Regularity for the minimum time function with Hörmander vector fields

Piermarco Cannarsa

University of Rome "Tor Vergata"

VII PARTIAL DIFFERENTIAL EQUATIONS, OPTIMAL DESIGN, AND NUMERICS

Organized by G. BUTTAZZO, O. GLASS, G. LEUGERING, AND E. ZUAZUA

Centro de Ciencias Pedro Pascual

Benasque (Spain)

August 20 - September 1, 2017

4 日 2 4 周 2 4 日 2 4 日 2

joint work with P. Albano and T. Scarinci

P. Cannarsa (Rome Tor Vergata)

Minimum time with Hörmander VF

21/08/2017 1 / 34

Let

- $\Omega \subset \mathbb{R}^n$ be a bounded domain with smooth (\mathcal{C}^{∞}) boundary Γ
- $\{X_1, \ldots, X_N\}$ be smooth (C^{∞}) vector fields $X_i : \overline{\Omega} \to \mathbb{R}^n$

Denote by $y^{x,u}(\cdot)$ be the unique solution of the controlled system

 $\begin{cases} y'(t) = \sum_{j=1}^{N} u_j(t) X_j(y(t)) & (t \ge 0) \\ y(0) = x \in \overline{\Omega} \end{cases}$

where $u: [0,+\infty[
ightarrow \overline{B}_1(0)$ is a measurable function (control) Define

• the *transfer time* to Γ as $\tau_{\Gamma}(x, u) = \inf \{t \ge 0 : y^{x, u}(t) \in \Gamma \}$

• the minimum time function as $T(x) = \inf_{u(\cdot)} \tau_{\Gamma}(x, u)$ $(x \in \overline{\Omega})$

When continuous, \mathcal{T} is the unique viscosity solution of Dirichlet problem

$$\left(\sum_{j=1}^{N} \langle X_j(x), DT(x) \rangle^2 = 1 \quad \text{in} \quad \Omega \\ \left(T = 0 \quad \text{on} \quad \Gamma \right)$$

Problems: regularity of T and structure of Sing

P. Cannarsa (Rome Tor Vergata)

Minimum time with Hörmander VF

21/08/2017 2 / 34

< □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let

- $\Omega \subset \mathbb{R}^n$ be a bounded domain with smooth (\mathcal{C}^{∞}) boundary Γ
- $\{X_1, \ldots, X_N\}$ be smooth (\mathcal{C}^{∞}) vector fields $X_i : \overline{\Omega} \to \mathbb{R}^n$

Denote by $y^{x,u}(\cdot)$ be the unique solution of the controlled system

$$\begin{cases} y'(t) = \sum_{j=1}^{N} u_j(t) X_j(y(t)) & (t \ge 0) \\ y(0) = x \in \overline{\Omega} \end{cases}$$

where $u : [0, +\infty[\rightarrow \overline{B}_1(0) \text{ is a measurable function (control)}]$ Define

• the *transfer time* to Γ as $\tau_{\Gamma}(x, u) = \inf \{t \ge 0 : y^{x, u}(t) \in \Gamma\}$

• the minimum time function as $T(x) = \inf_{u(\cdot)} \tau_{\Gamma}(x, u)$ $(x \in \overline{\Omega})$

When continuous, \mathcal{T} is the unique viscosity solution of Dirichlet problem

$$\left(\sum_{j=1}^{N} \langle X_j(x), DT(x) \rangle^2 = 1 \text{ in } \Omega \right)$$

 $T = 0 \text{ on } \Gamma$

P. Cannarsa (Rome Tor Vergata)

Minimum time with Hörmander VF

2/34

< □ > < □ > < □ > < □ > < □ > < □ > < □ >

21/08/2017

Let

- $\Omega \subset \mathbb{R}^n$ be a bounded domain with smooth (\mathcal{C}^{∞}) boundary Γ
- $\{X_1, \ldots, X_N\}$ be smooth (\mathcal{C}^{∞}) vector fields $X_i : \overline{\Omega} \to \mathbb{R}^n$

Denote by $y^{x,u}(\cdot)$ be the unique solution of the controlled system

$$\begin{cases} y'(t) = \sum_{j=1}^{N} u_j(t) X_j(y(t)) & (t \ge 0) \\ y(0) = x \in \overline{\Omega} \end{cases}$$

where $u: [0, +\infty[\rightarrow \overline{B}_1(0) \text{ is a measurable function (control)}]$ Define

- the *transfer time* to Γ as $\tau_{\Gamma}(x, u) = \inf \{ t \ge 0 : y^{x, u}(t) \in \Gamma \}$
- the minimum time function as $T(x) = \inf_{u(\cdot)} \tau_{\Gamma}(x, u)$ $(x \in \overline{\Omega})$

When continuous, T is the unique viscosity solution of Dirichlet problem

$$\begin{cases} \sum_{j=1}^{N} \langle X_j(x), DT(x) \rangle^2 = 1 & \text{in } \Omega \\ T = 0 & \text{on } \Gamma \end{cases}$$

Problems: regularity of T and structure of Sing

Minimum time with Hörmander VF

2/34

21/08/2017

Let

- $\Omega \subset \mathbb{R}^n$ be a bounded domain with smooth (\mathcal{C}^{∞}) boundary Γ
- $\{X_1, \ldots, X_N\}$ be smooth (\mathcal{C}^{∞}) vector fields $X_i : \overline{\Omega} \to \mathbb{R}^n$

Denote by $y^{x,u}(\cdot)$ be the unique solution of the controlled system

$$\begin{cases} y'(t) = \sum_{j=1}^{N} u_j(t) X_j(y(t)) & (t \ge 0) \\ y(0) = x \in \overline{\Omega} \end{cases}$$

where $u: [0, +\infty[\rightarrow \overline{B}_1(0) \text{ is a measurable function (control)}]$ Define

- the *transfer time* to Γ as $\tau_{\Gamma}(x, u) = \inf \{ t \ge 0 : y^{x, u}(t) \in \Gamma \}$
- the minimum time function as $T(x) = \inf_{u(\cdot)} \tau_{\Gamma}(x, u)$ $(x \in \overline{\Omega})$

When continuous, T is the unique viscosity solution of Dirichlet problem

$$\begin{cases} \sum_{j=1}^{N} \langle X_j(x), DT(x) \rangle^2 = 1 & \text{in } \Omega \\ T = 0 & \text{on } \Gamma \end{cases}$$

Problems: regularity of T and structure of SingT

P. Cannarsa (Rome Tor Vergata)

Minimum time with Hörmander VF

2/34

21/08/2017

- 2 Singular time-optimal trajectories and (lack of) Lipschitz continuity
- 3 Regularity of the minimum time function
- 4 Analysis of the singular sets of T
- Work in Progress
 Homotopy equivalence
 Estimate of Hausdorff dimension
 Nonsmooth targets

- 1
- Hörmander vector fields and continuity of T
- 2 Singular time-optimal trajectories and (lack of) Lipschitz continuity
- 3 Regularity of the minimum time function
- 4 Analysis of the singular sets of T
- Work in Progress
 Homotopy equivalence
 Estimate of Hausdorff dimension
 Nonsmooth targets

- 1
- Hörmander vector fields and continuity of T
- 2 Singular time-optimal trajectories and (lack of) Lipschitz continuity
- 3 Regularity of the minimum time function
 - Analysis of the singular sets of *T*
- 5 Work in Progress
 Homotopy equivalence
 Estimate of Hausdorff dimensio
 Nonsmooth targets

- Hörmander vector fields and continuity of T
- 2 Singular time-optimal trajectories and (lack of) Lipschitz continuity
- Regularity of the minimum time function

Analysis of the singular sets of T

Work in Progress

- Homotopy equivalence
- Estimate of Hausdorff dimension
- Nonsmooth targets

- 1
 - Hörmander vector fields and continuity of T
- 2 Singular time-optimal trajectories and (lack of) Lipschitz continuity
 - Regularity of the minimum time function
 - Analysis of the singular sets of T
 - Work in Progress
 - Homotopy equivalence
 - Estimate of Hausdorff dimension
 - Nonsmooth targets

Hörmander vector fields

Given smooth vector fields $X_1, \ldots, X_N : \overline{\Omega} \to \mathbb{R}^n$ define

• Lie $({X_i}_{i=1}^N)$ = Lie algebra generated by ${X_i}_{i=1}^N$

•
$$\text{Lie}({X_i}_{i=1}^N)[x] = {X(x) : X \in \text{Lie}({X_i}_{i=1}^N)}$$
 for any $x \in \overline{\Omega}$

Definition

We say that $\{X_i\}_{i=1}^N$ is a system of Hörmander vector fields on $\overline{\Omega}$ if

 $Lie(\{X_i\}_{i=1}^N)[x] = \mathbb{R}^n \quad \forall x \in \overline{\Omega}$

 X_1, \ldots, X_N need not be linearly independent nor we suppose N < n

Example (Grushin's system)

In \mathbb{R}^2 consider

$$X_1(x) = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad X_2(x) = \begin{pmatrix} 0 \\ x_1 \end{pmatrix} \quad Then \quad [X_1, X_2](x) = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

So $\{X_1, X_2\}$ is a system of Hörmander vector fields

Minimum time with Hörmander VF

Hörmander vector fields

Given smooth vector fields $X_1, \ldots, X_N : \overline{\Omega} \to \mathbb{R}^n$ define

• Lie $({X_i}_{i=1}^N)$ = Lie algebra generated by ${X_i}_{i=1}^N$

•
$$\text{Lie}({X_i}_{i=1}^N)[x] = {X(x) : X \in \text{Lie}({X_i}_{i=1}^N)}$$
 for any $x \in \overline{\Omega}$

Definition

We say that $\{X_i\}_{i=1}^N$ is a system of Hörmander vector fields on $\overline{\Omega}$ if

$$Lie({X_i}_{i=1}^N)[x] = \mathbb{R}^n \quad \forall x \in \overline{\Omega}$$

 X_1, \ldots, X_N need not be linearly independent nor we suppose N < n

Example (Grushin's system)

In \mathbb{R}^2 consider

$$X_1(x) = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad X_2(x) = \begin{pmatrix} 0 \\ x_1 \end{pmatrix} \quad Then \quad [X_1, X_2](x) = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

So $\{X_1, X_2\}$ is a system of Hörmander vector fields

Hörmander vector fields

Given smooth vector fields $X_1, \ldots, X_N : \overline{\Omega} \to \mathbb{R}^n$ define

• Lie $({X_i}_{i=1}^N)$ = Lie algebra generated by ${X_i}_{i=1}^N$

•
$$\text{Lie}({X_i}_{i=1}^N)[x] = {X(x) : X \in \text{Lie}({X_i}_{i=1}^N)}$$
 for any $x \in \overline{\Omega}$

