two vevs, with no other parameters. This is to be contrasted with

the situation that one encounters in the general 2HDM where there is a large number

of parameters which can be expressed in terms of various unitary matrices arising from

the misalignment in flavour space between pairs of Hermitian flavour matrices [12]. The

extension of BGL models to the leptonic sector is essential in order to allow for the study

of their phenomenological implications and, furthermore, to allow for a consistent analysis

of the renormalization group evolution. The relationship between BGL-type models and

the principle of Minimal Flavour Violation (MFV) [13], [14], [15] [16] has been studied

and a MFV expansion was derived for the neutral Higgs couplings to fermions [10]. In

this paper, we analyse the constraints on BGL type models and discuss some of their

phenomenological implications. This paper is organized as follows. In the next section, we

briefly review the BGL models and classify the various variants of these models while at the

same time settling the notation. In the third section, we analyse the constraints on BGL

models, derived from experiment. In section 4 we present our results. The explanation of

the profile likelihood method used in our analysis and the input data appear in appendices.

Finally, in section 5, we summarize our results and draw our conclusions.

2 Theoretical framework

We consider the extension of the SM consisting of the addition of two Higgs doublets

as well as three right-handed neutrinos. In this work we only consider explicitly scenarios

with Dirac type neutrinos, where no Majorana mass terms are added to the Lagrangian.

However, our analysis of the experimental implications does not depend on the nature of

the neutrinos, i.e., Majorana or Dirac. Therefore, our conclusions can be extended to the

case of neutrinos being Majorana fermions provided that deviations from unitarity of the

3 ⇥ 3 low energy leptonic mixing matrix are negligible, as it is the case in most seesaw

models. In order to fix our notation, we explicitly write the Yukawa interactions:

LY = �Q0
L �1�1d

0
R �Q0

L �2�2d
0
R �Q0

L �1�̃1u
0
R �Q0

L �2�̃2u
0
R

�L0
L ⇧1�1`

0
R � L0

L ⇧2�2`
0
R � L0

L ⌃1�̃1⌫
0
R � L0

L ⌃2�̃2⌫
0
R + h.c., (2.1)

where �i, �i ⇧i and ⌃i are matrices in flavour space.

The quark mass matrices generated after spontaneous gauge symmetry breaking are

given by:

Md =
1p
2
(v1�1 + v2e

i✓�2), Mu =
1p
2
(v1�1 + v2e

�i✓�2), (2.2)

– 2 –

J
H
E
P
1
0
(
2
0
1
1
)
0
3
7

and taking for definiteness j = 3 we get

κ(11) =

⎡

⎢

⎣

× × 0

× × 0

0 0 0

⎤

⎥

⎦
, κ(22) =

⎡

⎢

⎣

0 0 0

0 0 0

0 0 ×

⎤

⎥

⎦
, (3.6)

fixing the angle α as π/2 ensures that κ(22)
33 ̸= 0 so that the determinant of the resulting

neutrino mass matrix does not vanish automatically. The Majorana mass matrix for the

neutrinos is given by:
1

2
mν =

1

2
v2
1κ

(11) +
1

2
v2
2e

2iθκ(22). (3.7)

This Z4 symmetry also implies the following structure for Π1 and Π2:

Π1 =

⎡

⎢

⎣

× × ×
× × ×
0 0 0

⎤

⎥

⎦
, Π2 =

⎡

⎢

⎣

0 0 0

0 0 0

× × ×

⎤

⎥

⎦
. (3.8)

The neutrino mass matrix mν is block diagonal with each block given by a different κ

matrix. As a consequence, in the diagonalization of mν , the matrices κ(11) and κ(22) are

diagonalized separately. Therefore, any linear combination of these two matrices will be si-

multaneously diagonalized. As a result the lepton number violating Weinberg operator [32]

of eq. (3.2) does not give rise to Higgs mediated FCNC in the neutrino sector. For the

charged lepton sector the situation is similar to the one encountered in the previous section

for the symmetry given by eq. (2.15), leading to Higgs mediated FCNC in this sector.

The symmetry imposed by eq. (3.4) in the effective low energy theory leads, for j = 3

for instance, to the following conditions:

κ(12) = κ(21) = 0 , κ(11)Pν
3 = 0 , κ(22)Pν

3 = κ(22) ,

Pν
3 Π1 = 0 , Pν

3 Π2 = Π2 . (3.9)

It can be easily verified, as we have done in section 2.2, and following the RGE presented

in ref. [33] that these equations are indeed stable under renormalization, since they keep

the same form at all scales. In ref. [34], which appeared after our paper was posted in the

arXiv, the authors present an effective scenario with MFV with a single Higgs doublet, in

the framework of type-I seesaw, with three heavy singlet neutrinos. The flavour symmetry
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lead to similar difficulties and therefore, would allow us to draw a similar conclusion. As

a result we may conclude that out of the models described by eqs. (2.37) and (2.38) and

their generalization to the leptonic sector, only BGL type models can be enforced by some

symmetry. The same question was recently addressed in ref. [31] following a different

approach. There it was shown that BGL models are the only ones that survive among a

large set of models enforced by abelian symmetries.

3 Minimal flavour violation with Majorana neutrinos

3.1 Low energy effective theory and stability

In the previous section, we assume that neutrinos are Dirac particles. An alternative

possibility is to allow for lepton nonconservation leading to an effective Majorana mass

term for the three light neutrinos of the form

LMajorana =
1

2
ν0

L
T
C−1mνν

0
L + h.c. , (3.1)

which violates lepton number. Such a mass term is generated after spontaneous gauge

symmetry breaking from an effective dimension five operator O which, in the two Higgs

doublet model can be written as:

O =
2
∑

i,j=1

∑

α,β=e,µ,τ

2
∑

a,b,c,d=1

(

LT
Lαaκ

(ij)
αβ C−1LLβc

)

(

εabφib

)(

εcdφjd

)

. (3.2)

This operator contains two lefthanded lepton doublets and two Higgs doublets and can be

viewed, for example, as arising from the seesaw mechanism after integrating out the heavy

degrees of freedom. In the seesaw context the heavy degrees of freedom are the righthanded

neutrinos. The seesaw framework will be analysed in the next subsection.

