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Minimum time and eikonal equation
Let

Ω ⊂ Rn be a bounded domain with smooth (C∞) boundary Γ

{X1, . . . ,XN} be smooth (C∞) vector fields Xi : Ω→ Rn

Denote by yx,u(·) be the unique solution of the controlled system{
y ′(t) =

∑N
j=1 uj (t)Xj (y(t)) (t ≥ 0)

y(0) = x ∈ Ω

where u : [0,+∞[→ B1(0) is a measurable function (control)
Define

the transfer time to Γ as τΓ(x , u) = inf
{

t ≥ 0 : y x,u(t) ∈ Γ
}

the minimum time function as T (x) = infu(·) τΓ(x , u) (x ∈ Ω)

When continuous, T is the unique viscosity solution of Dirichlet problem{ ∑N
j=1〈Xj (x),DT (x)〉2 = 1 in Ω

T = 0 on Γ
(1)

Problems: regularity of T and structure of SingT
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Outline

Outline

1 Hörmander vector fields and continuity of T

2 Singular time-optimal trajectories and (lack of) Lipschitz continuity

3 Regularity of the minimum time function

4 Analysis of the singular sets of T

5 Work in Progress
Homotopy equivalence
Estimate of Hausdorff dimension
Nonsmooth targets
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Outline

Outline
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Hörmander vector fields
Given smooth vector fields X1, . . . ,XN : Ω→ Rn define

Lie({Xi}N
i=1) = Lie algebra generated by {Xi}N

i=1

Lie({Xi}N
i=1)[x ] =

{
X (x) : X ∈ Lie({Xi}N

i=1)
}

for any x ∈ Ω

Definition

We say that {Xi}N
i=1 is a system of Hörmander vector fields on Ω if

Lie({Xi}N
i=1)[x ] = Rn ∀x ∈ Ω

X1, . . . ,XN need not be linearly independent nor we suppose N < n

Example (Grushin’s system)

In R2 consider

X1(x) =

(
1
0

)
X2(x) =

(
0
x1

)
Then [X1,X2](x) =

(
0
−1

)
So {X1,X2} is a system of Hörmander vector fields
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i=1 is a system of Hörmander vector fields on Ω if

Lie({Xi}N
i=1)[x ] = Rn ∀x ∈ Ω

X1, . . . ,XN need not be linearly independent nor we suppose N < n

Example (Grushin’s system)

In R2 consider

X1(x) =

(
1
0

)
X2(x) =

(
0
x1

)
Then [X1,X2](x) =

(
0
−1

)
So {X1,X2} is a system of Hörmander vector fields
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Characteristic points
The Hamiltonian associated with Hörmander vector fields {X1, . . . ,XN} is given by

h(x , p) =
N∑

j=1

〈Xj (x), p〉2, (x , p) ∈ Ω× Rn

Definition

The characteristic set of {X1, . . . ,XN} is given by

Char(X1, . . .XN) =
{

(x , p) ∈ Ω× (Rn \ {0}) : h(x , p) = 0
}
.

A point x ∈ Γ is called characteristic if

span
{

Xi (x)
}N

i=1 ⊂ TΓ(x) (tangent space to Γ at x)

We denote by E = E
(
{Xi}N

i=1, Γ
)
⊂ Γ the set of all characteristic points

Theorem (Derridj 1972)

Let {Xi}N
i=1 be Hörmander v.f. Then E is closed and H(n−1)(E) = 0
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i=1 be Hörmander v.f. Then E is closed and H(n−1)(E) = 0

P. Cannarsa (Rome Tor Vergata) Minimum time with Hörmander VF 21/08/2017 5 / 34



 

Minimum Time function
For any measurable u : [0,+∞[→ B1(0) denote by yx,u(·) be the unique solution of{

y ′(t) =
∑N

j=1 uj (t)Xj (y(t)) (t ≥ 0)

y(0) = x ∈ Ω

The minimum time function associated with {Xi}N
i=1 is

T (x) = inf
u(·)

τΓ(x , u) where τΓ(x , u) = inf
{

t ≥ 0 : y x,u(t) ∈ Γ
}

(x ∈ Ω)