Definition

We say that $\{X_i\}_{i=1}^N$ is a system of Hörmander vector fields on $\overline{\Omega}$ if

$$Lie({X_i}_{i=1}^N)[x] = \mathbb{R}^n \quad \forall x \in \overline{\Omega}$$

 X_1, \ldots, X_N need not be linearly independent nor we suppose N < n

Example (Grushin's system)

In \mathbb{R}^2 consider

$$X_1(x) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 $X_2(x) = \begin{pmatrix} 0 \\ x_1 \end{pmatrix}$ Then $[X_1, X_2](x) = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$

So $\{X_1, X_2\}$ is a system of Hörmander vector fields

Characteristic points

The Hamiltonian associated with Hörmander vector fields $\{X_1, \ldots, X_N\}$ is given by

$$h(x, p) = \sum_{j=1}^{N} \langle X_j(x), p \rangle^2, \quad (x, p) \in \overline{\Omega} imes \mathbb{R}^n$$

Definition

The characteristic set of $\{X_1, \ldots, X_N\}$ is given by

 $\operatorname{Char}(X_1,\ldots,X_N)=\{(x,p)\in\overline{\Omega}\times(\mathbb{R}^n\setminus\{0\}):\ h(x,p)=0\}.$

A point $x \in \Gamma$ is called characteristic if

 $span{X_i(x)}_{i=1}^N \subset T_{\Gamma}(x)$ (tangent space to Γ at x)

We denote by $E = E({X_i}_{i=1}^N, \Gamma) \subset \Gamma$ the set of all characteristic points

Theorem (Derridj 1972)

Let $\{X_i\}_{i=1}^N$ be Hörmander v.f. Then E is closed and $\mathcal{H}^{(n-1)}(E)=0$

P. Cannarsa (Rome Tor Vergata)

Minimum time with Hörmander VF

.....

Characteristic points

The Hamiltonian associated with Hörmander vector fields $\{X_1, \ldots, X_N\}$ is given by

$$h(x, p) = \sum_{j=1}^{N} \langle X_j(x), p \rangle^2, \quad (x, p) \in \overline{\Omega} imes \mathbb{R}^n$$

Definition

The characteristic set of $\{X_1, \ldots, X_N\}$ is given by

$$\operatorname{Char}(X_1,\ldots X_N) = \big\{ (x,p) \in \overline{\Omega} \times (\mathbb{R}^n \setminus \{0\}) \ : \ h(x,p) = 0 \big\}.$$

A point $x \in \Gamma$ is called characteristic if

 $span\{X_i(x)\}_{i=1}^N \subset T_{\Gamma}(x)$ (tangent space to Γ at x)

We denote by $E = E({X_i}_{i=1}^N, \Gamma) \subset \Gamma$ the set of all characteristic points

Theorem (Derridj 1972)

Let $\{X_i\}_{i=1}^N$ be Hörmander v.f. Then E is closed and $\mathcal{H}^{(n-1)}(E) = 0$

P. Cannarsa (Rome Tor Vergata)

Minimum time with Hörmander VF

.....

Characteristic points

The Hamiltonian associated with Hörmander vector fields $\{X_1, \ldots, X_N\}$ is given by

$$h(x,p) = \sum_{j=1}^{N} \langle X_j(x), p \rangle^2, \quad (x,p) \in \overline{\Omega} imes \mathbb{R}^n$$

Definition

The characteristic set of $\{X_1, \ldots, X_N\}$ is given by

$$\operatorname{Char}(X_1,\ldots X_N) = \big\{ (x,p) \in \overline{\Omega} \times (\mathbb{R}^n \setminus \{0\}) \ : \ h(x,p) = 0 \big\}.$$

A point $x \in \Gamma$ is called characteristic if

 $span\{X_i(x)\}_{i=1}^N \subset T_{\Gamma}(x)$ (tangent space to Γ at x)

We denote by $E = E({X_i}_{i=1}^N, \Gamma) \subset \Gamma$ the set of all characteristic points

Theorem (Derridj 1972)

Let $\{X_i\}_{i=1}^N$ be Hörmander v.f. Then E is closed and $\mathcal{H}^{(n-1)}(E) = 0$

P. Cannarsa (Rome Tor Vergata)

Minimum time with Hörmander VF

.

For any measurable $u : [0, +\infty[\rightarrow \overline{B}_1(0) \text{ denote by } y^{x,u}(\cdot) \text{ be the unique solution of}$ $\begin{cases} y'(t) = \sum_{j=1}^N u_j(t) X_j(y(t)) & (t \ge 0) \\ y(0) = x \in \overline{\Omega} \end{cases}$

The *minimum time function* associated with $\{X_i\}_{i=1}^N$ is

 $T(x) = \inf_{u(\cdot)} au_{\Gamma}(x, u) \text{ where } au_{\Gamma}(x, u) = \inf \left\{ t \ge 0 \ : \ y^{x, u}(t) \in \Gamma \right\} \quad (x \in \overline{\Omega})$

Let $\{X_i\}_{i=1}^N$ be Hörmander v.f. and define for any $x \in \overline{\Omega}$ $k(x) = \min \{k \ge 1 : \operatorname{Lie}^k (\{X_i\}_{i=1}^N) [x] = \mathbb{R}^n\}$ where $\operatorname{Lie}^k (\{X_i\}_{i=1}^N)$ is defined recursively by $\operatorname{Lie}^1 (\{X_i\}_{i=1}^N) = \operatorname{span} \{X_i\}_{i=1}^N$ and $\operatorname{Lie}^{k+1} (\{X_i\}_{i=1}^N)$

 $= \operatorname{span}\left(\operatorname{Lie}^{k}(\{X_{i}\}_{i=1}^{N}) \cup \left\{ [X, X_{j}] : X \in \operatorname{Lie}^{k}(\{X_{i}\}_{i=1}^{N}), j = 1, \dots, N \right\} \right) \underset{\underset{}{\Longrightarrow}}{\Longrightarrow}$

Hölder regularity [Nagel, Stein, and Wainger 1985]

 $T \in \mathcal{C}^{0,1/r}(\overline{\Omega})$ where $r = \max\{k(x) : x \in \overline{\Omega}\}$

P. Cannarsa (Rome Tor Vergata)

Minimum time with Hörmander VF

For any measurable $u : [0, +\infty[\to \overline{B}_1(0) \text{ denote by } y^{x,u}(\cdot) \text{ be the unique solution of}$ $\begin{cases} y'(t) = \sum_{j=1}^N u_j(t)X_j(y(t)) & (t \ge 0) \\ y(0) = x \in \overline{\Omega} \end{cases}$

The minimum time function associated with $\{X_i\}_{i=1}^N$ is

 $T(x) = \inf_{u(\cdot)} \tau_{\Gamma}(x, u) \text{ where } \tau_{\Gamma}(x, u) = \inf \left\{ t \ge 0 : y^{x, u}(t) \in \Gamma \right\} \quad (x \in \overline{\Omega})$

Let $\{X_i\}_{i=1}^N$ be Hörmander v.f. and define for any $x \in \overline{\Omega}$

 $k(x) = \min\left\{k \geq 1 \ : \ \operatorname{Lie}^k(\{X_i\}_{i=1}^N)[x] = \mathbb{R}^n
ight\}$

where $\operatorname{Lie}^{k}(\{X_{i}\}_{i=1}^{N})$ is defined recursively by $\operatorname{Lie}^{1}(\{X_{i}\}_{i=1}^{N}) = \operatorname{span}\{X_{i}\}_{i=1}^{N}$ and $\operatorname{Lie}^{k+1}(\{X_{i}\}_{i=1}^{N})$

 $= \operatorname{span}\left(\operatorname{Lie}^{k}(\{X_{i}\}_{i=1}^{N}) \cup \left\{ [X, X_{j}] : X \in \operatorname{Lie}^{k}(\{X_{i}\}_{i=1}^{N}), j = 1, \dots, N \right\} \right) \underset{\underset{}{\longrightarrow}}{\Longrightarrow}$

Hölder regularity [Nagel, Stein, and Wainger 1985]

 $T \in \mathcal{C}^{0,1/r}(\overline{\Omega})$ where $r = \max\{k(x) : x \in \overline{\Omega}\}$

P. Cannarsa (Rome Tor Vergata)

Minimum time with Hörmander VF

For any measurable $u : [0, +\infty[\to \overline{B}_1(0) \text{ denote by } y^{x,u}(\cdot) \text{ be the unique solution of}$ $\begin{cases} y'(t) = \sum_{j=1}^N u_j(t) X_j(y(t)) & (t \ge 0) \\ y(0) = x \in \overline{\Omega} \end{cases}$

The minimum time function associated with $\{X_i\}_{i=1}^N$ is

 $T(x) = \inf_{u(\cdot)} \tau_{\Gamma}(x, u) \text{ where } \tau_{\Gamma}(x, u) = \inf \left\{ t \ge 0 : y^{x, u}(t) \in \Gamma \right\} \quad (x \in \overline{\Omega})$

Let $\{X_i\}_{i=1}^N$ be Hörmander v.f. and define for any $x \in \overline{\Omega}$

 $k(x) = \min \left\{ k \ge 1 : \operatorname{Lie}^{k}(\{X_{i}\}_{i=1}^{N})[x] = \mathbb{R}^{n} \right\}$

where $\operatorname{Lie}^{k}(\{X_{i}\}_{i=1}^{N})$ is defined recursively by $\operatorname{Lie}^{1}(\{X_{i}\}_{i=1}^{N}) = \operatorname{span}\{X_{i}\}_{i=1}^{N}$ and $\operatorname{Lie}^{k+1}(\{X_{i}\}_{i=1}^{N})$ $= \operatorname{span}\left(\operatorname{Lie}^{k}(\{X_{i}\}_{i=1}^{N}) \cup \left\{[X, X_{j}] : X \in \operatorname{Lie}^{k}(\{X_{i}\}_{i=1}^{N}), j = 1, \dots, N\right\}\right)$

Hölder regularity [Nagel, Stein, and Wainger 1985]

 $T \in \mathcal{C}^{0,1/r}(\overline{\Omega})$ where $r = \max\{k(x) : x \in \overline{\Omega}\}$

P. Cannarsa (Rome Tor Vergata)

Minimum time with Hörmander VF

=

For any measurable $u : [0, +\infty[\to \overline{B}_1(0) \text{ denote by } y^{x,u}(\cdot) \text{ be the unique solution of}$ $\begin{cases} y'(t) = \sum_{j=1}^N u_j(t) X_j(y(t)) & (t \ge 0) \\ y(0) = x \in \overline{\Omega} \end{cases}$

The minimum time function associated with $\{X_i\}_{i=1}^N$ is

 $T(x) = \inf_{u(\cdot)} \tau_{\Gamma}(x, u) \text{ where } \tau_{\Gamma}(x, u) = \inf \left\{ t \ge 0 : y^{x, u}(t) \in \Gamma \right\} \quad (x \in \overline{\Omega})$

Let $\{X_i\}_{i=1}^N$ be Hörmander v.f. and define for any $x \in \overline{\Omega}$