In this context we have, in the leptonic sector, the two flavour structures introduced

before:

LYl
= −L0

L Π1Φ1l
0
R − L0

L Π2Φ2l
0
R + h.c. , (3.3)

together with the four new flavour structures given by the κ(ij) matrices. A priori, it looks

more difficult to implement MFV in the case of Majorana neutrinos. However, this can

be done by imposing the following Z4 symmetry in the effective Lagrangian including the

terms given by eqs. (3.2) and (3.3):

L0
Lj → exp (iα)L0

Lj , Φ2 → exp (iα)Φ2 , (3.4)

with α = π/2. Imposing this Z4 symmetry implies:

κ(12) = κ(21) =

⎡

⎢

⎣

0 0 0

0 0 0

0 0 0

⎤

⎥

⎦
, (3.5)
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neutral pseudo-Goldstone boson

charged pseudo-Goldstone boson

Physical neutral fields are combinations of



Neutral and charged Higgs Interactions for the quark sector

where vi/
p
2 ⌘ |h0|�0

i |0i| and ✓ denotes the relative phase of the vacuum expectation values

(vevs) of the neutral components �0
i of �i. The matrices Md,Mu are diagonalized by the

usual bi-unitary transformations:

U †
dLMdUdR = Dd ⌘ diag (md,ms,mb) , (2.3)

U †
uLMuUuR = Du ⌘ diag (mu,mc,mt) . (2.4)

The neutral and the charged Higgs interactions obtained from the quark sector of Eq. (2.1)

are of the form:

LY (quark, Higgs) = �d0L
1

v
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†
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where v ⌘
p

v21 + v22, and H0, R are orthogonal combinations of the fields ⇢j , arising

when one expands [3] the neutral scalar fields around their vacuum expectation values,

�0
j = ei✓jp

2
(vj + ⇢j + i⌘j), choosing H0 in such a way that it has couplings to the quarks

which are proportional to the mass matrices, as can be seen from Eq. (2.5). The required

rotation is given by Eq. (2.27). Similarly, I denotes the linear combination of ⌘j orthogonal

to the neutral Goldstone boson. The matrices N0
d and N0

u are given by:
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d =

1p
2
(v2�1 � v1e

i✓�2), N0
u =

1p
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�i✓�2). (2.6)

In terms of the quark mass eigenstates u, d, the Yukawa couplings are:
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Up till here everything is perfectly general for 2HDM
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transformation properties under a WB transformation can then be built with terms
proportional to Md (Mu) respectively, as well as products of terms transforming as
Hd and Hu multiplying Md (Mu) respectively:

N0
d = λ1 Md + λ2i UdLPiU

†
dL Md + λ3i UuLPiU

†
uL Md + ... (37)

N0
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†
uL Mu + τ3i UdLPiU

†
dL Mu + ... (38)

In the quark mass eigenstate basis N0
d , N0

u become:

Nd = λ1 Dd + λ2i Pi Dd + λ3i (VCKM)† Pi VCKM Dd + ... (39)

Nu = τ1 Du + τ2i Pi Du + τ3i VCKM Pi (VCKM)† Du + ... (40)

which conforms explicitly to the MFV requirement. Terms of the form UdLPiU
†
dL Md

and UuLPiU
†
uL Mu do not lead to Higgs mediated FCNC, whereas terms of the form

UuLPiU
†
uL Md and UdLPiU

†
dL Mu do lead to FCNC. At this stage the lambda and

tau coefficients of these expansions appear as free parameters. This was to be ex-
pected, since the expansions of Eqs. (39), (40), conform to the MFV requirement but
have no further restriction. In theories where the MFV requirement results from the
imposition of a symmetry on the Lagrangian, the coefficients lambda and tau are
constrained.

Comparing Eqs. (25) and (26) to Eqs. (39) and (40) one realizes that the BGL
example presented in the previous section corresponds to the following truncation of
our MFV expansion:
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Possible generalisation of BGL models

where Nd and Nu are written in the quark mass eigenstate basis. In a weak basis
these couplings are:

N0
d = UdL Nd U †

dR =
1√
2

(v2Γ1 − v1e
iαΓ2), (27)

N0
u = UuL Nu U †

uR =
1√
2

(v2∆1 − v1e
iα∆2) (28)

All other couplings involving neutral scalars are flavour conserving, therefore they
are not relevant for our analysis. The question that we address in this section is how
to find a general expansion of N0

d , N0
u which conforms to the MFV requirements. It

is clear that a necessary condition for N0
d , N0

u to be of the MFV type is that they
should be functions of Md, Mu and no other flavour dependent couplings. The terms
entering in the expansion of N0

d , N0
u should have the right transformation properties

under weak basis (WB) transformations, defined by:

Q0
L → WL Q0

L, d0
R → W d

R d0
R, u0

R → W u
R u0

R (29)

Under a WB transformation defined by Eq. (29), the quark mass matrices Md, Mu

transform as:
Md → W †

L Md W d
R; Mu → W †

L Mu W u
R (30)

The matrices UdL, UdR, UuL, UuR defined in Eqs. (8), (9) transform under a WB
transformation in the following way:

UdL → W †
L UdL; UuL → W †

L UuL; UdR → W d†
R UdR; UuR → W u†

R UuR (31)

The Hermitian matrices Hd, Hu with Hd,u ≡ (Md,u)(M
†
d,u) transform under a WB

transformation as:

Hd → W †
L Hd WL; Hu → W †

L Hu WL (32)

From Eqs. (8), (9) it follows that:

U †
dL HdUdL = D2

d (33)

with analogous expression for Hu. It is convenient to write Hd, Hu in terms of
projection operators [23]:

Hd =
∑

i

m2
diP

dL
i (34)

where:
P dL

i = UdLPiU
†
dL (35)

with
(Pi)jk = δijδik (36)

Obviously, analogous expressions hold for Hu. It is clear that under a WB transfor-
mation, N0

d , N0
u transform as Md, Mu. A MFV expansion for N0

d , N0
u with propertransformation properties under a WB transformation can then be built with terms

proportional to Md (Mu) respectively, as well as products of terms transforming as
Hd and Hu multiplying Md (Mu) respectively:

N0
d = λ1 Md + λ2i UdLPiU

†
dL Md + λ3i UuLPiU

†
uL Md + ... (37)

N0
u = τ1 Mu + τ2i UuLPiU

†
uL Mu + τ3i UdLPiU

†
dL Mu + ... (38)

In the quark mass eigenstate basis N0
d , N0

u become:

Nd = λ1 Dd + λ2i Pi Dd + λ3i (VCKM)† Pi VCKM Dd + ... (39)

Nu = τ1 Du + τ2i Pi Du + τ3i VCKM Pi (VCKM)† Du + ... (40)

which conforms explicitly to the MFV requirement. Terms of the form UdLPiU
†
dL Md

and UuLPiU
†
uL Mu do not lead to Higgs mediated FCNC, whereas terms of the form

UuLPiU
†
uL Md and UdLPiU

†
dL Mu do lead to FCNC. At this stage the lambda and

tau coefficients of these expansions appear as free parameters. This was to be ex-
pected, since the expansions of Eqs. (39), (40), conform to the MFV requirement but
have no further restriction. In theories where the MFV requirement results from the
imposition of a symmetry on the Lagrangian, the coefficients lambda and tau are
constrained.