Let {Xi}N
i=1 be Hörmander v.f. and define for any x ∈ Ω

k(x) = min
{

k ≥ 1 : Liek ({Xi}N
i=1)[x ] = Rn}

where Liek ({Xi}N
i=1) is defined recursively by Lie1({Xi}N

i=1) = span {Xi}N
i=1 and

Liek+1({Xi}N
i=1)

= span
(

Liek ({Xi}N
i=1) ∪

{
[X ,Xj ] : X ∈ Liek ({Xi}N

i=1), j = 1, . . . ,N
})

Hölder regularity [Nagel, Stein, and Wainger 1985]

T ∈ C0,1/r (Ω) where r = max{k(x) : x ∈ Ω}
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Hölder regularity [Nagel, Stein, and Wainger 1985]

T ∈ C0,1/r (Ω) where r = max{k(x) : x ∈ Ω}

P. Cannarsa (Rome Tor Vergata) Minimum time with Hörmander VF 21/08/2017 6 / 34
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Singular

Singular time-optimal trajectories
For any z ∈ Γ we denote by ν(z) the outward unit normal to Γ at z and set

NΓ(z) := {λν(z) : λ ≥ 0}

Let x ∈ Ω and let y = y x,u be a time-optimal trajectory with u : [0,T (x)]→ B1(0)

Definition

We say that y is singular if ∃ p : [0,T (x)]→ Rn \ {0} absolutely continuous such that
−p′(t) =

∑N
j=1 uj (t)DXj

(
y(t)

)∗p(t) t ∈ [0,T (x)] a.e.〈
Xj (y(t)), p(t)

〉
= 0 t ∈ [0,T (x)] , j = 1, . . . ,N

p(T (x)) ∈ NΓ(y(T (x)))

Taking H(x , p, u) =
∑N

j=1 uj〈Xj (x), p〉 we have that
y ′(t) = DpH(y(t), p(t), u(t)) , p′(t) = −Dx H(y(t), p(t), u(t))

p(T (x)) ∈ NΓ(y(T (x)))(
y(t), p(t)

)
∈ Char(X1, . . .XN) ∀t ∈ [0,T (x)]
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Singular

Singular time-optimal trajectories
For any z ∈ Γ we denote by ν(z) the outward unit normal to Γ at z and set

NΓ(z) := {λν(z) : λ ≥ 0}

Let x ∈ Ω and let y = y x,u be a time-optimal trajectory with u : [0,T (x)]→ B1(0)

Definition

We say that y is singular if ∃ p : [0,T (x)]→ Rn \ {0} absolutely continuous such that
−p′(t) =

∑N
j=1 uj (t)DXj

(
y(t)

)∗p(t) t ∈ [0,T (x)] a.e.〈
Xj (y(t)), p(t)

〉
= 0 t ∈ [0,T (x)] , j = 1, . . . ,N

p(T (x)) ∈ NΓ(y(T (x)))

Taking H(x , p, u) =
∑N

j=1 uj〈Xj (x), p〉 we have that
y ′(t) = DpH(y(t), p(t), u(t)) , p′(t) = −Dx H(y(t), p(t), u(t))

p(T (x)) ∈ NΓ(y(T (x)))(
y(t), p(t)

)
∈ Char(X1, . . .XN) ∀t ∈ [0,T (x)]

P. Cannarsa (Rome Tor Vergata) Minimum time with Hörmander VF 21/08/2017 7 / 34



 

Singular

Strongly bracket generating systems

Definition

We say that {Xi}N
i=1 is strongly bracket generating on Ω if ∀ v = (v1, . . . , vN) ∈ Rn \ {0}

span
{

Xi (x)
}N

i=1 + span
{ N∑

j=1

vj [Xj ,Xi ](x)
}N

i=1
= Rn ∀x ∈ Ω

Example (Nonholonomic integrator)

A strongly bracket generating system of v.f. in R3 is given by

X1(x) =

 1
0
x2

 X2(x) =

 0
1
−x1

 Then [X1,X2](x) =

 0
0
2


Proposition

A strongly bracket generating system of v.f. admits no singular trajectory.
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Singular

