

FLAVOUR PHYSICS AT LHC RUN II: Three-body charmless *B*-hadrons decays at LHCb

L. Henry, on behalf of the LHCb collaboration Benasque, 25/05/2017

Outline

- Motivations.
- The LHCb detector at LHC
- Results on three-body charmless decays from LHCb Run I analysis
 - Observation of the decay $B_s \rightarrow \phi \pi^+ \pi^$ and evidence for $B_d \rightarrow \phi \pi^+ \pi^-$. [Phys. Rev. D 95 (2017) 012006]
 - First observation of a baryonic B_s decay. [arXiv:1704.07908]
 - Search for $H_b \rightarrow ph-h'$. [arXiv:1612.02244]
 - Update of $B_{d,s} \rightarrow K_{s}h^{+}h^{-}$ branching fractions. [LHCB-PAPER-2017-010] (NEW!)
- Prospects for Run II and further.

Physics case of charmless hadronic B decays

• Charmless *b*-hadron decays proceed through various processes.

- BSM particles can contribute inside of loops or instead of W+.
- Three-body decays allow access to phases between quasi two-body decays (Q2B) using
 - angular analyses;
 - Dalitz-plot analyses.
- No trigonometric ambiguity!

Three-body charmless decays at LHCb

- Many channels not yet observed
 - Suppressed decays (BR < 10⁻⁵)
 - Includes decays of B_s , Λ_b , *b*-baryons etc. \rightarrow not accessible by *B* factories.

• Hadronic final states (except for $\pi^0 \rightarrow \gamma \gamma$).

- For most decays, program in two steps:
 - 1. Observe modes for the first time and extract branching fractions.

2. Perform angular, Dalitz-plot analyses to access physics observables , e.g. **phases**, **CPV observables**.

The LHCb detector at LHC

The LHCb detector

The LHCb detector

Single-arm forward spectrometer [JINST 3(2008) S08005.]

[JINST 3(2008) S08005.]

The LHCb detector: sketch

The LHCb detector: tracking subsystems

The LHCb detector: tracking subsystems

10

The LHCb detector: particle identification

LHCb performance paper arXiv:1412.6352

• Fully hadronic final states (except for $\pi^0 \rightarrow \gamma \gamma$).

- LHCb particle identification relies on:
 - Cherenkov detectors (RICH);
 - shower development;
 - calorimetry.

Results on three-body charmless decays from LHCb Run I analyses

Search for $B_{d,s} \rightarrow \phi \pi^+ \pi^-$: measurement of branching fractions

- $B_{d,s} \rightarrow \phi \pi^+ \pi^-$ decays proceed through $b \rightarrow d,s$ transitions (FCNC).
 - not yet observed.
- Depending on intermediate resonance, different ratios between gluonic/EW penguins.
 - for instance, in $B_{d,s} \rightarrow \phi f_0(980)$, gluonic penguin dominates.
- Large CP asymmetries expected in the $\Delta I = 1 B_s \rightarrow \Phi \rho$ decay [arXiv:1011.6319]
- Charmed and $B_s \rightarrow K^*K^*$ backgrounds vetoed. [Phys. Rev. D 95 (2017) 012006]

14

Search for $B_{d,s} \rightarrow \phi \pi^+ \pi^-$: amplitude analysis

• Signal distributions (B_s) of angular variables and invariant masses extracted from fit (sPlots).

First observation of a baryonic B_s decay

- B_s is the last *B*-meson species where it has to be observed.
 - Previous Belle evidence > 4σ for $B_s \rightarrow \overline{\Lambda}_c^- \Lambda \pi^+$.
- Decays under study: $B_{d,s} \rightarrow p\overline{\Lambda}h^{-}$, $h = \pi$ or K. CP-conjugates implied.
- Theoretical impact:
 - Multi-body baryonic B decays expected to have larger branching fractions than twobody decays (threshold enhancement).
 - Large CPV (~10%) expected in $B^0 \rightarrow p\overline{\Lambda}\pi^-$. [arXiv:0801.0022]
 - $B_s \rightarrow p\overline{\Lambda}K$ is unique as a given final state is accessible by both B_s and \overline{B}_s .

Search for $H_b^- \rightarrow ph^-h'^-$

- Hb is Ξ_{b} or Ω_{b} ; h is a pion or a kaon \rightarrow three final states.
 - No mode yet observed.
- Loop-dominated decays.

- LHCb has reported in 2017 the first observation of CPV in *b* baryons $(\Lambda_b \rightarrow p\pi^+\pi^-\pi^+ [\text{Nature Physics 13, 391-396 (2017)}]).$
- Normalized with respect to the $B \rightarrow K^{+}K^{+}$ decay.

$$R_{ph^-h'^-} \equiv \frac{f_{\Xi_b^-}}{f_u} \frac{\mathcal{B}(\Xi_b^- \to ph^-h'^-)}{\mathcal{B}(B^- \to K^+K^-K^-)} = \underbrace{\frac{\mathcal{N}(\Xi_b^- \to ph^-h'^-)}{\mathcal{N}(B^- \to K^+K^-K^-)}}_{\text{Yields (from fit)}} \underbrace{\frac{\mathcal{E}}{\mathcal{E}}(B^- \to K^+K^-K^-)}_{\text{Corrections applied;}} \underbrace{\frac{\mathcal{E}}{\mathcal{E}}(B^- \to ph^-h'^-)}_{\text{Corrections applied$$