Comparing Eqs. (25) and (26) to Eqs. (39) and (40) one realizes that the BGL
example presented in the previous section corresponds to the following truncation of
our MFV expansion:

N0
d =

v2

v1
Md −

(

v2

v1
+

v1

v2

)

UuLP3U
†
uL Md (41)

N0
u =

v2

v1
Mu −

(

v2

v1
+

v1

v2

)

UuLP3U
†
uL Mu (42)

This result, together with equations:

N0
d =

v2

v1
Md −

v2√
2

(

v2

v1
+

v1

v2

)

eiαΓ2 (43)

N0
u =

v2

v1
Mu −

v2√
2

(

v2

v1
+

v1

v2

)

e−iα∆2 (44)

implies that the BGL model is fully defined in a covariant way under WB transfor-
mations by:

v2√
2
eiαΓ2 = UuLP3U

†
uL Md (45)

v2√
2
e−iα∆2 = UuLP3U

†
uL Mu (46)

At this stage lambda and tau coefficients appear as free parameters

Need for symmetries in order to constrain these coefficients 
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some of the interesting features of BGL models, like renormalizability, but allow for
FCNC both in the up and the down sectors. The gBGL models are implemented
through a Z

2

symmetry, where uR and dR are even and only one of the scalar doublets
and one of the left-handed quark doublets are odd:

QL3 7! �QL3 ,

dR 7! dR, �
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,

uR 7! uR, �
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7! ��
2

. (10)

The above gBGL model includes all BGL models as special cases. Indeed gBGL models
have some new parameters and when some of these free parameters are set to zero, one
obtains a BGL model and the Lagrangian acquires a larger symmetry, namely Z

4

6. It
is worth emphasizing that gBGL models are implemented through a Z

2

symmetry, as
it is also the case in the Glashow–Weinberg model with NFC. The only di↵erence is
that the left-handed quark families transform di↵erently in the two models. In words,
one may say that the principle leading to gBGL constrains the Yukawa couplings so
that each line of �j, �j couples only to one Higgs doublet.

3 Yukawa Textures

Imposing the Z
2

symmetry in eq. (10), the Yukawa matrices in these models have the
general form
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where ⇥, �ij and �ij stand for arbitrary complex parameters. In eq. (11), the �ij and
�ij entries have been singled out in order to show how gBGL contain BGL models as
special cases: it is evident that taking �ij = 0, we obtain dBGL models, where
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6In the present work, we focus on the generalisation of BGL models in the quark sector and do not
address in the detail the inclusion of the leptonic sector.
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- renormalisable;
- FCNC both in up and down 
sectors;

- both up and down type BGL 
appear as special limits;

gBGL verify:

while dBGL models satisfy
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The last two conditions in eqs. (17) and (18) give the block diagonal form of the Yukawa
matrices in the corresponding sector (up in uBGL and down in dBGL models), enforc-
ing the absence of FCNC in that sector. From these conditions valid in a set of WB,
we can get WB independent matrix conditions for all three types of models. The
conditions of interest for gBGL models are

�†
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�
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= 0. (19)

Notice that eqs. (19) are satisfied trivially in case �
1
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1

= 0 or in case �
2

= �
2

= 0,
which correspond to 2HDM of types I or X; note, however, that this kind of models
are not of the gBGL type. Coming back to eqs. (19), it is straightforward to show that
they are necessary conditions for gBGL models since, from eq. (16),
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and similarly for the remaining conditions in eq. (19). The su�ciency of these condi-
tions in order to have gBGL models is shown in appendix A, where the relation with
2HDM of type I is also analysed.

4 Parametrisation of gBGL models

It is clear that gBGL models have a great reduction in the number of free parameters,
with respect to the general 2HDM. In this section, we use projection operators to
suggest some convenient parametrisations of gBGL models.

4.1 Weak basis invariant projectors

Let us recall that under a WB transformation we have

Q0

L 7! Q00
L = W

L

Q0

L ; d0R 7! d00R = W
dRd

0

R ; u0

R 7! u00
R = W

uRu
0

R, (21)
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�i 7! �0

i = W †
L

�iWdR ; �i 7! �0
i = W †

L

�iWuR , (22)

with W
L

, W
dR and W

uR unitary matrices.
If we now take the gBGL definition through projectors in eq. (16) for �i and �i, and
go to an arbitrary weak basis, we have
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6In the present work, we focus on the generalisation of BGL models in the quark sector and do not
address in the detail the inclusion of the leptonic sector.
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FCNC in both up and down sectors. It has been argued that out of the models verifying

Eqs. (2.18) and (2.19) and their generalization to the leptonic sector, only BGL type models

can be enforced by some symmetry [11]. Furthermore, in Ref. [18] it was shown that BGL

models are the only models of this type that can be enforced by abelian symmetries.

Similarly, for the leptonic sector, the symmetries of Eqs. (2.10) or, in alternative (2.11),

imply

P�
k⇧2 = ⇧2 , P�

k⇧1 = 0 , (2.21)

P�
k⌃2 = ⌃2 , P�

k⌃1 = 0 , (2.22)

where � stands for neutrino (⌫) or for charged lepton (`) respectively. In this case

P`
k = U`LPkU

†
`L , P⌫

k = U⌫LPkU
†
⌫L , (2.23)

where U⌫L and U`L are the unitary matrices that diagonalize the corresponding square

mass matrices

U †
`LM`M

†
`U`L = diag

�

m2
e,m

2
µ,m

2
⌧

�

,

U †
⌫LM⌫M

†
⌫U⌫L = diag

�

m2
⌫1 ,m

2
⌫2,m

2
⌫3

�

, (2.24)

with M` and M⌫ of the form

M` =
1p
2
(v1⇧1 + v2e

i✓⇧2) , M⌫ =
1p
2
(v1⌃1 + v2e

�i✓⌃2) . (2.25)

In the leptonic sector, the PMNS mixing matrix U ⌘ U †
`LU⌫L, has large mixings, unlike

the CKM matrix V . Therefore, the Higgs mediated FCNC are not strongly suppressed.

However, models where the Higgs mediated leptonic FCNC are present only in the neutrino

sector can be easily accommodated experimentally due to the smallness of the neutrino

masses.

In the next sections we label each of the thirty six di↵erent models we analyse by

the pair (�j , �k): the generation numbers j, k refer to the projectors Pj,k involved in each

sector �,�. For example, the model (up3, `2) = (t, µ) will have no tree level neutral flavour

changing couplings in the up quark and the charged lepton sectors while the neutral flavour

changing couplings in the down quark and neutrino sectors will be controlled, respectively,

by Vtdi
V ⇤
tdj

and Uµ⌫aU
⇤
µ⌫b

.

In BGL models the Higgs potential is constrained by the imposed symmetry to be of

the form:

V� = µ1�
†
1�1 + µ2�

†
2�2 �

⇣

m12�
†
1�2 + h.c.

⌘

+ 2�3

⇣

�†
1�1
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�†
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2�2

⌘2
, (2.26)

the term in m12 is a soft symmetry breaking term. Its introduction prevents the appearence

of an would-be Goldstone boson due to an accidental continuous global symmetry of the

potential, which arises when the BGL symmetry is exact. Namely, in the limit m12 ! 0

– 6 –
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the term in m12 is a soft symmetry breaking term. Its introduction prevents the appearence

of an would-be Goldstone boson due to an accidental continuous global symmetry of the

potential, which arises when the BGL symmetry is exact. Namely, in the limit m12 ! 0

– 6 –

where ⌧ 6= 0,⇡, with all other quark fields transforming trivially under the symmetry. The

index j can be fixed as either 1, 2 or 3. Alternatively the symmetry may be chosen as:

Q0
Lj ! exp (i⌧) Q0

Lj , d0Rj ! exp (i2⌧)d0Rj , �2 ! exp (�i⌧)�2 . (2.9)

The symmetry given by Eq. (2.8) leads to Higgs FCNC in the down sector, whereas the

symmetry specified by Eq. (2.9) leads to Higgs FCNC in the up sector. These two alterna-

tive choices of symmetry combined with the three possible ways of fixing the index j give

rise to six di↵erent realizations of 2HDM with the flavour structure, in the quark sector,

controlled by the CKM matrix.