Proof of proposition
Let x ∈ Ω, let y = y x,u be a singular trajectory, and let p 6= 0 satisfy{

−p′(t) =
∑N

j=1 uj (t)DXj
(
y(t)

)∗p(t) , p(T (x)) ∈ NΓ(y(T (x)))〈
Xk (y(t)), p(t)

〉
= 0 t ∈ [0,T (x)] , k = 1, . . . ,N

Then for all k = 1, . . . ,N

0 =
d
dt
〈
Xk (y), p

〉
=
〈
DXk (y(t))y ′(t), p(t)

〉
+
〈
Xk (y(t)), p′(t)

〉
=

N∑
j=1

uj (t)
〈
DXk (y(t))Xj (y(t)), p(t)

〉
−

N∑
j=1

uj (t)
〈
Xk (y(t)),DXj (y(t))∗p(t)

〉
=

〈 N∑
j=1

uj (t)[Xk ,Xj ](y(t)), p(t)
〉

Now, taking t0 ∈ [0,T (x)] such that u(t0) 6= 0, we obtain the contradiction

p(t0) ⊥
(

span
{

Xi (y(t0))
}N

i=1 + span
{ N∑

j=1

uj (t0) [Xk ,Xj ](y(t0))
}N

k=1

)
= Rn

P. Cannarsa (Rome Tor Vergata) Minimum time with Hörmander VF 21/08/2017 9 / 34



 

Singular

Singular trajectories and characteristic points
Let {Xi}N

i=1 be Hörmander v.f.

Proposition

Let x ∈ Ω and let y = y x,u be a time-optimal trajectory. Then

y singular ⇐⇒ y(T (x)) ∈ E
(
{Xi}N

i=1, Γ
)

Proof: By Pontryagin’s Maximum Principle (PMP) ∃ p : [0,T (x)]→ Rn \ {0} (adjoint
state)

y ′(t) = DpH(y(t), p(t), u(t)) , p′(t) = −Dx H(y(t), p(t), u(t))

p(T (x)) ∈ NΓ(y(T (x)))

H(y(t), p(t), u(t)) = maxu∈B1(0)

∑N
j=1 uj

〈
Xj (y x,u(t)), p(t)

〉
=
√

h(y x,u(t), p(t))

So, the function [0,T (x)] 3 t 7→ h(y x,u(t), p(t)) is constant. This implies that

y(T (x)) ∈ E ⇐⇒ h
(
y(T (x)), p(T (x))

)
= 0

⇐⇒
(
y(t), p(t)

)
∈ Char(X1, . . .XN) ∀t ∈ [0,T (x)]
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Singular

Singular trajectories and failure of Lipschitz continuity
f : Ω→ R is Lipschitz at x0 ∈ Ω if ∃ a neighbourhood U of x0 and L ≥ 0 such that

|f (x)− f (x0)| ≤ L|x − x0| ∀x ∈ U ∩ Ω

f can be Lipschitz continuous at x0 without being Lipschitz on any neighbourhood of x0

Theorem

Let {Xi}N
i=1 be Hörmander v.f. Then

(a) T fails to be Lipschitz at a point x0 ∈ Ω

if and only if

(b) x0 is the starting point of a singular time-optimal trajectory

Remark

The fact that the presence of singular optimal trajectories may destroy the regularity
(i.e., subanalyticity of the point-to-point distance associated with real analytic
distributions) of a solution of a first order Hamilton-Jacobi equation was observed by
Sussmann (1992), Agrachev (1998), and Trélat (2006) for solutions of the Dirichlet
problem
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Singular

Proximal normals
Let S ⊂ Rn be a closed set

Definition (Proximal normals)

A vector v ∈ Rn is called a proximal normal to S at x if ∃ δ > 0 and C > 0 such that

〈v , y − x〉 ≤ C|y − x |2 ∀ y ∈ Bδ(x) ∩ S. (2)

The set of all proximal normals to S at x will be denoted by NP
S (x)

S

NP
S (x)NP

S (x)