Search for $H_b^- \rightarrow ph^-h'^-$: results

- First observation of $\Xi_b \rightarrow pK \cdot K \cdot (8.7\sigma) \rightarrow can be used as normalisation.$
- First evidence of $\Xi_{b} \rightarrow pK \cdot \pi^{-}$ (3.4 σ).
- No evidence for the other decays.
- Dynamics appear in m(pK-) distribution.

$$\frac{\mathcal{B}(\Xi_b^- \to pK^-\pi^-)}{\mathcal{B}(\Xi_b^- \to pK^-K^-)} = 0.98 \pm 0.27 \,(\text{stat}) \pm 0.09 \,(\text{syst}) ,
\frac{\mathcal{B}(\Xi_b^- \to p\pi^-\pi^-)}{\mathcal{B}(\Xi_b^- \to pK^-K^-)} = 0.28 \pm 0.16 \,(\text{stat}) \pm 0.13 \,(\text{syst}) < 0.56 \,(0.63)$$

[arXiv:1612.02244]

Update of $B_{d,s} \rightarrow K_{s}h^{+}h^{-}$ branching fractions

• $B_{d,s} \rightarrow K_s h^+ h^-$, with h, h' = $\pi, K \rightarrow 8$ decays.

$B_d \rightarrow K_s \pi^+ \pi^-$	$B_d \rightarrow K_S K^+ \pi^-$	$B_d \rightarrow K_S K^- \pi^+$	$B_d \rightarrow K_S K + K^-$	Green: observed; Red: not observed; favoured decay (see below)
$B_s \rightarrow K_s \pi^+ \pi^-$	$B_s \rightarrow K_s K^+ \pi^-$	Bs→K _s K ⁻ π ⁺	$B_s \rightarrow K_S K^+ K^-$	

- Goals of the LHCb analysis using 3fb⁻¹:
 - update measurement of branching fractions;
 - search for $B_s \rightarrow K_s K^+ K^-$;
 - prepare Dalitz-plot analyses of all modes.
- Dataset divided into:
 - 4 final states;
 - 2 K_s reconstruction categories;
 - 3 data-taking periods.
 - \rightarrow 24 invariant-mass distributions

Update of $B_{d,s} \rightarrow K_{s}h^{+}h^{-}$ branching fractions: Modeling the invariant-mass distributions

- Shapes taken from Monte-Carlo, except for combinatorial background.
- B_d and B_s masses and widths fit in data.
- Fast Monte-Carlo developed for partially reconstructed backgrounds modeling.
- Gaussian constraints on misidentified signals and partially recontructed backgrounds yields.

Prospects from Run II and further

Prospects: near and far future of LHCb

- All presented results use only data from Run I of the LHC \rightarrow 3fb⁻¹ at centre-of-mass energy of 7 and 8 TeV.
- Run 2 aims at adding 5 fb⁻¹ at 13 TeV
 → more than four times as much
 data as in Run I.
- Most current charmless analyses are dominated by statistical uncertainties.
- Upgrade planned after 2018, including:
 - massive overhaul of the trigger system;
 - complete change of all the tracking subsystem.
- Expected LHC luminosity delivery.
 [2016 J. Phys.: Conf. Ser.706 022002]
- What can be done with that amount of data?

Prospects: three-body charmless decays

- New channels observed \rightarrow physics programme of (three-body) charmless decays is expanding.
- Wealth of different channels:
 - Initial hadron: baryon, B⁰, B_s, B_c⁺
 - Final state: baryonic, V0 particle...
- Work on amplitude analyses already ongoing.
 - Allows to measure many more Q2B branching fractions.
 - Allows to access more physics observables.
- In some cases $(B^+ \rightarrow 3h)$, data already there (>100k events) but need for refined analysis techniques.

Expected "phase transition" in charmless analyses at LHCb from first observations to fully fledged amplitude analyses.

Prospects: a case for new techniques

- Direct CP asymmetries in $B^+ \rightarrow h^+h^-h^+$ (favoured) [PRD 90, 112004 (2014)].
- Large efficiencies, "large" $BF \rightarrow >100k$ events. "Glimpse" into the future.

Prospects: a case for new techniques

- Most Dalitz-plot amplitudes use isobar model:
- Shortcomings:
 - B-meson decays have a large phase space \rightarrow nonresonant component not easy to model.

 $\overline{q}_{f'}$

- Localised, large, direct CP violation can be due to $(\pi\pi \leftrightarrow KK)$ rescattering.
- There are hints of three-body final-state interactions. Cannot fit into that model.
- Several approaches attempted:
 - adapting the isobar model [arXiv:1506.08332];
 - K-matrix approach;
 - Quasi-model independent (bin the phase space and determine mag/phase in each bin).

Increased datasets will both allow us and force us to develop new and more refined amplitude analysis techniques.

 $\overline{q}_{f'}$

Summary

- Charmless hadronic *B* decays offer vast diversity of channels and physics observables, including
 - branching fractions;
 - weak phases ($\beta_{(s),eff}$, γ).
 - strong phases.
- Situation pre-LHCb: some decays known, some full amplitude analyses performed.
- Situation post-Run I: many first observations, especially in new domains (e.g. baryons).
- Situation Run > II: many amplitude analyses performed, weak and strong phases measured in those decays.
- But this is not a straight path:
 - transition from counting experiments (branching fractions) to amplitude analyses;
 - need to refine existing tools to face the challenge of handling that much data.