In the leptonic sector, with Dirac type neutrinos, there is perfect analogy with the quark

sector. The requirement that FCNC at tree level have strength completely controlled by

the Pontecorvo – Maki – Nakagawa – Sakata (PMNS) matrix, U is enforced by one of the

following symmetries. Either

L0
Lk ! exp (i⌧) L0

Lk , ⌫0Rk ! exp (i2⌧)⌫0Rk , �2 ! exp (i⌧)�2 , (2.10)

or

L0
Lk ! exp (i⌧) L0

Lk , `0Rk ! exp (i2⌧)`0Rk , �2 ! exp (�i⌧)�2 , (2.11)

where, once again, ⌧ 6= 0,⇡, with all other leptonic fields transforming trivially under the

symmetry. The index k can be fixed as either 1, 2 or 3.

These are the so-called BGL type models that we analyse in this paper. There are

thirty six di↵erent models corresponding to the combinations of the six possible di↵erent

implementations in each sector. It is clear that in order to combine the symmetry given

by Eq. (2.8) with the one given by Eq. (2.11) an overall change of sign is required, in one

set of transformations.

The symmetry given by Eq. (2.8) with the choice j = 3 leads to the following pattern

of zero textures for the Yukawa couplings:
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, (2.13)

where ⇥ denotes an arbitrary entry. As a result of this symmetry the matrices Nd, Nu are

of the form [9]:

(Nd)ij =
v2
v1

(Dd)ij �
✓

v2
v1

+
v1
v2

◆

(V †)i3(V )3j(Dd)jj , (2.14)

whereas

Nu = �v1
v2

diag (0, 0,mt) +
v2
v1

diag (mu,mc, 0) . (2.15)
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which imply

FCNC in both up and down sectors. It has been argued that out of the models verifying

Eqs. (2.18) and (2.19) and their generalization to the leptonic sector, only BGL type models

can be enforced by some symmetry [11]. Furthermore, in Ref. [18] it was shown that BGL

models are the only models of this type that can be enforced by abelian symmetries.

Similarly, for the leptonic sector, the symmetries of Eqs. (2.10) or, in alternative (2.11),

imply

P�
k⇧2 = ⇧2 , P�

k⇧1 = 0 , (2.21)

P�
k⌃2 = ⌃2 , P�

k⌃1 = 0 , (2.22)

where � stands for neutrino (⌫) or for charged lepton (`) respectively. In this case

P`
k = U`LPkU

†
`L , P⌫

k = U⌫LPkU
†
⌫L , (2.23)

where U⌫L and U`L are the unitary matrices that diagonalize the corresponding square

mass matrices

U †
`LM`M

†
`U`L = diag

�

m2
e,m

2
µ,m

2
⌧

�

,

U †
⌫LM⌫M

†
⌫U⌫L = diag

�

m2
⌫1 ,m

2
⌫2,m

2
⌫3

�

, (2.24)

with M` and M⌫ of the form

M` =
1p
2
(v1⇧1 + v2e

i✓⇧2) , M⌫ =
1p
2
(v1⌃1 + v2e

�i✓⌃2) . (2.25)

In the leptonic sector, the PMNS mixing matrix U ⌘ U †
`LU⌫L, has large mixings, unlike

the CKM matrix V . Therefore, the Higgs mediated FCNC are not strongly suppressed.

However, models where the Higgs mediated leptonic FCNC are present only in the neutrino

sector can be easily accommodated experimentally due to the smallness of the neutrino

masses.

In the next sections we label each of the thirty six di↵erent models we analyse by

the pair (�j , �k): the generation numbers j, k refer to the projectors Pj,k involved in each

sector �,�. For example, the model (up3, `2) = (t, µ) will have no tree level neutral flavour

changing couplings in the up quark and the charged lepton sectors while the neutral flavour

changing couplings in the down quark and neutrino sectors will be controlled, respectively,

by Vtdi
V ⇤
tdj

and Uµ⌫aU
⇤
µ⌫b

.

In BGL models the Higgs potential is constrained by the imposed symmetry to be of

the form:

V� = µ1�
†
1�1 + µ2�

†
2�2 �

⇣

m12�
†
1�2 + h.c.

⌘

+ 2�3

⇣

�†
1�1

⌘⇣

�†
2�2

⌘

+ 2�4

⇣

�†
1�2

⌘⇣

�†
2�1

⌘

+ �1

⇣

�†
1�1

⌘2
+ �2

⇣

�†
2�2

⌘2
, (2.26)

the term in m12 is a soft symmetry breaking term. Its introduction prevents the appearence

of an would-be Goldstone boson due to an accidental continuous global symmetry of the

potential, which arises when the BGL symmetry is exact. Namely, in the limit m12 ! 0
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of an would-be Goldstone boson due to an accidental continuous global symmetry of the
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– 6 –

FCNC in both up and down sectors. It has been argued that out of the models verifying

Eqs. (2.18) and (2.19) and their generalization to the leptonic sector, only BGL type models

can be enforced by some symmetry [11]. Furthermore, in Ref. [18] it was shown that BGL

models are the only models of this type that can be enforced by abelian symmetries.

Similarly, for the leptonic sector, the symmetries of Eqs. (2.10) or, in alternative (2.11),

imply

P�
k⇧2 = ⇧2 , P�

k⇧1 = 0 , (2.21)

P�
k⌃2 = ⌃2 , P�

k⌃1 = 0 , (2.22)

where � stands for neutrino (⌫) or for charged lepton (`) respectively. In this case

P`
k = U`LPkU

†
`L , P⌫

k = U⌫LPkU
†
⌫L , (2.23)

where U⌫L and U`L are the unitary matrices that diagonalize the corresponding square

mass matrices

U †
`LM`M

†
`U`L = diag

�

m2
e,m

2
µ,m

2
⌧

�

,

U †
⌫LM⌫M

†
⌫U⌫L = diag

�

m2
⌫1 ,m

2
⌫2,m

2
⌫3

�

, (2.24)

with M` and M⌫ of the form

M` =
1p
2
(v1⇧1 + v2e

i✓⇧2) , M⌫ =
1p
2
(v1⌃1 + v2e

�i✓⌃2) . (2.25)

In the leptonic sector, the PMNS mixing matrix U ⌘ U †
`LU⌫L, has large mixings, unlike

the CKM matrix V . Therefore, the Higgs mediated FCNC are not strongly suppressed.

However, models where the Higgs mediated leptonic FCNC are present only in the neutrino

sector can be easily accommodated experimentally due to the smallness of the neutrino

masses.