NP
S (x)NP

S (x) = {0}
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Singular

Horizontal supergradients

The hypograph of a function f : Ω→ R is the set

hypo(f ) =
{

(x , α) ∈ Ω× R : α ≤ f (x)
}

hypo(f )

A vector p ∈ Rn is a horizontal proximal supergradient of a function f at x ∈ Ω if

(−p, 0) ∈ Nhypo(f )(x , f (x))

The set of all such supergradient is denoted by ∂P,∞f (x)

Important: f Lipschitz at x0 ∈ Ω =⇒ ∂P,∞f (x0) = {0}
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Singular

Proof of Theorem: sufficiency

Theorem

T fails to be Lipschitz at a point x0 ∈ Ω if and only if x0 is the starting point of a singular time-optimal trajectory

Want to show

∃ y0 = y x0,u0 singular =⇒ −p(0) ∈ ∂P,∞T (x0) (⇒ T not Lipschitz at x0)

where p 6= 0 is the dual arc given by PMP

Recall that p satisfies the transversality condition at T (x0)

(p(T (x0)), 0) ∈ Nhypo(T )(y0(T (x0)), 0)

or 〈
p(T (x0)), x − y0(T (x0))

〉
≤ 1
δ
|x − y0(T (x0))|2 ∀x ∈ Ω

So, we want to propagate such property up to t = 0, that is,

(p(0), 0) ∈ Nhypo(T )(x0,T (x0))
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Singular

Proof of sufficiency: T (x) ≤ T (x0)

We have to prove that ∃C > 0 such that, ∀ x ∈ Ω with |T (x)− T (x0)| < 1,

〈p(0), x − x0〉 ≤ C
(
|x − x0|2 + (α− T (x0))2) ∀α ≤ T (x)

Suppose T (x) ≤ T (x0) and let y(t) = y x,u0 (t) Then

〈p(0), x − x0〉 = 〈p(T (x)), y(T (x))− y0(T (x))〉 −
∫ T (x)

0

d
dt
〈
p(t), y(t)− y0(t)

〉
dt

By using the adjoint system

∣∣∣ d
dt
〈
p, y − y0

〉∣∣∣ =
∣∣∣ N∑

j=1

uj
〈
p,Xj (y)− Xj (y0)− DXj (y0))(y − y0)

〉∣∣∣
≤ C|p| |y − y0|2 ≤ |x − x0|2
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Singular

Proof of sufficiency: T (x) ≤ T (x0) completed
We now compute

〈p(T (x)), y(T (x))− y0(T (x))〉
=
〈
p(T (x0)), y(T (x))− y0(T (x))

〉
+
〈
p(T (x))− p(T (x0)), y(T (x))− y0(T (x))

〉
≤
〈
p(T (x0)), y(T (x))− y0(T (x))

〉
+ C

(
|T (x)− T (x0)|2 + |x − x0|2

)
Moreover, since

〈
p(T (x0)), x − y0(T (x0))

〉
≤ 1

δ
|x − y0(T (x0))|2,〈

p(T (x0)), y(T (x))− y0(T (x))
〉

=
〈
p(T (x0)), y0(T (x0))− y0(T (x))

〉
+
〈
p(T (x0)), y(T (x))− y0(T (x0))

〉
≤

N∑
j=1

∫ T (x0)

T (x)

uj (t)
〈
p(T (x0)),Xj (y0(t))

〉
dt +

1
δ

∣∣y(T (x))− y0(T (x0))
∣∣2

≤
N∑

j=1

∫ T (x0)

T (x)

uj (t)
〈
p(T (x0)),Xj (y0(t))− Xj (y0(T (x0)))︸ ︷︷ ︸

≤|t−T (x0)|

〉
dt

+C
(
|x − x0|2 + |T (x)− T (x0)|2

)
This proves 〈p(0), x − x0〉 ≤ C

(
|x − x0|2 + (α− T (x0))2) with α = T (x)
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Singular

Proof of sufficiency: T (x) > T (x0)

if T (x) > T (x0) taking y(t) = y x,u0 (t) once again we obtain

〈p(0), x − x0〉 =
〈
p(T (x0)), y(T (x0))− y0(T (x0))

〉
−
∫ T (x0)