 $k(x) = \min \left\{ k \ge 1 : \operatorname{Lie}^{k}(\{X_{i}\}_{i=1}^{N})[x] = \mathbb{R}^{n} \right\}$

where $\operatorname{Lie}^{k}(\{X_{i}\}_{i=1}^{N})$ is defined recursively by $\operatorname{Lie}^{1}(\{X_{i}\}_{i=1}^{N}) = \operatorname{span}\{X_{i}\}_{i=1}^{N}$ and $\operatorname{Lie}^{k+1}(\{X_{i}\}_{i=1}^{N})$ $= \operatorname{span}\left(\operatorname{Lie}^{k}(\{X_{i}\}_{i=1}^{N}) \cup \left\{[X, X_{j}] : X \in \operatorname{Lie}^{k}(\{X_{i}\}_{i=1}^{N}), j = 1, \dots, N\right\}\right)$

Hölder regularity [Nagel, Stein, and Wainger 1985] $T \in C^{0,1/r}(\overline{\Omega})$ where $r = \max\{k(x) : x \in \overline{\Omega}\}$ **=**

Singular time-optimal trajectories

For any $z \in \Gamma$ we denote by $\nu(z)$ the outward unit normal to Γ at z and set $N_{\Gamma}(z) := \{\lambda \nu(z) : \lambda \ge 0\}$

t $x \in \Omega$ and let $v = v^{x,u}$ be a time-optimal trajectory with $u : [0, T(x)] \to \overline{B}_1$

Definition

We say that y is singular if $\exists p : [0, T(x)] \to \mathbb{R}^n \setminus \{0\}$ absolutely continuous such that

Taking $H(x, p, u) = \sum_{i=1}^{N} u_i \langle X_i(x), p \rangle$ we have that

 $\begin{cases} y'(t) = D_p H(y(t), p(t), u(t)), & p'(t) = -D_x H(y(t), p(t), u(t)) \\ p(T(x)) \in N_{\Gamma}(y(T(x))) \\ (y(t), p(t)) \in \text{Char}(X_1, \dots, X_N) & \forall t \in [0, T(x)] \end{cases}$

P. Cannarsa (Rome Tor Vergata)

Minimum time with Hörmander VF

21/08/2017 7 / 34

Singular time-optimal trajectories

For any $z \in \Gamma$ we denote by $\nu(z)$ the outward unit normal to Γ at z and set

 $N_{\Gamma}(z) := \{\lambda \nu(z) : \lambda \ge 0\}$

Let $x \in \Omega$ and let $y = y^{x,u}$ be a time-optimal trajectory with $u : [0, T(x)] \to \overline{B}_1(0)$

Definition

We say that y is singular if $\exists p : [0, T(x)] \to \mathbb{R}^n \setminus \{0\}$ absolutely continuous such that

$$\begin{cases} -p'(t) = \sum_{j=1}^{N} u_j(t) DX_j(y(t))^* p(t) & t \in [0, T(x)] \text{ a.e.} \\ \langle X_j(y(t)), p(t) \rangle = 0 & t \in [0, T(x)], \ j = 1, \dots, N \\ p(T(x)) \in N_{\Gamma}(y(T(x))) \end{cases}$$

Taking $H(x, p, u) = \sum_{i=1}^{N} u_i \langle X_i(x), p \rangle$ we have that

 $\begin{cases} y'(t) = D_{p}H(y(t), p(t), u(t)), & p'(t) = -D_{x}H(y(t), p(t), u(t)) \\ p(T(x)) \in N_{\Gamma}(y(T(x))) \\ (y(t), p(t)) \in \text{Char}(X_{1}, \dots, X_{N}) & \forall t \in [0, T(x)] \end{cases}$

Minimum time with Hörmander VF

21/08/2017 7 / 34

(日)

Singular time-optimal trajectories

For any $z \in \Gamma$ we denote by $\nu(z)$ the outward unit normal to Γ at z and set

 $N_{\Gamma}(z) := \{\lambda \nu(z) : \lambda \ge 0\}$

Let $x \in \Omega$ and let $y = y^{x,u}$ be a time-optimal trajectory with $u : [0, T(x)] \to \overline{B}_1(0)$

Definition

We say that y is singular if $\exists p : [0, T(x)] \to \mathbb{R}^n \setminus \{0\}$ absolutely continuous such that

$$\begin{cases} -p'(t) = \sum_{j=1}^{N} u_j(t) DX_j(y(t))^* p(t) & t \in [0, T(x)] \text{ a.e.} \\ \langle X_j(y(t)), p(t) \rangle = 0 & t \in [0, T(x)], \ j = 1, \dots, N \\ p(T(x)) \in N_{\Gamma}(y(T(x))) \end{cases}$$

Taking $H(x, p, u) = \sum_{j=1}^{N} u_j \langle X_j(x), p \rangle$ we have that

 $\begin{cases} y'(t) = D_p H(y(t), p(t), u(t)), & p'(t) = -D_x H(y(t), p(t), u(t)) \\ p(T(x)) \in N_{\Gamma}(y(T(x))) \\ (y(t), p(t)) \in \operatorname{Char}(X_1, \dots, X_N) & \forall t \in [0, T(x)] \end{cases}$

Minimum time with Hörmander VF

Strongly bracket generating systems

Definition

We say that $\{X_i\}_{i=1}^N$ is strongly bracket generating on $\overline{\Omega}$ if $\forall v = (v_1, \dots, v_N) \in \mathbb{R}^n \setminus \{0\}$

$$span\{X_i(x)\}_{i=1}^N + span\{\sum_{j=1}^N v_j[X_j,X_i](x)\}_{i=1}^N = \mathbb{R}^n \quad \forall x \in \overline{\Omega}$$

Example (Nonholonomic integrator)

A strongly bracket generating system of v.f. in \mathbb{R}^3 is given by

$$X_1(x) = \begin{pmatrix} 1\\0\\x_2 \end{pmatrix} \quad X_2(x) = \begin{pmatrix} 0\\1\\-x_1 \end{pmatrix} \quad Then \quad [X_1, X_2](x) = \begin{pmatrix} 0\\0\\2 \end{pmatrix}$$

Proposition

A strongly bracket generating system of v.f. admits no singular trajectory.

P. Cannarsa (Rome Tor Vergata)

Minimum time with Hörmander VF

21/08/2017 8 / 34

・ロット (雪) (日) (日) (日)

Strongly bracket generating systems

Definition

We say that $\{X_i\}_{i=1}^N$ is strongly bracket generating on $\overline{\Omega}$ if $\forall v = (v_1, \dots, v_N) \in \mathbb{R}^n \setminus \{0\}$

$$span\{X_i(x)\}_{i=1}^N + span\{\sum_{j=1}^N v_j[X_j,X_i](x)\}_{i=1}^N = \mathbb{R}^n \quad \forall x \in \overline{\Omega}$$

Example (Nonholonomic integrator)

A strongly bracket generating system of v.f. in \mathbb{R}^3 is given by

$$X_1(x) = \begin{pmatrix} 1\\0\\x_2 \end{pmatrix} \quad X_2(x) = \begin{pmatrix} 0\\1\\-x_1 \end{pmatrix} \quad Then \quad [X_1, X_2](x) = \begin{pmatrix} 0\\0\\2 \end{pmatrix}$$

Proposition

A strongly bracket generating system of v.f. admits no singular trajectory.

P. Cannarsa (Rome Tor Vergata)

Minimum time with Hörmander VF

21/08/2017 8 / 34

・ロット (雪) (日) (日) (日)

Strongly bracket generating systems

Definition

We say that $\{X_i\}_{i=1}^N$ is strongly bracket generating on $\overline{\Omega}$ if $\forall v = (v_1, \dots, v_N) \in \mathbb{R}^n \setminus \{0\}$

$$span\{X_i(x)\}_{i=1}^N + span\{\sum_{j=1}^N v_j[X_j,X_i](x)\}_{i=1}^N = \mathbb{R}^n \quad \forall x \in \overline{\Omega}$$

Example (Nonholonomic integrator)

A strongly bracket generating system of v.f. in \mathbb{R}^3 is given by

$$X_1(x) = \begin{pmatrix} 1\\0\\x_2 \end{pmatrix} \quad X_2(x) = \begin{pmatrix} 0\\1\\-x_1 \end{pmatrix} \quad Then \quad [X_1, X_2](x) = \begin{pmatrix} 0\\0\\2 \end{pmatrix}$$

Proposition

A strongly bracket generating system of v.f. admits no singular trajectory.

P. Cannarsa (Rome Tor Vergata)

Minimum time with Hörmander VF

21/08/2017 8 / 34

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Singular

Proof of proposition

Let $x \in \Omega$, let $y = y^{x,u}$ be a singular trajectory, and let $p \neq 0$ satisfy

$$\begin{cases} -p'(t) = \sum_{j=1}^{N} u_j(t) DX_j(y(t))^* p(t), & p(T(x)) \in N_{\Gamma}(y(T(x))) \\ \langle X_k(y(t)), p(t) \rangle = 0 & t \in [0, T(x)], \ k = 1, \dots, N \end{cases}$$

Then for all $k = 1, \ldots, N$

$$0 = \frac{d}{dt} \langle X_k(y), p \rangle = \langle DX_k(y(t))y'(t), p(t) \rangle + \langle X_k(y(t)), p'(t) \rangle$$

= $\sum_{j=1}^N u_j(t) \langle DX_k(y(t))X_j(y(t)), p(t) \rangle - \sum_{j=1}^N u_j(t) \langle X_k(y(t)), DX_j(y(t))^* p(t) \rangle$
= $\langle \sum_{j=1}^N u_j(t)[X_k, X_j](y(t)), p(t) \rangle$

Now, taking $t_0 \in [0, T(x)]$ such that $u(t_0) \neq 0$, we obtain the contradiction

aking
$$t_0 \in [0, T(x)]$$
 such that $u(t_0) \neq 0$, we obtain the contradiction

$$p(t_0) \perp \left(\operatorname{span} \left\{ X_i(y(t_0)) \right\}_{i=1}^N + \operatorname{span} \left\{ \sum_{j=1}^N u_j(t_0) \left[X_k, X_j \right](y(t_0)) \right\}_{k=1}^N \right) = \mathbb{R}^n$$

21/08/2017 9/34

< E

Singular trajectories and characteristic points

Let $\{X_i\}_{i=1}^N$ be Hörmander v.f.