In the next sections we label each of the thirty six di↵erent models we analyse by

the pair (�j , �k): the generation numbers j, k refer to the projectors Pj,k involved in each

sector �,�. For example, the model (up3, `2) = (t, µ) will have no tree level neutral flavour

changing couplings in the up quark and the charged lepton sectors while the neutral flavour

changing couplings in the down quark and neutrino sectors will be controlled, respectively,

by Vtdi
V ⇤
tdj

and Uµ⌫aU
⇤
µ⌫b

.

In BGL models the Higgs potential is constrained by the imposed symmetry to be of

the form:

V� = µ1�
†
1�1 + µ2�

†
2�2 �

⇣

m12�
†
1�2 + h.c.

⌘

+ 2�3

⇣

�†
1�1

⌘⇣

�†
2�2

⌘

+ 2�4

⇣

�†
1�2

⌘⇣

�†
2�1

⌘

+ �1

⇣

�†
1�1

⌘2
+ �2

⇣

�†
2�2

⌘2
, (2.26)

the term in m12 is a soft symmetry breaking term. Its introduction prevents the appearence

of an would-be Goldstone boson due to an accidental continuous global symmetry of the

potential, which arises when the BGL symmetry is exact. Namely, in the limit m12 ! 0
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the term in m12 is a soft symmetry breaking term. Its introduction prevents the appearence

of an would-be Goldstone boson due to an accidental continuous global symmetry of the

potential, which arises when the BGL symmetry is exact. Namely, in the limit m12 ! 0
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the term in m12 is a soft symmetry breaking term. Its introduction prevents the appearence

of an would-be Goldstone boson due to an accidental continuous global symmetry of the

potential, which arises when the BGL symmetry is exact. Namely, in the limit m12 ! 0
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given by eqs. (2.16) and (2.17) both matrices N0
d , N

0
u involve the same projection operator.

Different models with MFV were obtained through the generalization of BGL models [15].

Relaxing the above condition allows, for instance, to build models with Higgs mediated

FCNC in both up and down sectors. It has been argued that out of the models verifying

eqs. (2.18) and (2.19) and their generalization to the leptonic sector, only BGL type models

can be enforced by some symmetry [16]. Furthermore, in ref. [35] it was shown that BGL

models are the only models of this type that can be enforced by abelian symmetries.

Similarly, for the leptonic sector, the symmetries of eqs. (2.10) or, in alternative (2.11),

imply

Pβ
kΠ2 = Π2 , Pβ

kΠ1 = 0 , (2.21)

Pβ
kΣ2 = Σ2 , Pβ

kΣ1 = 0 , (2.22)

where β stands for neutrino (ν) or for charged lepton (ℓ) respectively. In this case

Pℓ
k = UℓLPkU

†
ℓL , Pν

k = UνLPkU
†
νL , (2.23)

where UνL and UℓL are the unitary matrices that diagonalize the corresponding square

mass matrices

U †
ℓLMℓM

†
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with Mℓ and Mν of the form
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In the leptonic sector, the PMNS mixing matrix U ≡ U †
ℓLUνL, has large mixings, unlike

the CKM matrix V . Therefore, the Higgs mediated FCNC are not strongly suppressed.

However, models where the Higgs mediated leptonic FCNC are present only in the neutrino

sector can be easily accommodated experimentally due to the smallness of the neutrino

masses.

In the next sections we label each of the thirty six different models we analyse by

the pair (γj , βk): the generation numbers j, k refer to the projectors Pj,k involved in each

sector γ,β. For example, the model (up3, ℓ2) = (t, µ) will have no tree level neutral flavour
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the term in m12 is a soft symmetry breaking term. Its introduction prevents the appearence

of an would-be Goldstone boson due to an accidental continuous global symmetry of the

potential, which arises when the BGL symmetry is exact. Namely, in the limit m12 → 0

the pseudo scalar neutral field I remains massless. Hermiticity would allow the coefficient

m12 to be complex, unlike the other coefficients of the scalar potential. However, freedom

to rephase the scalar doublets allows to choose without loss of generality all coefficients

real. As a result, VΦ does not violate CP explicitly. It can also be easily shown that it

cannot violate CP spontaneously. In the absence of CP violation the scalar field I does not

mix with the fields R and H0, therefore I is already a physical Higgs and the mixing of R

and H0 is parametrized by a single angle. There are two important rotations that define

the two parameters, tanβ and α, widely used in the literature:

(
H0

R

)
=

1

v

(
v1 v2

−v2 v1

)(
ρ1
ρ2

)
=

(
cosβ sinβ

− sinβ cosβ

)(
ρ1
ρ2

)
(2.27)

This rotation ensures that the field H0 has flavour conserving couplings to the quarks with

strength equal to the standard model Higgs couplings. The other rotation is:

(
H

h

)
=

(
cosα sinα

− sinα cosα

)(
ρ1
ρ2

)
(2.28)

relating ρ1 and ρ2 to two of the neutral physical Higgs fields. The seven independent real

parameters of the Higgs potential VΦ will fix the seven observable quantities, comprising

the masses of the three neutral Higgs, the mass of the charged Higgs, the combination

v ≡
√

v21 + v22, tanβ ≡ v2/v1, and α. In our analysis we use the current limits on Higgs

masses, identifying one of the Higgs with the one that was discovered by ATLAS and

CMS. We make the approximation of no mixing between R and H0 identifying H0 with

the recently discovered Higgs and R and I with the additional physical neutral Higgs fields.

This limit corresponds to β − α = π/2 and with this notation H0 coincides with h, which

is the usual choice in the literature. This approximation is justified by the fact that the

observed Higgs boson seems to behave as a standard-like Higgs particle. The quantity v

is of course already fixed by experiment. Electroweak precision tests and, in particular

the T and S parameters, lead to constraints relating the masses of the new Higgs fields

among themselves. Therefore the bounds on T and S, together with direct mass limits,

significantly restrict the masses of the new Higgs particles, once the mass of H± is fixed. In

our analysis we study BGL type models by combining the six possible implementations of

the quark sector with the six implementations of the leptonic sector. It is illustrative to plot

our results in terms of mH± versus tanβ, since, as explained above in the context of our

approximation of no mixing between R and H0, there is not much freedom left. Therefore

with these two parameters we approximately scan the whole region of parameter space. In

our analysis, we impose present constraints from several relevant flavour observables, as

specified in the next section.
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Introduction BGL models with FCNC Results Conclusions

BGL - 2HDM SM
Charged H± Neutral R, I Tree LoopTree Loop Tree Loop

M ! `⌫̄,M 0`⌫̄ X X X X X
Universality X X X X X
M0 ! `+1 `�2 X X X X
M0 � M̄0 X X X X

`�1 ! `�2 `+3 `�4 X X X X
B ! Xs� X X X
`j ! `i� X X X

EW Precision X X X

Summary of relevant constraints

Miguel Nebot CFTP-IST Lisbon

This table indicates possible new contributions but for 
each specific model type some of them will be absent 