0

d
dt
〈
p(t), y(t)− y0(t)

〉
dt

The first term on the right-hand side is controlled by |x − x0|2 because of transversality〈
p(T (x0)), y(T (x0))− y0(T (x0))

〉
≤ C|x − x0|2

The second term is controlled by |x − x0|2 as before
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Singular

Proof of Theorem: necessity

Theorem

T fails to be Lipschitz at x0 ∈ Ω if and only if x0 is the starting point of a singular time-optimal trajectory

We will derive a contradiction assuming that

T fails to be Lipschitz at x0 but no singular optimal trajectory starts from x0

Since T fails to be Lipschitz at x0, there exists {xj} ⊂ Ω such that

|T (xj )− T (x0)|
|xj − x0|

≥ j and xj → x0 as j →∞

Moreover, for any time-optimal trajectory y0 = y x0,u0 we have that:

y0(T (x0)) ∈ Γ \ E by Proposition

∃ δ > 0 : Bδ(y0(T (x0))) ∩ E = ∅
T (x) ≤ CdΓ(x) ∀ x ∈ Bδ(y0(T (x0))) ∩ Ω
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Singular

Proof of Theorem: necessity

Theorem

T fails to be Lipschitz at x0 ∈ Ω if and only if x0 is the starting point of a singular time-optimal trajectory

We will derive a contradiction assuming that

T fails to be Lipschitz at x0 but no singular optimal trajectory starts from x0

Since T fails to be Lipschitz at x0, there exists {xj} ⊂ Ω such that

|T (xj )− T (x0)|
|xj − x0|

≥ j and xj → x0 as j →∞

Moreover, for any time-optimal trajectory y0 = y x0,u0 we have that:

y0(T (x0)) ∈ Γ \ E by Proposition

∃ δ > 0 : Bδ(y0(T (x0))) ∩ E = ∅
T (x) ≤ CdΓ(x) ∀ x ∈ Bδ(y0(T (x0))) ∩ Ω

P. Cannarsa (Rome Tor Vergata) Minimum time with Hörmander VF 21/08/2017 18 / 34



 

Singular

Proof of Theorem: necessity

Theorem

T fails to be Lipschitz at x0 ∈ Ω if and only if x0 is the starting point of a singular time-optimal trajectory

We will derive a contradiction assuming that

T fails to be Lipschitz at x0 but no singular optimal trajectory starts from x0

Since T fails to be Lipschitz at x0, there exists {xj} ⊂ Ω such that

|T (xj )− T (x0)|
|xj − x0|

≥ j and xj → x0 as j →∞

Moreover, for any time-optimal trajectory y0 = y x0,u0 we have that:

y0(T (x0)) ∈ Γ \ E by Proposition

∃ δ > 0 : Bδ(y0(T (x0))) ∩ E = ∅
T (x) ≤ CdΓ(x) ∀ x ∈ Bδ(y0(T (x0))) ∩ Ω

P. Cannarsa (Rome Tor Vergata) Minimum time with Hörmander VF 21/08/2017 18 / 34



 

Singular

Proof of necessity: T (xj) ≥ T (x0)

Suppose T (xj ) ≥ T (x0) and let y x0,u0 (t) be time-optimal
By dynamic programming

j ≤ T (xj )− T (x0)

|xj − x0|
≤

T
(
yxj ,u0 (T (x0))

)
|xj − x0|

For large j we have that y xj ,u0 (T0) ∈ Ω ∩ Bδ(y x0,u0 (T0)). So

j ≤
CdΓ

(
y xj ,u0 (T (x0))

)
|xj − x0|

≤ C

∣∣y xj ,u0 (T (x0))− y x0,u0 (T (x0))
∣∣

|xj − x0|
≤ C

which is a contradiction
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)
|xj − x0|

≤ C

∣∣y xj ,u0 (T (x0))− y x0,u0 (T (x0))
∣∣

|xj − x0|
≤ C

which is a contradiction
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Interior regularity