Proposition

Let $x \in \Omega$ and let $y = y^{x,u}$ be a time-optimal trajectory. Then

y singular $\iff y(T(x)) \in E(\{X_i\}_{i=1}^N, \Gamma)$

Proof: By Pontryagin's Maximum Principle (PMP) $\exists p : [0, T(x)] \rightarrow \mathbb{R}^n \setminus \{0\}$ (adjoint state)

$$\begin{cases} y'(t) = D_{p}H(y(t), p(t), u(t)), & p'(t) = -D_{x}H(y(t), p(t), u(t)) \\ p(T(x)) \in N_{\Gamma}(y(T(x))) \\ & \vdots \\$$

 $\left(H(y(t), p(t), u(t)) = \max_{u \in \overline{B}_1(0)} \sum_{j=1}^{N} u_j \langle X_j(y^{x, u}(t)), p(t) \rangle = \sqrt{h(y^{x, u}(t), p(t))}$

So, the function $[0, T(x)] \ni t \mapsto h(y^{x,u}(t), p(t))$ is constant. This implies that

p(T(x)), p(T(x))) = 0

21/08/2017

10/34

Minimum time with Hörmander VF

Singular trajectories and characteristic points

Let $\{X_i\}_{i=1}^N$ be Hörmander v.f.

Proposition

Let $x \in \Omega$ and let $y = y^{x,u}$ be a time-optimal trajectory. Then

y singular \iff $y(T(x)) \in E({X_i}_{i=1}^N, \Gamma)$

Proof: By Pontryagin's Maximum Principle (PMP) $\exists p : [0, T(x)] \rightarrow \mathbb{R}^n \setminus \{0\}$ (adjoint state)

$$\begin{cases} y'(t) = D_{\rho}H(y(t), \rho(t), u(t)), & p'(t) = -D_{x}H(y(t), \rho(t), u(t)) \\ p(T(x)) \in N_{\Gamma}(y(T(x))) \\ H(y(t), \rho(t), u(t)) = \max_{u \in \overline{B}_{1}(0)} \sum_{j=1}^{N} u_{j} \langle X_{j}(y^{x,u}(t)), p(t) \rangle = \sqrt{h(y^{x,u}(t), \rho(t))} \end{cases}$$

So, the function $[0, T(x)] \ni t \mapsto h(y^{x,u}(t), p(t))$ is constant. This implies that

$$\begin{array}{ll} y(T(x)) \in E & \iff & h\big(y(T(x)), p(T(x))\big) = 0 \\ & \iff & \big(y(t), p(t)\big) \in \operatorname{Char}(X_1, \dots, X_N) \ \forall t \in [0, T(x)] \end{array}$$

Minimum time with Hörmander VF

21/08/2017 10 / 34

Singular trajectories and failure of Lipschitz continuity

 $f:\overline{\Omega} \to \mathbb{R}$ is Lipschitz at $x_0 \in \overline{\Omega}$ if \exists a neighbourhood U of x_0 and $L \ge 0$ such that

 $|f(x) - f(x_0)| \le L|x - x_0| \qquad \forall x \in U \cap \overline{\Omega}$

f can be Lipschitz continuous at x_0 without being Lipschitz on any neighbourhood of x_0

Let (X: N) be Hörmander v.f. 7

(a) *T* fails to be Lipschitz at a point $x_0 \in \overline{\Omega}$

if and only if

(b) x_0 is the starting point of a singular time-optimal trajectory

Remark

The fact that the presence of singular optimal trajectories may destroy the regularity (i.e., subanalyticity of the point-to-point distance associated with real analytic distributions) of a solution of a first order Hamilton-Jacobi equation was observed by Sussmann (1992), Agrachev (1998), and Trélat (2006) for solutions of the Dirichlet problem

Singular trajectories and failure of Lipschitz continuity

 $f:\overline{\Omega} \to \mathbb{R}$ is Lipschitz at $x_0 \in \overline{\Omega}$ if \exists a neighbourhood U of x_0 and $L \ge 0$ such that

 $|f(x) - f(x_0)| \le L|x - x_0| \qquad \forall x \in U \cap \overline{\Omega}$

f can be Lipschitz continuous at x_0 without being Lipschitz on any neighbourhood of x_0

Theorem

Let $\{X_i\}_{i=1}^N$ be Hörmander v.f. Then

(a) *T* fails to be Lipschitz at a point $x_0 \in \overline{\Omega}$

if and only if

(b) x_0 is the starting point of a singular time-optimal trajectory

Remark

The fact that the presence of singular optimal trajectories may destroy the regularity (i.e., subanalyticity of the point-to-point distance associated with real analytic distributions) of a solution of a first order Hamilton-Jacobi equation was observed by Sussmann (1992), Agrachev (1998), and Trélat (2006) for solutions of the Dirichlet problem

Singular trajectories and failure of Lipschitz continuity

 $f:\overline{\Omega} \to \mathbb{R}$ is Lipschitz at $x_0 \in \overline{\Omega}$ if \exists a neighbourhood U of x_0 and $L \ge 0$ such that

 $|f(x) - f(x_0)| \le L|x - x_0| \qquad \forall x \in U \cap \overline{\Omega}$

f can be Lipschitz continuous at x_0 without being Lipschitz on any neighbourhood of x_0

Theorem

Let $\{X_i\}_{i=1}^N$ be Hörmander v.f. Then

(a) *T* fails to be Lipschitz at a point $x_0 \in \overline{\Omega}$

if and only if

(b) x_0 is the starting point of a singular time-optimal trajectory

Remark

The fact that the presence of singular optimal trajectories may destroy the regularity (i.e., subanalyticity of the point-to-point distance associated with real analytic distributions) of a solution of a first order Hamilton-Jacobi equation was observed by Sussmann (1992), Agrachev (1998), and Trélat (2006) for solutions of the Dirichlet problem

Proximal normals

Let $S \subset \mathbb{R}^n$ be a closed set

Definition (Proximal normals)

A vector $v \in \mathbb{R}^n$ is called a proximal normal to S at x if $\exists \delta > 0$ and C > 0 such that

$$\langle v, y - x \rangle \leq C |y - x|^2 \qquad \forall y \in B_{\delta}(x) \cap S.$$
 (2)

The set of all proximal normals to S at x will be denoted by $N_{S}^{P}(x)$

Horizontal supergradients

The hypograph of a function $f:\overline{\Omega} \to \mathbb{R}$ is the set

 $\operatorname{hypo}(f) = \left\{ (x, \alpha) \in \overline{\Omega} \times \mathbb{R} : \alpha \leq f(x) \right\}$

A vector $p \in \mathbb{R}^n$ is a horizontal proximal supergradient of a function f at $x \in \Omega$ if

 $(-\rho, 0) \in N_{\mathrm{hypo}(f)}(x, f(x))$

The set of all such supergradient is denoted by $\partial^{P,\infty} f(x)$

Proof of Theorem: sufficiency

Theorem

T fails to be Lipschitz at a point $x_0 \in \overline{\Omega}$ if and only if x_0 is the starting point of a singular time-optimal trajectory

Want to show

 $\exists y_0 = y^{x_0, u_0}$ singular $\implies -p(0) \in \partial^{P, \infty} T(x_0) \quad (\Rightarrow T \text{ not Lipschitz at } x_0)$

where $p \neq 0$ is the dual arc given by PMP

Recall that p satisfies the transversality condition at $T(x_0)$

 $(p(T(x_0)), 0) \in N_{hypo(T)}(y_0(T(x_0)), 0)$

or

$$\langle p(T(x_0)), x - y_0(T(x_0)) \rangle \leq \frac{1}{\delta} |x - y_0(T(x_0))|^2 \quad \forall x \in \overline{\Omega}$$

So, we want to propagate such property up to t = 0, that is,

 $(p(0),0) \in N_{\mathrm{hypo}(T)}(x_0,T(x_0))$

Minimum time with Hörmander VF

・ ロ マ ・ (雪 マ ・ (雪 マ ・ ロ マ

21/08/2017

14/34

Proof of Theorem: sufficiency

Theorem

T fails to be Lipschitz at a point $x_0 \in \overline{\Omega}$ if and only if x_0 is the starting point of a singular time-optimal trajectory

Want to show

 $\exists y_0 = y^{x_0, u_0} \text{ singular } \implies -p(0) \in \partial^{P, \infty} T(x_0) \quad (\Rightarrow T \text{ not Lipschitz at } x_0)$

where $p \neq 0$ is the dual arc given by PMP

Recall that p satisfies the transversality condition at $T(x_0)$

 $(p(T(x_0)), 0) \in N_{hypo(T)}(y_0(T(x_0)), 0)$

or

$$\langle p(T(x_0)), x - y_0(T(x_0)) \rangle \leq \frac{1}{\delta} |x - y_0(T(x_0))|^2 \quad \forall x \in \overline{\Omega}$$

So, we want to propagate such property up to t = 0, that is,

 $(p(0),0) \in N_{\mathrm{hypo}(T)}(x_0,T(x_0))$

Minimum time with Hörmander VF

21/08/2017 14 / 34
Proof of Theorem: sufficiency

Theorem

T fails to be Lipschitz at a point $x_0 \in \overline{\Omega}$ if and only if x_0 is the starting point of a singular time-optimal trajectory

Want to show

 $\exists y_0 = y^{x_0, u_0} \text{ singular } \implies -p(0) \in \partial^{P, \infty} T(x_0) \quad (\Rightarrow T \text{ not Lipschitz at } x_0)$

where $p \neq 0$ is the dual arc given by PMP

Recall that p satisfies the transversality condition at $T(x_0)$

$$(p(T(x_0)), 0) \in N_{hypo(T)}(y_0(T(x_0)), 0)$$

or

$$\langle p(T(x_0)), x - y_0(T(x_0)) \rangle \leq \frac{1}{\delta} |x - y_0(T(x_0))|^2 \quad \forall x \in \overline{\Omega}$$

So, we want to propagate such property up to t = 0, that is,

$$(p(0),0)\in \mathit{N}_{\mathrm{hypo}(\mathcal{T})}(\mathit{x}_{0},\mathit{T}(\mathit{x}_{0}))$$

P. Cannarsa (Rome Tor Vergata)

Minimum time with Hörmander VF

14/34

21/08/2017

Proof of sufficiency: $T(x) \leq T(x_0)$

We have to prove that $\exists C > 0$ such that, $\forall x \in \overline{\Omega}$ with $|T(x) - T(x_0)| < 1$,

$$\langle p(0), x - x_0 \rangle \leq C(|x - x_0|^2 + (\alpha - T(x_0))^2) \quad \forall \, \alpha \leq T(x)$$

Suppose $T(x) \leq T(x_0)$ and let $y(t) = y^{x,u_0}(t)$ Then

$$\langle p(0), x - x_0 \rangle = \langle p(T(x)), y(T(x)) - y_0(T(x)) \rangle - \int_0^{T(x)} \frac{d}{dt} \langle p(t), y(t) - y_0(t) \rangle dt$$

By using the adjoint system

$$\begin{aligned} \left| \frac{d}{dt} \langle p, y - y_0 \rangle \right| &= \left| \sum_{j=1}^N u_j \langle p, X_j(y) - X_j(y_0) - DX_j(y_0) \rangle \right| \\ &\leq C |p| \left| y - y_0 \right|^2 \le |x - x_0|^2 \end{aligned}$$