Introduction BGL models with FCNC Results Conclusions

|gµ/ge|2 1.0018(14) |gS
RR,⌧µ| < 0.72

|gS
RR,⌧e| < 0.70 |gS

RR,µe| < 0.035
Br(B+ ! e+⌫) < 9.8 10�7 Br(D+

s ! e+⌫) < 1.2 10�4

Br(B+ ! µ+⌫) < 1.0 10�6 Br(D+
s ! µ+⌫) 5.90(33) 10�3

Br(B+ ! ⌧+⌫) 1.15(23) 10�4 Br(D+
s ! ⌧+⌫) 5.43(31) 10�2

Br(D+ ! e+⌫) < 8.8 10�6

Br(D+ ! µ+⌫) 3.82(33) 10�4

Br(D+ ! ⌧+⌫) < 1.2 10�3

�(⇡+!e+⌫)
�(⇡+!µ+⌫) 1.230(4) 10�4 �(⌧�!⇡�⌫)

�(⇡+!µ+⌫) 9703(54)
�(K+!e+⌫)
�(K+!µ+⌫) 2.488(12) 10�5 �(⌧�!K�⌫)

�(K+!µ+⌫) 469(7)
�(B!D⌧⌫)

NP

�(B!D⌧⌫)
SM

log C (K ! ⇡`⌫) 0.194(11)
�(B!D⇤⌧⌫)

NP

�(B!D⇤⌧⌫)
SM

Tree level H± mediated processes

Miguel Nebot CFTP-IST Lisbon
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Br(⌧� ! e�e�e+) < 2.7 10�8 Br(⌧� ! µ�µ�µ+) < 2.1 10�8

Br(⌧� ! e�e�µ+) < 1.5 10�8 Br(⌧� ! e�µ�e+) < 1.8 10�8

Br(⌧� ! µ�µ�e+) < 1.7 10�8 Br(⌧� ! µ�e�µ+) < 2.7 10�8

Br(µ� ! e�e�e+) < 1 10�12

Br(KL ! µ±e⌥) < 4.7 10�12 Br(⇡0 ! µ±e⌥) < 3.6 10�10

Br(KL ! e�e+) < 9 10�12

Br(KL ! µ�µ+) < 6.84 10�9

Br(D0 ! e�e+) < 7.9 10�8 Br(B0 ! e+e�) < 8.3 10�8

Br(D0 ! µ±e⌥) < 2.6 10�7 Br(B0 ! ⌧±e⌥) < 2.8 10�5

Br(D0 ! µ�µ+) < 1.4 10�7 Br(B0 ! µ�µ+) 3.6(1.6) 10�10

Br(B0
s ! e+e�) < 2.8 10�7 Br(B0 ! ⌧±µ⌥) < 2.2 10�5

Br(B0
s ! µ±e⌥) < 2 10�7 Br(B0 ! ⌧+⌧�) < 4.1 10�3

Br(B0
s ! µ�µ+) 2.9(0.7) 10�9

Tree level R, I mediated processes (I)

Miguel Nebot CFTP-IST Lisbon
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h mediated FCNC (arXiv:1508.05101)

3 Flavour changing decays of top quarks

In this section, we analyse flavour changing decays of top quarks t ! hq. They can arise
in down-type BGL models, where there are Higgs flavour violating neutral currents in
the up sector. According to Eqs. (13) and (15), the couplings of the Higgs particle h
with a top t and a light up-type quark u or c, in a model of type d⇢, can be written as

Y U
qt (d⇢) = �Vq⇢V

⇤
t⇢

mt

v
c�↵(t� + t�1

� ) , q = u, c . (17)

One can then evaluate the corresponding t ! hq decay rate. As previously mentioned,
there are three types of models of this class, d⇢, depending on the column of the V
matrix which suppresses the flavour changing currents. The result is

�(d⇢)(t ! hq) =
m3

t

32⇡v2

✓
1� m2

h

m2
t

◆2

|Vq⇢|2|Vt⇢|2c2�↵(t� + t�1
� )

2
. (18)

Note that, apart from the global factor c2�↵(t� + t�1
� )

2
, every other factor in Eq. (18) is

fixed once we choose the specific down-type model d⇢ and the decay channel t ! hc
or t ! hu. Therefore, for a given model, t ! hq processes constrain the factor
c2�↵(t� + t�1

� )
2
. In Table 1 we enumerate the decay channels and the models according

to the V factors involved.

Model t ! hu t ! hc
d |VudVtd|2 (⇠ �6) = 7.51 · 10�5 |VcdVtd|2 (⇠ �8) = 4.01 · 10�6

s |VusVts|2 (⇠ �6) = 8.20 · 10�5 |VcsVts|2 (⇠ �4) = 1.53 · 10�3

b |VubVtb|2 (⇠ �6) = 1.40 · 10�5 |VcbVtb|2 (⇠ �4) = 1.68 · 10�3

Table 1: V factors entering Eq. (18), � ' 0.22 [48] is the Cabibbo angle [9] or Wolfen-
stein main expansion parameter [49].

It is clear that the most interesting models for t ! hc are the s and b models, where
the suppression is only at the �4 level, compared to the d model which has a strong
suppression for the same decay at the �8 level. The d model has the curiosity that the
suppression is higher for t ! hc than for t ! hu, unlike in the other two models. The
branching ratio for t ! hq in the d⇢ type model is

Br(d⇢)(t ! hq) =
�(d⇢)(t ! hq)

�(t ! Wb)
= f(xh, yW )

|Vq⇢Vt⇢|2

|Vtb|2
c2�↵(t� + t�1

� )
2
, (19)

where

f(xh, yW ) =
1

2
(1� xh)

2 �1� 3y2W + 2y3W
��1

, with xh =
m2

h

m2
t

, yW =
M2

W

m2
t

. (20)

Using the top quark pole massmt = 173.3 GeV [48],mh = 125.0 GeV andMW = 80.385
GeV, one obtains f(xh, yW ) = 0.1306 . Considering then the upper bounds 0.79% from
the ATLAS [50] and 0.56% from the CMS [51,52] collaborations, we obtain, for b and
s-type models, the following constraint

|c�↵(t� + t�1
� )| . 4.9 . (21)
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for b and s type models

4 Flavour changing Higgs decays

4.1 The decays h ! `⌧ (` = µ, e)

The most interesting BGL models with HFVNC in the leptonic sector are the ⌫ models,
where there are FCNC in the charged lepton sector. As seen in the previous section for
the quark sector, there are three neutrino-type BGL models, depending on the column
of the U matrix which enters the FCNC in the leptonic sector. Using a notation
analogous to the one of the quark sector and considering Eq. (16) for the h coupling to
µ and ⌧ , we have

Y `
µ⌧ (⌫⇢) =

1

v
c�↵

�
N

(⌫�)
`

�
µ⌧

= �c�↵(t� + t�1
� )Uµ�U

⇤
⌧�

m⌧

v
, (22)

and the decay rate:

�(⌫�)(h ! µ⌧̄) + �(⌫�)(h ! µ̄⌧) = c2�↵(t� + t�1
� )

2|Uµ�U⌧�|2 �SM(h ! ⌧ ⌧̄) , (23)

with �SM(h ! ⌧ ⌧̄) = mh
8⇡

m2
⌧

v2
. Notice, again, the appearance of the same factor

c2�↵(t� + t�1
� )

2
. Table 2 lists the PMNS mixing matrix factors for the di↵erent ⌫ -

type models.