Theorem

Let {Xi}N
i=1 be Hörmander v.f. Then the following properties are equivalent

1 The minimum time problem has no singular optimal trajectory
2 T is locally semiconcave in Ω

3 T is locally Lipschitz in Ω

Remark

The local semiconcavity of the sub-riemannian distance to a point x0, in the absence
of singular trajectories, was proved by C – Rifford (2008) without giving any estimate
of the dependance on x0 of the semiconcavity constant of dSR(x0, ·). This does not
imply the semiconcavity of T (x) = miny∈Γ dSR(y , x)
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Boundary regularity

f : Ω→ R is Hölder of exponent α ∈]0, 1] at x0 ∈ Ω if ∃ a neighbourhood U of x0 and
K ≥ 0 such that

|f (x)− f (x0)| ≤ K |x − x0|α ∀x ∈ U ∩ Ω

Theorem

Let {Xi}N
i=1 be Hörmander v.f. Then

1 x ∈ Γ \ E =⇒ T ∈ C∞ on a neighborhood of x
2 x ∈ E =⇒ T Hölder of exponent 1

k(x)
at x, with

k(x) = min
{

k ≥ 1 : Liek ({Xi}N
i=1)[x ] = Rn}
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Boundary regularity
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Singular sets

Lipschitz singular sets

Define the Lipschitz singular set of T by

SingLip T =
{

x ∈ Ω : lim sup
Ω3y→x

|T (y)− T (x)|
|y − x | =∞

}
and the Lipschitz singular support of T by

x /∈ Sing suppLip T ⇐⇒ ∃Ω
open
⊃ U 3 x : T ∈ Lip(U)

Proposition (Properties of SingLip T )

(a) SingLip T is closed in Ω

(b) T is locally semiconcave in Ω \ SingLip T

(c) SingLip T = Sing suppLip T

(d) Ln(SingLip T
)

= 0

P. Cannarsa (Rome Tor Vergata) Minimum time with Hörmander VF 21/08/2017 23 / 34
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Singular sets

Proof

(a) SingLip T is closed in Ω

Let SingLip T 3 xj → x ∈ Ω and let yj := y xj ,uj be a singular time-optimal

trajectories. One can assume that yj
unif
−→ y optimal at x . Then

E 3 lim
j→∞

yj (T (xj )) = y(T (x)) =⇒ y singular =⇒ x ∈ SingLip T

(b) T is locally semiconcave in Ω \ SingLip T
Since no singular trajectories in Ω \ SingLip T , one localizes proof of local
semiconcavity

(c) SingLip T = Sing suppLip T
Since semiconcave functions are locally Lipschitz

(d) Ln(SingLip T
)

= 0
This follows from a result by Khai T. Nguyen (JMAA, 2010)
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Singular sets

Singular support

Definition

For any x ∈ Ω and k ∈ N ∪ {∞} we say that

x /∈ Sing suppCk T ⇐⇒ ∃Ω ⊃ U 3 x : T ∈ Ck (U)

Theorem

Let {Xi}N
i=1 be Hörmander v.f. Then

Sing suppC∞ T = Sing suppC1,1 T =: Sing supp T

Proof: Since Sing suppC1,1 T ⊆ Sing suppC∞ T , it suffices to show that

Ω \ Sing suppC1,1 T ⊆ Ω \ Sing suppC∞ T
For all x ∈ Ω \ Sing suppC1,1 T :

there is concave paraboloid touching graphT at (x ,T (x))

T is of class C2 in a neighborhood of any optimal trajectory starting at x
[C–, Frankowska, and Scarinci (2015)] and [C– and Scarinci (2015)]

Characteristics can then be used to recover regularity of initial data
P. Cannarsa (Rome Tor Vergata) Minimum time with Hörmander VF 21/08/2017 25 / 34
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i=1 be Hörmander v.f. Then

Sing suppC∞ T = Sing suppC1,1 T =: Sing supp T

Proof: Since Sing suppC1,1 T ⊆ Sing suppC∞ T , it suffices to show that

Ω \ Sing suppC1,1 T ⊆ Ω \ Sing suppC∞ T
For all x ∈ Ω \ Sing suppC1,1 T :

there is concave paraboloid touching graphT at (x ,T (x))

T is of class C2 in a neighborhood of any optimal trajectory starting at x
[C–, Frankowska, and Scarinci (2015)] and [C– and Scarinci (2015)]