P. Cannarsa (Rome Tor Vergata)

Minimum time with Hörmander VF

×≣▶≣ ∽९< 21/08/2017 15/34

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proof of sufficiency: $T(x) \leq T(x_0)$

We have to prove that $\exists C > 0$ such that, $\forall x \in \overline{\Omega}$ with $|T(x) - T(x_0)| < 1$,

$$\langle \rho(0), x - x_0 \rangle \leq C(|x - x_0|^2 + (\alpha - T(x_0))^2) \quad \forall \alpha \leq T(x)$$

Suppose $T(x) \leq T(x_0)$ and let $y(t) = y^{x,u_0}(t)$ Then

$$\langle \boldsymbol{\rho}(0), \boldsymbol{x} - \boldsymbol{x}_0 \rangle = \langle \boldsymbol{\rho}(\boldsymbol{T}(\boldsymbol{x})), \boldsymbol{y}(\boldsymbol{T}(\boldsymbol{x})) - \boldsymbol{y}_0(\boldsymbol{T}(\boldsymbol{x})) \rangle - \int_0^{\boldsymbol{T}(\boldsymbol{x})} \frac{d}{dt} \langle \boldsymbol{\rho}(t), \boldsymbol{y}(t) - \boldsymbol{y}_0(t) \rangle dt$$

By using the adjoint system

$$\begin{aligned} \left| \frac{d}{dt} \langle p, y - y_0 \rangle \right| &= \left| \sum_{j=1}^N u_j \langle p, X_j(y) - X_j(y_0) - DX_j(y_0) \rangle \right| \\ &\leq C |p| \left| y - y_0 \right|^2 \le |x - x_0|^2 \end{aligned}$$

P. Cannarsa (Rome Tor Vergata)

Minimum time with Hörmander VF

21/08/2017 15 / 34

э

- コン (雪) (ヨ) (ヨ)

Proof of sufficiency: $T(x) \leq T(x_0)$

We have to prove that $\exists C > 0$ such that, $\forall x \in \overline{\Omega}$ with $|T(x) - T(x_0)| < 1$,

$$\langle p(0), x - x_0
angle \leq C(|x - x_0|^2 + (\alpha - T(x_0))^2) \quad \forall \, lpha \leq T(x)$$

Suppose
$$T(x) \le T(x_0)$$
 and let $y(t) = y^{x,u_0}(t)$ Then
 $\langle p(0), x - x_0 \rangle = \langle p(T(x)), y(T(x)) - y_0(T(x)) \rangle - \int_0^{T(x)} \frac{d}{dt} \langle p(t), y(t) - y_0(t) \rangle dt$

By using the adjoint system

$$\begin{aligned} \left| \frac{d}{dt} \langle \boldsymbol{p}, \boldsymbol{y} - \boldsymbol{y}_0 \rangle \right| &= \left| \sum_{j=1}^N u_j \langle \boldsymbol{p}, X_j(\boldsymbol{y}) - X_j(\boldsymbol{y}_0) - DX_j(\boldsymbol{y}_0))(\boldsymbol{y} - \boldsymbol{y}_0) \rangle \right| \\ &\leq C |\boldsymbol{p}| \left| \boldsymbol{y} - \boldsymbol{y}_0 \right|^2 \leq |\boldsymbol{x} - \boldsymbol{x}_0|^2 \end{aligned}$$

15/34

Э

21/08/2017

Singular

Proof of sufficiency: $T(x) \leq T(x_0)$ completed

We now compute

 $\begin{array}{l} \langle p(T(x)), y(T(x)) - y_0(T(x)) \rangle \\ = \langle p(T(x_0)), y(T(x)) - y_0(T(x)) \rangle + \langle p(T(x)) - p(T(x_0)), y(T(x)) - y_0(T(x)) \rangle \\ \leq \langle p(T(x_0)), y(T(x)) - y_0(T(x)) \rangle + C(|T(x) - T(x_0)|^2 + |x - x_0|^2) \end{array}$

Moreover, since $\langle p(T(x_0)), x - y_0(T(x_0)) \rangle \leq \frac{1}{\delta} |x - y_0(T(x_0))|^2$,

 $\langle \rho(T(x_0)), y(T(x)) - y_0(T(x)) \rangle$

 $= \langle p(T(x_0)), y_0(T(x_0)) - y_0(T(x)) \rangle + \langle p(T(x_0)), y(T(x)) - y_0(T(x_0)) \rangle$

$$\leq \sum_{j=1}^{N} \int_{T(x)}^{T(x_{0})} u_{j}(t) \langle p(T(x_{0})), X_{j}(y_{0}(t)) \rangle dt + \frac{1}{\delta} \left| y(T(x)) - y_{0}(T(x_{0})) \right|^{2}$$

$$\sum_{j=1}^{N} \int_{T(x)}^{T(x_0)} u_j(t) \langle p(T(x_0)), \underbrace{X_j(y_0(t)) - X_j(y_0(T(x_0)))}_{T(x_0)} \rangle dt$$

This proves $\langle p(0), x - x_0 \rangle \leq C(|x - x_0|^2 + (\alpha - T(x_0))^2)$ with $\alpha = T(x)$

Singular

Proof of sufficiency: $T(x) \leq T(x_0)$ completed

We now compute

Moreover, since $\langle p(T(x_0)), x - y_0(T(x_0)) \rangle \leq \frac{1}{\delta} |x - y_0(T(x_0))|^2$,

 $\langle p(T(x_0)), y(T(x)) - y_0(T(x)) \rangle$

 $= \langle \rho(T(x_0)), y_0(T(x_0)) - y_0(T(x)) \rangle + \langle \rho(T(x_0)), y(T(x)) - y_0(T(x_0)) \rangle$

$$\leq \sum_{j=1}^{N} \int_{T(x)}^{T(x_0)} u_j(t) \langle p(T(x_0)), X_j(y_0(t)) \rangle dt + \frac{1}{\delta} |y(T(x)) - y_0(T(x_0))|^2$$

$$\sum_{T(x)}^{N} \int_{T(x)}^{T(x_{0})} u_{j}(t) \langle p(T(x_{0})), \underbrace{X_{j}(y_{0}(t)) - X_{j}(y_{0}(T(x_{0})))}_{Y_{j}(t)} \rangle dt$$

This proves $(p(0), x - x_0) \leq C(|x - x_0|^2 + (\alpha - T(x_0))^2)$ with $\alpha = T(x)$.

Singular

Proof of sufficiency: $T(x) \leq T(x_0)$ completed

We now compute

 $\begin{aligned} &\langle p(T(x)), y(T(x)) - y_0(T(x)) \rangle \\ &= \langle p(T(x_0)), y(T(x)) - y_0(T(x)) \rangle + \langle p(T(x)) - p(T(x_0)), y(T(x)) - y_0(T(x)) \rangle \\ &\leq \langle p(T(x_0)), y(T(x)) - y_0(T(x)) \rangle + C(|T(x) - T(x_0)|^2 + |x - x_0|^2) \end{aligned}$

Moreover, since $\langle p(T(x_0)), x - y_0(T(x_0)) \rangle \leq \frac{1}{\delta} |x - y_0(T(x_0))|^2$,

 $\langle p(T(x_0)), y(T(x)) - y_0(T(x)) \rangle$ $= \langle p(T(x_0)), y_0(T(x_0)) - y_0(T(x)) \rangle + \langle p(T(x_0)), y(T(x)) - y_0(T(x_0)) \rangle$ $\leq \sum_{j=1}^{N} \int_{T(x)}^{T(x_0)} u_j(t) \langle p(T(x_0)), X_j(y_0(t)) \rangle dt + \frac{1}{\delta} |y(T(x)) - y_0(T(x_0))|^2$ $\leq \sum_{j=1}^{N} \int_{T(x)}^{T(x_0)} u_j(t) \langle p(T(x_0)), X_j(y_0(t)) - X_j(y_0(T(x_0))) \rangle dt$ $+ C(|x - x_0|^2 + |T(x) - T(x_0)|^2)$ $+ C(|x - x_0|^2 + |T(x) - T(x_0)|^2)$ $This proves \langle p(0), x - x_0 \rangle \leq C(|x - x_0|^2 + (\alpha - T(x_0))^2)$ $with_{\alpha} \alpha = T(x)$

Minimum time with Hörmander VF

21/08/2017

16/34

Proof of sufficiency: $T(x) > T(x_0)$

if $T(x) > T(x_0)$ taking $y(t) = y^{x,u_0}(t)$ once again we obtain

$$p(0), x - x_0 \rangle = \langle p(T(x_0)), y(T(x_0)) - y_0(T(x_0)) \rangle - \int_0^{T(x_0)} \frac{d}{dt} \langle p(t), y(t) - y_0(t) \rangle dt$$

The first term on the right-hand side is controlled by $|x - x_0|^2$ because of transversality

$$\langle p(T(x_0)), y(T(x_0)) - y_0(T(x_0)) \rangle \leq C |x - x_0|^2$$

The second term is controlled by $|x - x_0|^2$ as before

17/34

21/08/2017

P. Cannarsa (Rome Tor Vergata)

Theorem

T fails to be Lipschitz at $x_0 \in \overline{\Omega}$ if and only if x_0 is the starting point of a singular time-optimal trajectory

We will derive a contradiction assuming that

T fails to be Lipschitz at x_0 but no singular optimal trajectory starts from x_0

Since *T* fails to be Lipschitz at x_0 , there exists $\{x_j\} \subset \Omega$ such that

$$rac{|T(x_j)-T(x_0)|}{|x_j-x_0|} \geq j$$
 and $x_j o x_0$ as $j o \infty$

Moreover, for any time-optimal trajectory $y_0 = y^{x_0, u_0}$ we have that:

- $y_0(T(x_0)) \in \Gamma \setminus E$ by Proposition
- $\exists \delta > 0 : B_{\delta}(y_0(T(x_0))) \cap E = \emptyset$
- $T(x) \leq Cd_{\Gamma}(x) \quad \forall x \in B_{\delta}(y_0(T(x_0))) \cap \overline{\Omega}$

Theorem

T fails to be Lipschitz at $x_0 \in \overline{\Omega}$ if and only if x_0 is the starting point of a singular time-optimal trajectory

We will derive a contradiction assuming that

T fails to be Lipschitz at x_0 but no singular optimal trajectory starts from x_0

Since T fails to be Lipschitz at x_0 , there exists $\{x_j\} \subset \Omega$ such that

$$rac{|T(x_j)-T(x_0)|}{|x_j-x_0|} \geq j$$
 and $x_j o x_0$ as $j o \infty$

Moreover, for any time-optimal trajectory $y_0 = y^{x_0, u_0}$ we have that:

- $y_0(T(x_0)) \in \Gamma \setminus E$ by Proposition
- $\exists \delta > 0 : B_{\delta}(y_0(T(x_0))) \cap E = \emptyset$
- $T(x) \leq Cd_{\Gamma}(x) \quad \forall x \in B_{\delta}(y_0(T(x_0))) \cap \overline{\Omega}$

