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Abstract. This paper is concerned with the controllability of some (linear and semilinear) non-
diagonalizable parabolic systems of PDEs. We will show that the well known null controllability prop-
erties of the classical heat equation are also satisfied by these systems at least when there are as many
scalar controls as equations and some (maybe technical) conditions are satisfied. We will also show
that, in some particular situations, the number of controls can be reduced. The minimal amount is
then determined by a Kalman rank condition.
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1. Introduction

This paper deals with the controllability properties of some non-diagonalizable parabolic systems.
Let Ω ⊂ RN be a non-empty regular and bounded domain, let us fix T > 0 and let us set Q := Ω × (0, T )

and Σ := ∂Ω × (0, T ). We will first consider the linear system⎧⎨⎩
yt −AΔy = M(x, t)y +Bv1ω in Q,

y = 0 on Σ,

y(x, 0) = y0(x) in Ω,

(1.1)

where ω ⊂ Ω is a (small) open subdomain,

A ∈ L(Rn), M ∈ L∞(Q;L(Rn)), B ∈ L(Rn′
; Rn) and y0 ∈ L2(Ω; Rn).

Here, v = (v1, . . . , vn′)∗ is the control, to be determined for example in L2(ω × (0, T ); Rn′
), while y =

(y1, . . . , yn)∗ is the state. Of course, the most interesting situation appears when we are able to control the
system for large n and small n′, since this means that we govern the behavior of many equations with few
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controls. However, we will see that the coupling through the non-diagonalizable matrix A in the higher order
terms of the operator introduces serious difficulties to control with n′ < n.

The following assumption will be assumed throughout this paper:

∃a0 > 0 such that Aξ · ξ ≥ a0|ξ|2 ∀ξ ∈ Rn. (1.2)

Notice that, if (1.2) is satisfied, for every v ∈ L2(ω× (0, T ); Rn′
) and every y0 ∈ L2(Ω; Rn), (1.1) possesses a

unique weak solution y, with

y ∈ L2(0, T ;H1
0(Ω; Rn)) ∩ C0([0, T ];L2(Ω; Rn));

see Section 2.
For maybe technical reasons, we will also assume that

The dimensions of the Jordan blocks of the canonical form of A are ≤ 4. (1.3)

It will be said that (1.1) is null-controllable at time T if, for any y0 ∈ L2(Ω; Rn), there exists v ∈ L2(ω ×
(0, T ); Rn′

) such that the associated solution satisfies

y(x, T ) = 0 in Ω. (1.4)

Since (1.1) is linear, this is equivalent to the exact controllability to the trajectories at time T , that is to say,
to the following property: for any trajectory ŷ (i.e. any weak solution to (1.1) corresponding to an initial state
ŷ0 ∈ L2(Ω; Rn) and the control v ≡ 0) and any y0 ∈ L2(Ω; Rn), there exists v ∈ L2(ω × (0, T ); Rn′

) such that
the associated solution satisfies

y(x, T ) = ŷ(x, T ) in Ω. (1.5)

Consequently, the null controllability of (1.1) also implies approximate controllability, i.e. the fact that, for
any y0, yd ∈ L2(Ω; Rn) and any ε > 0, there exists v ∈ L2(ω × (0, T ); Rn′

) such that the associated solution
satisfies

‖y(· , T )− yd‖L2 ≤ ε.

The controllability properties of similar scalar problems are nowadays well known; see for in-
stance [18, 19, 22, 26, 31, 32]. To be precise, let us consider the following control system⎧⎨⎩

zt −Δz = u1ω in Q,

z = 0 on Σ,

z(x, 0) = z0(x) in Ω.

(1.6)

Then, for every Ω, ω and T , (1.6) is null-controllable at time T ; see [26, 31].
To our knowledge, almost all the papers in the literature devoted to the controllability of parabolic non-scalar

systems of PDEs deal with distributed controls; see for instance [3–5,14,27–29,35]. In these papers, most results
have been established for 2× 2 systems, with the control exerted only on one equation. The best achievements
in this context seem to be those in [4,5,28]. In [28], the authors study a cascade parabolic system of n equations
(n ≥ 2) controlled with one single distributed control. In [4, 5], the authors provide necessary and sufficient
conditions for the controllability of n×n parabolic linear systems with constant or time-dependent coefficients.
The analysis of similar boundary controllability problems has been the objective of [7, 13, 20]. A review of all
these results can be found in [8].