Model h ! eµ h ! e⌧ h ! µ⌧
⌫1 |Ue1Uµ1|2(⇠ 1

9
) = 0.105 |Ue1U⌧1|2(⇠ 1

9
) = 0.118 |Uµ1U⌧1|2(⇠ 1

36
) = 0.028

⌫2 |Ue2Uµ2|2(⇠ 1
9
) = 0.089 |Ue2U⌧2|2(⇠ 1

9
) = 0.126 |Uµ2U⌧2|2(⇠ 1

9
) = 0.115

⌫3 |Ue3Uµ3|2 = 0.0128 |Ue3U⌧3|2 = 0.0097 |Uµ3U⌧3|2(⇠ 1
4
) = 0.234

Table 2: U factors entering Eq. (23) for the di↵erent ⌫ - type models; estimates, e.g.
1/9, 1/36, correspond to a tri-bimaximal U (except, of course, for |Ue3|); analogous
information for h ! eµ and h ! e⌧ decays is provided.

The first direct search for lepton-flavour-violating decays of the observed Higgs
boson performed by the CMS collaboration [53], led to the observation of a slight
excess of signal events with a significance of 2.4 standard deviations. The best fit value
is:

Br(h ! µ⌧̄ + ⌧ µ̄) =
�
0.84 +0.39

�0.37

�
% , (24)

which sets a constraint on the branching fraction Br(h ! µ⌧̄+⌧ µ̄) < 1.51% at the 95%
confidence level. The ATLAS collaboration has presented a result based on hadronic
⌧ decays [54], giving Br(h ! µ⌧̄ + ⌧ µ̄) = (0.77± 0.62)%. Assuming the h width to be

�h ' �[SM]
h (= 4.03 MeV), one can use the SM branching ratio BrSM(h ! ⌧ ⌧̄) = 0.0637

in Eq. (23), and obtain the estimate

|c�↵(t� + t�1
� )| ⇠ 1 , (25)

necessary to produce Br(h ! µ⌧̄ + ⌧ µ̄) of order 10�2.
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4.2 The flavour changing decays h ! bq (q = s, d)

We now address up-type BGL models, where there are scalar mediated FCNC in the
down sector and the most promising experimental signatures correspond to h ! bq
decays, with q = s, d. The relevant flavour changing h couplings to the down quarks
in Eq. (12) are, according to Eq. (14):

Y D
qb (uk) = �c�↵(t� + t�1

� )V ⇤
kqVkb

mb

v
, q 6= b, no sum in k . (26)

Once again, it should be emphasised that once the up-type model uk is chosen, the
strength of the flavour changing couplings only depends on the combination c�↵(t�+t�1

� )
together with the down quark masses and V factors which are already known. The
decay rate of h to pairs of quarks qiqj (i 6= j) is

�(uk)(h ! q̄iqj + qiq̄j) =
3mh

8⇡


1

2
|Yij|2 +

1

2
|Yji|2

�
. (27)

We thus have

�(uk)(h ! b̄q + bq̄) = c2�↵(t� + t�1
� )

2 |Vkq|2|Vkb|2 �SM(h ! bb̄) . (28)

Assuming that �h ' �[SM]
h , we can make the following estimate

Br(uk)(h ! b̄q + bq̄) = c2�↵(t� + t�1
� )

2 |Vkq|2|Vkb|2 BrSM(h ! bb̄) , (29)

where BrSM(h ! bb̄) = 0.578. The relevant CKM-related factors for h ! bs and
h ! bd in all three uk BGL models are given in Table 3.

Model h ! bd h ! bs
u |VudVub|2 (⇠ �6) = 1.33 · 10�5 |VusVub|2 (⇠ �8) = 7.14 · 10�7

c |VcdVcb|2 (⇠ �6) = 8.52 · 10�5 |VcsVcb|2 (⇠ �4) = 1.59 · 10�3

t |VtdVtb|2 (⇠ �6) = 7.90 · 10�5 |VtsVtb|2 (⇠ �4) = 1.61 · 10�3

Table 3: V factors entering Eq. (28), � ' 0.22.

We thus have, to a good approximation:

• in models c and t,

Br(h ! b̄s+ bs̄) ⇠ c2�↵(t� + t�1
� )

2
�4 ⇠ 10�3 c2�↵(t� + t�1

� )
2
, (30)

• in model u,

Br(h ! b̄s+ bs̄) ⇠ c2�↵(t� + t�1
� )

2
�8 ⇠ 10�7 c2�↵(t� + t�1

� )
2
, (31)

• in all u, c and t models,

Br(h ! b̄d+ bd̄) ⇠ c2�↵(t� + t�1
� )

2
�6 ⇠ 10�5 c2�↵(t� + t�1

� )
2
. (32)

We stress that, a priori, in models where there is no h ! µ⌧ constraint, one can reach
values for Br(h ! bs̄ + sb̄) not far from 10�1. This can happen in charged lepton
models of the charm and top types with c�↵(t� + t�1

� ) ranging from 5 to 10.
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h ! bd in all three uk BGL models are given in Table 3.

Model h ! bd h ! bs
u |VudVub|2 (⇠ �6) = 1.33 · 10�5 |VusVub|2 (⇠ �8) = 7.14 · 10�7

c |VcdVcb|2 (⇠ �6) = 8.52 · 10�5 |VcsVcb|2 (⇠ �4) = 1.59 · 10�3

t |VtdVtb|2 (⇠ �6) = 7.90 · 10�5 |VtsVtb|2 (⇠ �4) = 1.61 · 10�3

Table 3: V factors entering Eq. (28), � ' 0.22.

We thus have, to a good approximation:

• in models c and t,

Br(h ! b̄s+ bs̄) ⇠ c2�↵(t� + t�1
� )

2
�4 ⇠ 10�3 c2�↵(t� + t�1

� )
2
, (30)

• in model u,

Br(h ! b̄s+ bs̄) ⇠ c2�↵(t� + t�1
� )

2
�8 ⇠ 10�7 c2�↵(t� + t�1

� )
2
, (31)

• in all u, c and t models,

Br(h ! b̄d+ bd̄) ⇠ c2�↵(t� + t�1
� )

2
�6 ⇠ 10�5 c2�↵(t� + t�1

� )
2
. (32)

We stress that, a priori, in models where there is no h ! µ⌧ constraint, one can reach
values for Br(h ! bs̄ + sb̄) not far from 10�1. This can happen in charged lepton
models of the charm and top types with c�↵(t� + t�1

� ) ranging from 5 to 10.
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BGL and the Cheng and Sher ansatz

In the paper JHEP03(2013)026 by Roni Harnik Joachim Kopp and Jure
Zupan in its page 5 before equation 2.7 they write:

".....Taking the off diagonal Yukawa couplings nonzero can come with
a theoretical price. Consider, for instance, a two flavor mass matrix

involving τ and µ. If the off-diagonal entries are very large the

mass spectrum is generically not hierarchical. A hierarchical spectrum

would require a delicate cancellation among the various terms in eq.