· · · · ·	2
	J

Theorem

T fails to be Lipschitz at $x_0 \in \overline{\Omega}$ if and only if x_0 is the starting point of a singular time-optimal trajectory

We will derive a contradiction assuming that

T fails to be Lipschitz at x_0 but no singular optimal trajectory starts from x_0

Since *T* fails to be Lipschitz at x_0 , there exists $\{x_j\} \subset \Omega$ such that

$$rac{|\mathcal{T}(x_j)-\mathcal{T}(x_0)|}{|x_j-x_0|}\geq j ext{ and } x_j
ightarrow x_0 ext{ as } j
ightarrow \infty$$

Moreover, for any time-optimal trajectory $y_0 = y^{x_0, u_0}$ we have that:

• $y_0(T(x_0)) \in \Gamma \setminus E$ by Proposition

• $\exists \delta > 0 : B_{\delta}(y_0(T(x_0))) \cap E = \emptyset$

• $T(x) \leq Cd_{\Gamma}(x) \quad \forall x \in B_{\delta}(y_0(T(x_0))) \cap \overline{\Omega}$

П	

Theorem

T fails to be Lipschitz at $x_0 \in \overline{\Omega}$ if and only if x_0 is the starting point of a singular time-optimal trajectory

We will derive a contradiction assuming that

T fails to be Lipschitz at x_0 but no singular optimal trajectory starts from x_0

Since *T* fails to be Lipschitz at x_0 , there exists $\{x_j\} \subset \Omega$ such that

$$rac{|\mathcal{T}(x_j)-\mathcal{T}(x_0)|}{|x_j-x_0|} \geq j ext{ and } x_j o x_0 ext{ as } j o \infty$$

Moreover, for any time-optimal trajectory $y_0 = y^{x_0, u_0}$ we have that:

- $y_0(T(x_0)) \in \Gamma \setminus E$ by Proposition
- $\exists \delta > 0 : B_{\delta}(y_0(T(x_0))) \cap E = \emptyset$
- $T(x) \leq Cd_{\Gamma}(x) \quad \forall x \in B_{\delta}(y_0(T(x_0))) \cap \overline{\Omega}$

21/08/2017

18/34

Proof of necessity: $T(x_j) \ge T(x_0)$

Suppose $T(x_j) \ge T(x_0)$ and let $y^{x_0, u_0}(t)$ be time-optimal By dynamic programming

$$j \leq \frac{T(x_j) - T(x_0)}{|x_j - x_0|} \leq \frac{T(y^{x_j, u_0}(T(x_0)))}{|x_j - x_0|}$$

For large *j* we have that $y^{x_j,u_0}(T_0) \in \overline{\Omega} \cap B_{\delta}(y^{x_0,u_0}(T_0))$. So

$$j \le \frac{Cd_{\Gamma}(y^{x_{j},u_{0}}(T(x_{0})))}{|x_{j}-x_{0}|} \le C \frac{|y^{x_{j},u_{0}}(T(x_{0}))-y^{x_{0},u_{0}}(T(x_{0}))|}{|x_{j}-x_{0}|} \le C$$

which is a contradiction

P. Cannarsa (Rome Tor Vergata)

Minimum time with Hörmander VF

× ≣ ▶ ≣ ∽ ९ ⊂ 21/08/2017 19 / 34

ヘロン ヘロン ヘビン ヘビン

Proof of necessity: $T(x_j) \ge T(x_0)$

Suppose $T(x_j) \ge T(x_0)$ and let $y^{x_0, u_0}(t)$ be time-optimal By dynamic programming

$$j \leq \frac{T(x_j) - T(x_0)}{|x_j - x_0|} \leq \frac{T(y^{x_j, u_0}(T(x_0)))}{|x_j - x_0|}$$

For large *j* we have that $y^{x_j,u_0}(T_0) \in \overline{\Omega} \cap B_{\delta}(y^{x_0,u_0}(T_0))$. So

$$j \leq \frac{Cd_{\Gamma}(y^{x_{j},u_{0}}(T(x_{0})))}{|x_{j}-x_{0}|} \leq C \frac{\left|y^{x_{j},u_{0}}(T(x_{0}))-y^{x_{0},u_{0}}(T(x_{0}))\right|}{|x_{j}-x_{0}|} \leq C$$

which is a contradiction

P. Cannarsa (Rome Tor Vergata)

Minimum time with Hörmander VF

21/08/2017 19 / 34

Proof of necessity: $T(x_j) < T(x_0)$

Suppose now $T(x_j) < T(x_0)$ and let $y^{x_j, u_j}(t)$ be time-optimal

Without loss of generality we can assume that

 $y^{x_j,u_j} \longrightarrow y^{x_0,\overline{u}}$ uniformly on $[0,T_0]$

Then $y^{x_0,\overline{u}}$ is optimal and so $y^{x_0,\overline{u}}(T(x_0)) \notin E$

By dynamic programming

$$\begin{array}{ll} j & \leq & \displaystyle \frac{T(x_0) - T(x_j)}{|x_j - x_0|} \leq \displaystyle \frac{T(y^{x_0, u_j}(T(x_j)))}{|x_j - x_0|} \\ & \leq & \displaystyle \frac{Cd_{\Gamma}(y^{x_0, u_j}(T(x_j)))}{|x_j - x_0|} \leq C \, \displaystyle \frac{\left|y^{x_0, u_j}(T(x_j)) - y^{x_j, u_j}(T(x_j))\right|}{|x_j - x_0|} \leq C \end{array}$$

We reached a contradiction supposing no singular optimal trajectory starts from 2

Minimum time with Hörmander VF

21/08/2017 20 / 34

Proof of necessity: $T(x_j) < T(x_0)$

Suppose now
$$T(x_j) < T(x_0)$$
 and let $y^{x_j,u_j}(t)$ be time-optimal

Without loss of generality we can assume that

 $y^{x_j,u_j} \longrightarrow y^{x_0,\overline{u}}$ uniformly on $[0, T_0]$

Then $y^{x_0,\overline{u}}$ is optimal and so $y^{x_0,\overline{u}}(T(x_0)) \notin E$

By dynamic programming

$$\begin{array}{ll} j & \leq & \displaystyle \frac{T(x_0) - T(x_j)}{|x_j - x_0|} \leq \displaystyle \frac{T(y^{x_0, u_j}(T(x_j)))}{|x_j - x_0|} \\ & \leq & \displaystyle \frac{Cd_{\Gamma}(y^{x_0, u_j}(T(x_j)))}{|x_j - x_0|} \leq C \, \frac{|y^{x_0, u_j}(T(x_j)) - y^{x_j, u_j}(T(x_j))|}{|x_j - x_0|} \leq C \end{array}$$

We reached a contradiction supposing no singular optimal trajectory starts from a

Minimum time with Hörmander VF

21/08/2017 20 / 34

Proof of necessity: $T(x_j) < T(x_0)$

Suppose now
$$T(x_j) < T(x_0)$$
 and let $y^{x_j,u_j}(t)$ be time-optimal

Without loss of generality we can assume that

 $y^{x_j,u_j} \longrightarrow y^{x_0,\overline{u}}$ uniformly on $[0, T_0]$

Then $y^{x_0,\overline{u}}$ is optimal and so $y^{x_0,\overline{u}}(T(x_0)) \notin E$

By dynamic programming

$$j \leq \frac{T(x_0) - T(x_j)}{|x_j - x_0|} \leq \frac{T(y^{x_0, u_j}(T(x_j)))}{|x_j - x_0|}$$

$$\leq \frac{Cd_{\Gamma}(y^{x_0, u_j}(T(x_j)))}{|x_j - x_0|} \leq C \frac{|y^{x_0, u_j}(T(x_j)) - y^{x_j, u_j}(T(x_j))|}{|x_j - x_0|} \leq C$$

21/08/2017

20/34

We reached a contradiction supposing no singular optimal trajectory starts from x_0

Interior regularity

Theorem

Let $\{X_i\}_{i=1}^N$ be Hörmander v.f. Then the following properties are equivalent

- The minimum time problem has no singular optimal trajectory
- 2 T is locally semiconcave in Ω
- 3 T is locally Lipschitz in Ω

Remark

The local semiconcavity of the sub-riemannian distance to a point x_0 , in the absence of singular trajectories, was proved by C – Rifford (2008) without giving any estimate of the dependance on x_0 of the semiconcavity constant of $d_{SR}(x_0, \cdot)$. This does not imply the semiconcavity of $T(x) = \min_{y \in \Gamma} d_{SR}(y, x)$

Interior regularity

Theorem

Let $\{X_i\}_{i=1}^N$ be Hörmander v.f. Then the following properties are equivalent

- The minimum time problem has no singular optimal trajectory
- 2 T is locally semiconcave in Ω
- 3 T is locally Lipschitz in Ω

Remark

The local semiconcavity of the sub-riemannian distance to a point x_0 , in the absence of singular trajectories, was proved by C – Rifford (2008) without giving any estimate of the dependance on x_0 of the semiconcavity constant of $d_{SR}(x_0, \cdot)$. This does not imply the semiconcavity of $T(x) = \min_{y \in \Gamma} d_{SR}(y, x)$

Boundary regularity

 $f:\overline{\Omega} \to \mathbb{R}$ is Hölder of exponent $\alpha \in]0, 1]$ at $x_0 \in \overline{\Omega}$ if \exists a neighbourhood U of x_0 and $K \ge 0$ such that

$$|f(x) - f(x_0)| \leq K |x - x_0|^{lpha} \qquad orall x \in U \cap \overline{\Omega}$$

Theorem Let $\{X_i\}_{i=1}^N$ be Hörmander v.f. Then • $x \in \Gamma \setminus E \implies T \in C^\infty$ on a neighborhood of x • $x \in E \implies T$ Hölder of exponent $\frac{1}{k(x)}$ at x, with $k(x) = \min \{k \ge 1 : Lie^k (\{X_i\}_{i=1}^N)[x] = \mathbb{R}^n\}$

Boundary regularity

 $f:\overline{\Omega} \to \mathbb{R}$ is Hölder of exponent $\alpha \in]0, 1]$ at $x_0 \in \overline{\Omega}$ if \exists a neighbourhood U of x_0 and $K \ge 0$ such that

$$|f(x) - f(x_0)| \le K |x - x_0|^{lpha} \qquad \forall x \in U \cap \overline{\Omega}$$

Theorem

Let $\{X_i\}_{i=1}^N$ be Hörmander v.f. Then • $x \in \Gamma \setminus E \implies T \in C^\infty$ on a neighborhood of x • $x \in E \implies T$ Hölder of exponent $\frac{1}{k(x)}$ at x, with $k(x) = \min \{k \ge 1 : Lie^k(\{X_i\}_{i=1}^N)[x] = \mathbb{R}^n\}$