It is an interesting fact that, in the framework of the controllability of coupled parabolic systems, new (and
possibly counter-intuitive) phenomena arise: minimal time of controllability and dependence of the controllability
result on the position of the control domain ω; see [9–11,15].
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Let us recall one of the main results proved in [4]. Consider the problem⎧⎨⎩
yt −Δy = My +Bv1ω in Q

y = 0 on Σ

y(·, 0) = y0 in Ω

(1.7)

where M ∈ L(Rn; Rn), B ∈ L(Rn′
; Rn) (with n, n′ ≥ 1) and y0 ∈ L2(Ω; Rn). Let [M |B] be the following matrix

in L(Rn×n′
; Rn):

[M |B] = [B |MB |M2B | . . . |Mn−1B]. (1.8)

Then the following holds:

The linear system (1.7) is null controllable if and only the so called Kalman’s rank condition

rank [M |B] = n

is satisfied. In that case, null controllability holds at time T > 0.

In this paper, our first main result is the following.

Theorem 1.1. Let A, M = M(x, t) and B be as above. Assume that (1.2) and (1.3) are satisfied and, also,

n′ ≥ n, rankB = n. (1.9)

Then (1.1) is null controllable.

In practice, (1.9) means that there are many scalar controls in the system (at least as many as scalar states)
and, moreover, their “action” through B can have any direction in the n-dimensional space R

n.
The proof relies on a (new) global Carleman inequality that can be obtained for the solutions to the related

adjoint systems ⎧⎨⎩
−ϕt −A∗Δϕ = M(x, t)∗ϕ in Q

ϕ = 0 on Σ

ϕ(x, T ) = ϕT (x) in Ω

(1.10)

where ϕT ∈ L2(Ω; Rn); see Lemma 2.3. We have tried to explain that assumption (1.3) is necessary for this
argument in Remark 2.4. At present, we have not been able to exclude it from the hypotheses.

Remark 1.2. Observe that assumptions (1.3) and (1.9) are sufficient to ensure the null controllability property
of (1.1) for any diffusion and coupling matrices A and M = M(x, t). Assumption (1.9) is not necessary for
proving the null controllability of system (1.1). Indeed, in [6,27] the authors prove the (local) null controllability
result of phase-field models by one control force (n = 2, n′ = 1).

Remark 1.3. If n′ < n and M is a L∞ matrix-valued function, even when A is a multiple of the identity, new
phenomena can arise. More precisely, in [15] the authors prove that the approximate controllability property
of a 2 × 2 linear system with A = I depends on the position of the control set ω. On the other hand, it is
established in [10] that, in the same framework, the null controllability result holds when the control time T > 0
is greater than a minimal time T0 which depends on the coefficients of M . The null controllability result fails
when T < T0.

Now, let us introduce a locally Lipschitz-continuous function f : Rn �→ Rn and let us consider the semilinear
system ⎧⎨⎩

yt −AΔy = f(y) +Bv1ω in Q,

y = 0 on Σ,

y(x, 0) = y0(x) in Ω.

(1.11)
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Again, we can speak of the null, exact to the trajectories or approximate controllability properties of (1.11).
For instance, it will be said that (1.11) is exactly controllable to the trajectories at time T if, for any y0 ∈
L2(Ω; Rn) and any weak solution ŷ corresponding to v ≡ 0, there exists a control v ∈ L2(ω × (0, T ); Rn′

) and
an associated solution y to (1.11) such that (1.5) holds. Now, this property is not equivalent but stronger than
null controllability. On the other hand, it is not difficult to see that it also implies approximate controllability.

Our second main result in this paper is the following:

Theorem 1.4. Let A and B be as in Theorem 1.1. Asume that (1.2), (1.3) and (1.9) hold and

f : R
n �→ R

n is globally Lipschitz-continuous. (1.12)

Then (1.11) is exactly controllable to the trajectories at any time T .

This result can be deduced from Theorem 1.1 (or, more precisely, from the Carleman inequality in Lem. 2.3
below) using arguments that are nowadays well known; see [23]. For completeness, we will provide the proof
in Section 3. We will also see that the asumption (1.12) can be weakened so that, in particular, some slightly
superlinear systems are controllable and, in fact, the action of the control can serve to avoid blow-up before
t = T .

Let us come back to (1.1) and let us consider the particular case in which M is constant. In this situation,
it is possible to obtain controllability results also for n′ ≤ n, provided B satisfies appropriate conditions.

More precisely, let us denote by λ1, λ2, . . . the eigenvalues of the Dirichlet Laplacian in Ω and let us recall
the notation (1.8). We then have the following theorem, which is the third main result in this paper:

Theorem 1.5. Let us assume that A,M ∈ L(Rn), B ∈ L(Rn′
; Rn) and (1.2) and (1.3) hold. Then (1.1) is null

controllable at time T if and only if the following condition is satisfied:

rank [λiA−M |B] = n ∀i ≥ 1. (1.13)

The same result was established in [5] in the case in which A is diagonalizable. There, an observability
inequality for a linear (adjoint) system is shown to be implied by a property satisfied by the solutions to a high
order scalar PDE. The proof of Theorem 1.5 uses similar arguments; the details are given in Section 4.