(2.5). Tuning is avoided if [35]

|YτµYµτ | ≤
mµmτ

υ2

with similar conditions for the other off diagonal elements. Even

though we will keep this condition in the back of our minds, we will

not restrict the parameter space to fulfill it......."
Of course this reference 35 is the paper by Cheng and Sher (CS). The CS

ansatz use to be presented as |Yµτ | ≤
p
mµmτ/υ.

It is quite interesting to remember that in BGL neutrino type k (to have
FCYC in the charge lepton sector), we have

Yµτ = −cαβ
!
t+ t−1

"
UµkU

∗
τk

mτ

υ

Yτµ = −cαβ
!
t+ t−1

"
UτkU

∗
µk

mµ

υ

With the second definition of the CS ansatz, BGL does not meet CS ansatz.
But with the comment of Zupan et al. it is clear that in BGL we have:

|YτµYµτ | =
##cαβ

!
t+ t−1

"##2 |UµkU∗τk|
##UτkU∗µk

## mµmτ

υ2

So BGL meets CS criteria provided

##cαβ
!
t+ t−1

"##2 |UµkU∗τk|
##UτkU∗µk

## ≤ 1

And then we get that in average this equation is correct for values
##cαβ

!
t+ t−1

"## . 3

that is more or less the region we are working.
CONCLUSION: BGL also meets CS criteria or ansatz.
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2HDM with NFC or flavour alignment have no HFCNC but have tree 
level charged Higgs mediated processes

2HDM of type III, i.e, models models where the Cheng-Sher Ansatz is 
assumed for the  FC couplings:

G.C. Branco et al. / Physics Reports 516 (2012) 1–102 25

Higgs (pp̄ ! H±), which subsequently decays into H0W± or A0W±, leading to `±⌫jj or toW± plus dijets. Since the charged
Higgs is produced resonantly, the signal can be large. Cao et al. show that a reasonable region of parameter space exists
which can explain the recent observation of W plus dijets at the Tevatron [202]. Even if this observation is not confirmed,
themodel is interesting in its own right and leads to other unique signatures. Another scenario by Chen et al. [203] switched
the role of the neutral and charged scalars, and then the dijet comes directly from the charged scalar. This can be produced
non-resonantly by W±H⌥ production, and can also explain the non-observation of a resonance in `⌫jj by CDF (although
the bounds on that are much weaker and a resonance could still exist). Similar models, which focus more on explaining the
Bs ! µµ rate but also discuss theW plus dijet signature, can be found in Refs. [203,204].

3. Models with tree-level flavour-changing neutral currents

3.1. The type III 2HDM

In the previous chapter it was shown that one can eliminate the potentially dangerous tree-level FCNC through a discrete
symmetry. Suppose, however, thatwe reject any such symmetry. The tree-level FCNC can certainly be suppressed bymaking
the neutral scalars extremely heavy, but scalar masses in the multi-TeV range (or higher) seem unnatural. In this section,
we examine the constraints from FCNC and show that a reasonable Ansatz for the neutral flavour-changing couplings allows
for scalar masses well below the TeV scale.

It is easiest to discuss the tree-level FCNC in the Higgs basis described in Section 5. In that basis, the scalar doublets are
rotated so that the vev is entirely in the first doublet, while the second doublet has zero vev. The general Yukawa couplings
can be written as

LYukawa = ⌘U
ij Q̄iLH̃1UjR + ⌘D

ij Q̄iLH1DjR + ⌘L
ijL̄iLH1EjR + ⇠̂U

ij Q̄iLH̃2UjR + ⇠̂D
ij Q̄iLH2DjR + ⇠̂ L

ij L̄iLH2EjR + H.c., (30)

where H1 and H2 are the two scalar doublets. In the Higgs basis those doublets have been rotated so that only H1 has a vev,
i.e.

hH1i0 =

✓
0

v/
p

2

◆
, hH2i0 =

✓
0
0

◆
, (31)

where v is real. In this basis, only the Yukawa couplings of the doublet H1, viz. the ⌘ij, generate fermion masses; those ⌘ij
may be bi-diagonalized and do not lead to tree-level FCNC. When that bi-diagonalization is performed, the neutral flavour-
changing couplings become

LFCNC = ⇠U
ij ŪiLH0

2
⇤UjR + ⇠D

ij D̄iLH0
2DjR + ⇠ L

ij L̄iLH
0
2LjR, (32)

where

⇠U,D,L
= VU,D,L

L
Ñ
⇠̂U,D,L VU,D,L

R . (33)

Since VR is completely unknown and the ⇠̂ are arbitrary, these ⇠U,D,L coefficients are arbitrary; in order to look at specific
processes, some assumptions must be made about their magnitudes.

One of the earliest papers discussing tree-level FCNC was the one of Bjorken and Weinberg [205], who considered
radiative muon decay and chose ⇠ L

µe to be the Yukawa coupling of the muon. Later, in 1980, McWilliams and Li [25] and
Shanker [26] considered K–K̄ mixing, as well as many processes involving kaon and muon decays. They argued that the
heaviest fermion sets the scale for the entire Yukawa-coupling matrix. The flavour-changing vertex should be the product
of the largest Yukawa coupling and a mixing angle factor. Since they did not know the mixing angle factors, they set them
equal to one. Thus, the ⇠U,D,L were set equal to the top, bottom, and tau Yukawa couplings, respectively. The most stringent
bound came from K–K̄ mixing and led to a lower bound of 150 TeV on the mass of H0

2 . For most of the 1980’s, this led most
authors to assume that there must be a discrete symmetry which prohibits the FCNC, and attention focused on the type I
and type II 2HDMs.

Cheng and Sher [206] argued that this estimate of the lower bound is not reasonable. They argued that the most
conspicuous feature of the fermion mass structure is its hierarchical structure and that, therefore, setting all the flavour-
changing couplings to be equal to the heaviest-fermion Yukawa coupling was not reliable. They proposed what has since
become known as the Cheng–Sher Ansatz: that the flavour-changing couplings should be of the order of the geometricmean
of the Yukawa couplings of the two fermions. In other words,

⇠ij = �ij
p

mimj

p

2
v

, (34)

where the �ij are of order one. Since the most severe bounds on FCNC arise from the first two generations and this Ansatz
especially suppresses the Yukawa couplings of those generations, it will reduce the lower bound on the Higgs mass.

More specifically, Cheng and Sher’s argument was as follows. Consider a model with n Higgs doublets �i (i = 1 . . . n)
and call �0

i the matrix of Yukawa couplings to, say, the charge �1/3 quarks. First suppose that the fermion mass matrix is of
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Conclusions

HFCNC at tree level are not ruled out even allowing for scalar  
masses of the order of a few hundred GeV

There are several promising scenarios within the 36 models  
that were presented.

Bhattacharyya, Das, Kundu 2014 

The LHC may bring us interesting surprises!
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