\sim

22/34

21/08/2017

P. Cannarsa (Rome Tor Vergata)

Lipschitz singular sets

Define the Lipschitz singular set of T by

$$\operatorname{Sing}_{Lip} \mathcal{T} = \left\{ x \in \Omega \ : \ \limsup_{\Omega \ni y o x} rac{|\mathcal{T}(y) - \mathcal{T}(x)|}{|y - x|} = \infty
ight\}$$

and the Lipschitz singular support of T by

$$x \notin \operatorname{Sing\,supp}_{Lip} T \iff \exists \Omega \stackrel{\operatorname{open}}{\supset} U \ni x : T \in Lip(U)$$

Proposition (Properties of Sing_{Lip} T)

- (a) Sing_{Lip} T is closed in Ω
- (b) T is locally semiconcave in $\Omega \setminus \text{Sing}_{Lip}$ 7
- (c) Sing_{Lip} T = Sing supp_{Lip} 7
- (d) $\mathcal{L}^n(\operatorname{Sing}_{Lip} T) = 0$

21/08/2017 23 / 34

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

Lipschitz singular sets

Define the Lipschitz singular set of T by

$$\operatorname{Sing}_{Lip} \mathcal{T} = \left\{ x \in \Omega \ : \ \limsup_{\Omega \ni y o x} rac{|\mathcal{T}(y) - \mathcal{T}(x)|}{|y - x|} = \infty
ight\}$$

and the Lipschitz singular support of T by

$$x \notin \operatorname{Sing\,supp}_{Lip} T \iff \exists \Omega \stackrel{\operatorname{open}}{\supset} U \ni x : T \in Lip(U)$$

Proposition (Properties of Sing_{Lip} T)

- (a) $\operatorname{Sing}_{Lip} T$ is closed in Ω
- (b) T is locally semiconcave in $\Omega \setminus \text{Sing}_{Lip} T$
- (c) $\operatorname{Sing}_{Lip} T = \operatorname{Sing} \operatorname{supp}_{Lip} T$
- (d) $\mathcal{L}^n(\operatorname{Sing}_{Lip} T) = 0$

21/08/2017 23/34

< 口 > < 同 > < 三 > < 三 > -

(a) $\operatorname{Sing}_{Lip} T$ is closed in Ω

Let $\operatorname{Sing}_{Lip} T \ni x_j \to x \in \Omega$ and let $y_j := y^{x_j, u_j}$ be a singular time-optimal trajectories. One can assume that $y_j \xrightarrow{\operatorname{unif}} y$ optimal at x. Then

$$E
ightarrow \lim_{j \to \infty} y_j(T(x_j)) = y(T(x)) \implies y \text{ singular } \implies x \in \operatorname{Sing}_{Lip} T$$

(b) T is locally semiconcave in $\Omega \setminus \operatorname{Sing}_{Lip} T$

Since no singular trajectories in $\Omega \setminus \text{Sing}_{Lip} T$, one localizes proof of local semiconcavity

- (c) $\operatorname{Sing}_{Lip} T = \operatorname{Sing} \operatorname{supp}_{Lip} T$ Since semiconcave functions are locally Lipschil
- (d) $\mathcal{L}^n(\operatorname{Sing}_{Lip} T) = 0$

This follows from a result by Khai T. Nguyen (JMAA, 2010)

(a) $\operatorname{Sing}_{Lip} T$ is closed in Ω

Let $\operatorname{Sing}_{Lip} T \ni x_j \to x \in \Omega$ and let $y_j := y^{x_j, u_j}$ be a singular time-optimal trajectories. One can assume that $y_j \xrightarrow{\operatorname{unif}} y$ optimal at x. Then

$$E
ightarrow \lim_{j \to \infty} y_j(T(x_j)) = y(T(x)) \implies y \text{ singular } \implies x \in \operatorname{Sing}_{Lip} T$$

(b) T is locally semiconcave in $\Omega \setminus \operatorname{Sing}_{Lip} T$

Since no singular trajectories in $\Omega\setminus \text{Sing}_{\textit{Lip}}\ \textit{T},$ one localizes proof of local semiconcavity

(c) $\operatorname{Sing}_{Lip} T = \operatorname{Sing} \operatorname{supp}_{Lip} T$

Since semiconcave functions are locally Lipschitz

(d) $\mathcal{L}^{n}(\operatorname{Sing}_{Lip} T) = 0$ This follows from a result by Khai T. Nguyen (JMAA, 2010)

P. Cannarsa (Rome Tor Vergata)

Minimum time with Hörmander VF

21/08/2017 24 / 34

(a) $\operatorname{Sing}_{Lip} T$ is closed in Ω

Let $\operatorname{Sing}_{Lip} T \ni x_j \to x \in \Omega$ and let $y_j := y^{x_j, u_j}$ be a singular time-optimal trajectories. One can assume that $y_j \xrightarrow{\operatorname{unif}} y$ optimal at x. Then

$$E
ightarrow \lim_{j \to \infty} y_j(T(x_j)) = y(T(x)) \implies y \text{ singular } \implies x \in \operatorname{Sing}_{Lip} T$$

(b) T is locally semiconcave in $\Omega \setminus \operatorname{Sing}_{Lip} T$

Since no singular trajectories in $\Omega\setminus \text{Sing}_{\textit{Lip}}\ \textit{T},$ one localizes proof of local semiconcavity

(c) $\operatorname{Sing}_{Lip} T = \operatorname{Sing} \operatorname{supp}_{Lip} T$

Since semiconcave functions are locally Lipschitz

(d) $\mathcal{L}^n(\operatorname{Sing}_{Lip} T) = 0$

This follows from a result by Khai T. Nguyen (JMAA, 2010)

24/34

21/08/2017

(a) $\operatorname{Sing}_{Lip} T$ is closed in Ω

Let Sing_{*Lip*} $T \ni x_j \to x \in \Omega$ and let $y_j := y^{x_j, u_j}$ be a singular time-optimal trajectories. One can assume that $y_j \xrightarrow{\text{unif}} y$ optimal at x. Then

$$E
ightarrow \lim_{j \to \infty} y_j(T(x_j)) = y(T(x)) \implies y \text{ singular } \implies x \in \operatorname{Sing}_{Lip} T$$

(b) T is locally semiconcave in $\Omega \setminus \operatorname{Sing}_{Lip} T$

Since no singular trajectories in $\Omega\setminus \text{Sing}_{\textit{Lip}}\ \textit{T},$ one localizes proof of local semiconcavity

(c) $\operatorname{Sing}_{Lip} T = \operatorname{Sing} \operatorname{supp}_{Lip} T$

Since semiconcave functions are locally Lipschitz

(d) $\mathcal{L}^n(\operatorname{Sing}_{Lip} T) = 0$

This follows from a result by Khai T. Nguyen (JMAA, 2010)

24/34

21/08/2017

Definition

For any $x \in \Omega$ and $k \in \mathbb{N} \cup \{\infty\}$ we say that

 $x \notin \operatorname{Sing\,supp}_{C^k} T \iff \exists \Omega \supset U \ni x : T \in C^k(U)$

Theorem

Let $\{X_i\}_{i=1}^N$ be Hörmander v.f. Then

Sing supp_{C^{∞}} T = Sing supp_{$C^{1,1}$} T =: Sing supp T

Proof: Since Sing supp_{C1,1} $T \subseteq$ Sing supp_{C∞} T, it suffices to show that

 $\Omega \setminus \mathsf{Sing} \operatorname{supp}_{\mathcal{C}^{1,1}} \mathcal{T} \subseteq \Omega \setminus \mathsf{Sing} \operatorname{supp}_{\mathcal{C}^{\infty}} \mathcal{T}$

For all $x \in \Omega \setminus \text{Sing supp}_{C^{1,1}} T$:

- there is concave paraboloid touching graph T at (x, T(x))
- T is of class C² in a neighborhood of any optimal trajectory starting at x [C-, Frankowska, and Scarinci (2015)] and [C- and Scarinci (2015)]

Characteristics can then be used to recover regularity of initial data (=) (=)

P. Cannarsa (Rome Tor Vergata)

Definition

For any $x \in \Omega$ and $k \in \mathbb{N} \cup \{\infty\}$ we say that

 $x \notin \operatorname{Sing\,supp}_{C^k} T \iff \exists \Omega \supset U \ni x : T \in C^k(U)$

Theorem

Let $\{X_i\}_{i=1}^N$ be Hörmander v.f. Then

Sing supp_{C^{∞}} T = Sing supp_{$C^{1,1}$} T =: Sing supp T

Proof: Since Sing supp_{C1,1} $T \subseteq$ Sing supp_{C∞} T, it suffices to show that

 $\Omega \setminus \mathsf{Sing} \operatorname{supp}_{\mathcal{C}^{1,1}} \mathcal{T} \subseteq \Omega \setminus \mathsf{Sing} \operatorname{supp}_{\mathcal{C}^{\infty}} \mathcal{T}$

For all $x \in \Omega \setminus \text{Sing supp}_{C^{1,1}} T$:

- there is concave paraboloid touching graph T at (x, T(x))
- T is of class C² in a neighborhood of any optimal trajectory starting at x [C-, Frankowska, and Scarinci (2015)] and [C- and Scarinci (2015)]

Characteristics can then be used to recover regularity of initial data

P. Cannarsa (Rome Tor Vergata)

Definition

For any $x \in \Omega$ and $k \in \mathbb{N} \cup \{\infty\}$ we say that

 $x \notin \operatorname{Sing\,supp}_{C^k} T \iff \exists \Omega \supset U \ni x : T \in C^k(U)$

Theorem

Let $\{X_i\}_{i=1}^N$ be Hörmander v.f. Then

Sing supp_{C^{∞}} T = Sing supp_{$C^{1,1}$} T =: Sing supp T

Proof: Since Sing supp_{$C^{1,1}$} $T \subseteq$ Sing supp_{C^{∞}} T, it suffices to show that

 $\Omega \setminus \mathsf{Sing\,supp}_{\mathcal{C}^{1,1}} T \subseteq \Omega \setminus \mathsf{Sing\,supp}_{\mathcal{C}^{\infty}} T$

For all $x \in \Omega \setminus \text{Sing supp}_{C^{1,1}} T$:

• there is concave paraboloid touching graph T at (x, T(x))

 T is of class C² in a neighborhood of any optimal trajectory starting at x [C-, Frankowska, and Scarinci (2015)] and [C- and Scarinci (2015)]

Characteristics can then be used to recover regularity of initial data

P. Cannarsa (Rome Tor Vergata)

Definition

For any $x \in \Omega$ and $k \in \mathbb{N} \cup \{\infty\}$ we say that

 $x \notin \operatorname{Sing\,supp}_{C^k} T \iff \exists \Omega \supset U \ni x : T \in C^k(U)$