Characteristics can then be used to recover regularity of initial data
P. Cannarsa (Rome Tor Vergata) Minimum time with Hörmander VF 21/08/2017 25 / 34



 

Singular sets

Measure of Sing supp T

Theorem

Let {Xi}N
i=1 be Hörmander v.f. Then Ln(Sing supp T

)
= 0

Proof: We show that Ln(Sing suppC1,1 T
)

= 0 Indeed

Ln(Sing suppC1,1 T
)

= Ln(SingLip T
)︸ ︷︷ ︸

=0 by K.T.Nguyen 2010

+Ln
(

Sing suppC1,1 T \ SingLip T
)

T is locally semiconcave in Ω \ SingLip T . So

T has second order Taylor expansion at a.e. x ∈ Ω \ SingLip T by Alexandroff

any such x belongs to Ω \ Sing suppC1,1 T

Therefore
Ln
(

Sing suppC1,1 T \ SingLip T
)

= 0
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Outline

1 Hörmander vector fields and continuity of T

2 Singular time-optimal trajectories and (lack of) Lipschitz continuity

3 Regularity of the minimum time function

4 Analysis of the singular sets of T

5 Work in Progress
Homotopy equivalence
Estimate of Hausdorff dimension
Nonsmooth targets
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Invariance for gradient flow

Denote by ∂DT (x) the Dini superdifferential of T at x ∈ Ω, that is,

∂DT (x) =
{

p ∈ Rn : lim sup
Ω3y→x

T (y)− T (x)− 〈p, y − x〉
|y − x | ≤ 0

}
Used in definition of viscosity solution together with Dini subdifferential ∂DT (x)

Theorem

Let {Xi}N
i=1 be Hörmander v.f. and suppose T is locally Lipschitz in Ω

Then Sing supp T is invariant for the generalized gradient flow

γ̇(t) ∈
N∑

j=1

〈
Xj (γ(t)), ∂DT (γ(t))

〉
Xj (γ(t)) (t ≥ 0)
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Homotopy equivalence

Corollary

Let {Xi}N
i=1 be Hörmander v.f. and suppose T is locally Lipschitz in Ω

Then Sing supp T and Ω are homotopy equivalent

References

Albano, C–, Nguyen, and Sinestrari (2013) invariance of SingT for Riemannian
systems and homotopy equivalence

Albano (2016) invariance of Sing supp T for Riemannian systems and homotopy
equivalence

C–, Cheng, and Fathi (2017) singularities of weak KAM solutions, homotopy
equivalence (with complement of Aubry set), local path-wise connectedness
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Hausdorff measure of SingLip T
Joint project with A. Marigonda and Khai T. Nguyen
Assume Ω satisfies a uniform Exterior Sphere Condition (ESC) of radius ρ > 0

for all x ∈ Γ there exists Bρ(yx ) ⊂ Rn \ Ω such that x ∈ Bρ(yx )

Equivalently, ∀x ∈ Γ ∃p ∈ NP
Ω (x) with |p| = ρ

Define T0 = maxΩ T and

Γt =
{

x ∈ Ω : T (x) = t
}

t ∈ [0,T0]

Then we expect the following to be true:
Γt ∩ SingLipT countably
(n − 2)-rectifiable
SingLipT has σ-finite H(n−1)

measure and

H− dim
(
SingLipT

)
6 n − 1

Ω

Γ
Γt

Γ
Γt

t
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Extension to general targets
Joint project with H. Frankowska and V. Basco

Our goals

To study minimum time function T for a system of (smooth) Hörmander verctor
fields with a general (nosmooth) target (even a point)

To recover a.e. differentiability of T

To obtain necessary and sufficient conditions for Lipschitz continuity and
semiconcavity of T

To derive optimality conditions (sensitivity relations, optimal feedback)

To study regularity of singular time optimal trajectories

What we have obtained so far

Lipschitz continuity and semiconcavity in absence of singular trajectories

Co-state inclusions when Ω satisfies uniform (ESC)

Co-state inclusion in absence of singular trajectories
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Thank you for your attention
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