Theorem

Let $\{X_i\}_{i=1}^N$ be Hörmander v.f. Then

Sing supp_{C^{∞}} T = Sing supp_{$C^{1,1}$} T =: Sing supp T

Proof: Since Sing supp_{$C^{1,1}$} $T \subseteq$ Sing supp_{C^{∞}} T, it suffices to show that

 $\Omega \setminus \mathsf{Sing\,supp}_{\mathcal{C}^{1,1}} T \subseteq \Omega \setminus \mathsf{Sing\,supp}_{\mathcal{C}^{\infty}} T$

For all $x \in \Omega \setminus \text{Sing supp}_{C^{1,1}} T$:

- there is concave paraboloid touching graph T at (x, T(x))
- T is of class C² in a neighborhood of any optimal trajectory starting at x [C-, Frankowska, and Scarinci (2015)] and [C- and Scarinci (2015)]

Characteristics can then be used to recover regularity of initial data

P. Cannarsa (Rome Tor Vergata)

Measure of Sing supp T

Theorem

Let $\{X_i\}_{i=1}^N$ be Hörmander v.f. Then $\mathcal{L}^n(\text{Sing supp } T) = 0$

Proof: We show that $\left| \mathcal{L}^{n}(\text{Sing supp}_{C^{1,1}} T) = 0 \right|$ Indeed

$$\mathcal{L}^{n}(\operatorname{Sing\,supp}_{C^{1,1}} T) = \underbrace{\mathcal{L}^{n}(\operatorname{Sing}_{Lip} T)}_{=0 \text{ by K.T.Nguyen 2010}} + \mathcal{L}^{n}(\operatorname{Sing\,supp}_{C^{1,1}} T \setminus \operatorname{Sing}_{Lip} T)$$

T is locally semiconcave in $\Omega \setminus \text{Sing}_{Lip}$ T. So

- T has second order Taylor expansion at a.e. $x \in \Omega \setminus \text{Sing}_{Lip} T$ by Alexandroff
- any such x belongs to $\Omega \setminus \text{Sing supp}_{C^{1,1}} T$

Therefore

$$\mathcal{L}^n\Big(\operatorname{Sing\,supp}_{\mathcal{C}^{1,1}} T \setminus \operatorname{Sing}_{\mathit{Lip}} T\Big) = 0$$

Outline

Hörmander vector fields and continuity of T

2 Singular time-optimal trajectories and (lack of) Lipschitz continuity

3 Regularity of the minimum time function

Analysis of the singular sets of T

< ロ > < 同 > < 回 > < 回 >

Invariance for gradient flow

Denote by $\partial^{D} T(x)$ the Dini superdifferential of T at $x \in \Omega$, that is,

$$\partial^{D} T(x) = \left\{ p \in \mathbb{R}^{n} : \limsup_{\Omega \ni y \to x} \frac{T(y) - T(x) - \langle p, y - x \rangle}{|y - x|} \le 0 \right\}$$

Used in definition of viscosity solution together with Dini subdifferential $\partial_D T(x)$

Theorem

Let $\{X_i\}_{i=1}^{\infty}$ be Hörmander v.f. and suppose T is locally Lipschitz in Ω Then Sing supp T is invariant for the generalized gradient flow

$$\dot{\gamma}(t) \in \sum_{j=1}^{N} \left\langle X_{j}(\gamma(t)), \partial^{D} T(\gamma(t)) \right\rangle X_{j}(\gamma(t)) \quad (t \ge 0)$$

P. Cannarsa (Rome Tor Vergata)

Minimum time with Hörmander VF

21/08/2017 28 / 34

Invariance for gradient flow

Denote by $\partial^{D} T(x)$ the Dini superdifferential of T at $x \in \Omega$, that is,

$$\partial^{D} T(x) = \left\{ p \in \mathbb{R}^{n} : \limsup_{\Omega \ni y \to x} \frac{T(y) - T(x) - \langle p, y - x \rangle}{|y - x|} \le 0 \right\}$$

Used in definition of viscosity solution together with Dini subdifferential $\partial_D T(x)$

Theorem

Let $\{X_i\}_{i=1}^N$ be Hörmander v.f. and suppose T is locally Lipschitz in Ω Then Sing supp T is invariant for the generalized gradient flow

$$\dot{\gamma}(t) \in \sum_{j=1}^{N} \left\langle X_{j}(\gamma(t)), \partial^{D} \mathcal{T}(\gamma(t)) \right\rangle X_{j}(\gamma(t)) \quad (t \geq 0)$$

28/34

21/08/2017

P. Cannarsa (Rome Tor Vergata)

Homotopy equivalence

Corollary

Let $\{X_i\}_{i=1}^N$ be Hörmander v.f. and suppose T is locally Lipschitz in Ω Then Sing supp T and Ω are homotopy equivalent

References

- Albano, C-, Nguyen, and Sinestrari (2013) invariance of Sing *T* for Riemannian systems and homotopy equivalence
- Albano (2016) invariance of Sing supp *T* for Riemannian systems and homotopy equivalence
- C-, Cheng, and Fathi (2017) singularities of weak KAM solutions, homotopy equivalence (with complement of Aubry set), local path-wise connectedness

Þ,

21/08/2017 29 / 34
Homotopy equivalence

Corollary

Let $\{X_i\}_{i=1}^N$ be Hörmander v.f. and suppose T is locally Lipschitz in Ω Then Sing supp T and Ω are homotopy equivalent

References

- Albano, C-, Nguyen, and Sinestrari (2013) invariance of SingT for Riemannian systems and homotopy equivalence
- Albano (2016) invariance of Sing supp *T* for Riemannian systems and homotopy equivalence
- C-, Cheng, and Fathi (2017) singularities of weak KAM solutions, homotopy equivalence (with complement of Aubry set), local path-wise connectedness

Þ

Outline

Hörmander vector fields and continuity of T

2 Singular time-optimal trajectories and (lack of) Lipschitz continuity

3 Regularity of the minimum time function

Analysis of the singular sets of T

- Homotopy equivalence
- Estimate of Hausdorff dimension
- Nonsmooth targets

< ロ > < 同 > < 回 > < 回 >

Hausdorff measure of Sing_{Lip} T

Joint project with A. Marigonda and Khai T. Nguyen

Assume Ω satisfies a uniform Exterior Sphere Condition (ESC) of radius $\rho > 0$ for all $x \in \Gamma$ there exists $B_{\rho}(y_x) \subset \mathbb{R}^n \setminus \Omega$ such that $x \in \overline{B}_{\rho}(y_x)$ Equivalently, $\forall x \in \Gamma \exists p \in N_{\Omega}^{p}(x)$ with $|p| = \rho$

Define $T_0 = \max_{\overline{\Omega}} T$ and $\Gamma_t = \{x \in \overline{\Omega} : T(x) = t\} \ t \in [0, T_0]$ Then we expect the following to be true: • $\Gamma_t \cap \operatorname{Sing}_{Lip} T$ countably (n-2)-rectifiable • $\operatorname{Sing}_{Lip} T$ has σ -finite $\mathcal{H}^{(n-1)}$ measure and $\mathcal{H} - \dim(\operatorname{Sing}_{Lip} T) \leq n-1$

Hausdorff measure of $Sing_{Lip} T$

Joint project with A. Marigonda and Khai T. Nguyen Assume Ω satisfies a uniform Exterior Sphere Condition (ESC) of radius $\rho > 0$ for all $x \in \Gamma$ there exists $B_{\rho}(y_x) \subset \mathbb{R}^n \setminus \Omega$ such that $x \in \overline{B}_{\rho}(y_x)$ Equivalently, $\forall x \in \Gamma \exists p \in N_{\Omega}^{p}(x)$ with $|p| = \rho$

21/08/2017 31 / 34

Hausdorff measure of $Sing_{Lip} T$

Joint project with A. Marigonda and Khai T. Nguyen Assume Ω satisfies a uniform Exterior Sphere Condition (ESC) of radius $\rho > 0$

for all $x \in \Gamma$ there exists $B_{\rho}(y_x) \subset \mathbb{R}^n \setminus \Omega$ such that $x \in \overline{B}_{\rho}(y_x)$ Equivalently, $\forall x \in \Gamma \exists \rho \in N_{\Omega}^{\rho}(x)$ with $|\rho| = \rho$

・ 同 ト ・ ヨ ト ・ ヨ ト

Outline

Hörmander vector fields and continuity of T

2 Singular time-optimal trajectories and (lack of) Lipschitz continuity

3 Regularity of the minimum time function

Analysis of the singular sets of T

Work in Progress

- Homotopy equivalence
- Estimate of Hausdorff dimension
- Nonsmooth targets

< ロ > < 同 > < 回 > < 回 >

Extension to general targets

Joint project with H. Frankowska and V. Basco

Our goals

- To study minimum time function *T* for a system of (smooth) Hörmander verctor fields with a general (nosmooth) target (even a point)
- To recover a.e. differentiability of T
- To obtain necessary and sufficient conditions for Lipschitz continuity and semiconcavity of T
- To derive optimality conditions (sensitivity relations, optimal feedback)
- To study regularity of singular time optimal trajectories

What we have obtained so far

- Lipschitz continuity and semiconcavity in absence of singular trajectories
- Co-state inclusions when Ω satisfies uniform (ESC)
- Co-state inclusion in absence of singular trajectories

P. Cannarsa (Rome Tor Vergata)

Minimum time with Hörmander VF

21/08/2017 33 / 34

Extension to general targets

Joint project with H. Frankowska and V. Basco

Our goals

- To study minimum time function *T* for a system of (smooth) Hörmander verctor fields with a general (nosmooth) target (even a point)
- To recover a.e. differentiability of T
- To obtain necessary and sufficient conditions for Lipschitz continuity and semiconcavity of *T*
- To derive optimality conditions (sensitivity relations, optimal feedback)
- To study regularity of singular time optimal trajectories

What we have obtained so far

- Lipschitz continuity and semiconcavity in absence of singular trajectories
- Co-state inclusions when Ω satisfies uniform (ESC)
- Co-state inclusion in absence of singular trajectories

P. Cannarsa (Rome Tor Vergata)

Minimum time with Hörmander VF

21/08/2017 33 / 34

Extension to general targets

Joint project with H. Frankowska and V. Basco

Our goals

- To study minimum time function *T* for a system of (smooth) Hörmander verctor fields with a general (nosmooth) target (even a point)
- To recover a.e. differentiability of T
- To obtain necessary and sufficient conditions for Lipschitz continuity and semiconcavity of *T*
- To derive optimality conditions (sensitivity relations, optimal feedback)
- To study regularity of singular time optimal trajectories

What we have obtained so far

- Lipschitz continuity and semiconcavity in absence of singular trajectories
- Co-state inclusions when Ω satisfies uniform (ESC)
- Co-state inclusion in absence of singular trajectories

Thank you for your attention

P. Cannarsa (Rome Tor Vergata)

Minimum time with Hörmander VF

21/08/2017 34 / 34

Э

・ロ・・ (日・・ モ・・ ・ モ・