Notice that, in order to see whether or not (1.13) holds, one only has to check a finite amount of inequalities.
This is because the λi go to +∞ as i→ +∞ and, consequently, for i large enough, they are outside the solution
set of any algebraic equation of the form

detZ(λ) = 0,

where Z(λ) is a minor of [λiA−M |B].
An example of system that fulfills the assumptions of Theorem 1.5 is the following linearized two-phase

solidification model, see [33, 34]: ⎧⎨⎩
θt −Δθ = �1ut + �2wt +m11θ + v1ω,

ut −Δu = βθ +m22u+m23w,

wt −Δw = βθ +m32u+m33w.

(1.14)

Here, we assume that β, the �i and themij are positive constants. The unknowns θ, u and w can be interpreted
as the temperature and two phase-field functions associated with two different kinds of solidification processes.
It is not difficult to see that (1.14) can be written in the form (1.1), by replacing ut and vt in the first PDE.
The result is: ⎛⎝ θt

ut

wt

⎞⎠−A

⎛⎝ Δθ
Δu
Δw

⎞⎠ = M

⎛⎝ θ
u
w

⎞⎠+

⎛⎝ v1ω

0
0

⎞⎠ ,
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where

A =

⎛⎝1 �1 �2
0 1 0
0 0 1

⎞⎠ , M =

⎛⎝m11 + β(�1 + �2) �1m22 + �2m32 �1m23 + �2m33

β m22 m23

β m32 m33

⎞⎠ .
A simple computation shows that the condition (1.13) in Theorem 1.5 is in this case independent of λi and is
satisfied if and only if

m22 +m23 �= m32 +m33.

In the sequel, C, C0, C1, . . . and R are used to denote generic positive constants. Frequently, it will be
convenient to specify the particular data on which they depend.

The rest of the paper is organized as follows.
In the next section, we present the proof of Theorem 1.1. As mentioned above, the main tool for this proof is a

Carleman inequality for the solutions to (1.10). This is established by combining carefully appropriate Carleman
estimates for similar scalar problems.

In Section 3, we give the proof of Theorem 1.4. As for similar scalar problems, this relies on a fixed-point
argument. More precisely, we rewrite the controllability problem for (1.11) as a fixed-point equation for an
adequate mapping. It will be seen that (1.12) (or some other assumption of this kind) is needed to bound
uniformly the solutions, which justifies its inclusion in the result.

In Section 4, we give the proof of Theorem 1.5. As mentioned above, the main ideas for the proof have been
adapted from [4,5]; the main estimates (again leading to appropriate observability inequalities) are established
noting that the components of the solutions to the adjoint system solve a scalar PDE that is of the n-th order
in t and −Δ.

Finally, Section 5 deals with some final comments and open questions.

2. Proof of Theorem 1.1

In the reminder of this paper, we will denote by dmax the maximal dimension of a Jordan block of the
canonical form of A. By hypothesis, dmax ≤ 4.

The starting point is a basic global Carleman inequality for the solutions to scalar (real-valued and complex-
valued) parabolic equations.

Thus, let α0 = α0(x) be a function satisfying{
α0 ∈ C2(Ω), α0 > 0 in Ω, α0 = 0 on ∂Ω,
|∇α0| > 0 in Ω \ ω. (2.1)

Such a function exists, see [26]. Let us set

ξ(x, t) =
eλα0(x)

t(T − t)
, α(x, t) =

e(λ+μ)‖α0‖L∞ − eλα0(x)

t(T − t)
, ρ(x, t) = eα(x,t), (2.2)

where λ > 0 and μ > 0. The following notation will be used in order to abridge the estimates:

Im(s, λ;ψ) :=
∫∫

Q

ρ−2s
(
(sξ)m−4(|ψt|2 + |Δψ|2)

+ (sξ)m−2λ2|∇ψ|2 + (sξ)mλ4|ψ|2
)

and
Im,ω(s, λ;ψ) :=

∫∫
ω×(0,T )

ρ−2s(sξ)mλ4|ψ|2
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for all s, λ > 0, for any integer m and for any sufficiently regular function ψ = ψ(x, t) with values in R, C or Rn.
Let us consider the linear backwards in time scalar system⎧⎨⎩

−ψt −Δψ = g in Q,

ψ = 0 on Σ,

ψ(x, T ) = ψT (x) in Ω,

(2.3)

where g ∈ L2(Q) and ψT ∈ L2(Ω). In the following result, due to Fursikov and Imanuvilov [26], we recall the
basic global Carleman estimates for the solutions to (2.3).

Lemma 2.1. For any integer m, there exist constants sm, λm and Cm such that, for any s ≥ sm and any
λ ≥ λm, the solutions to (2.3) satisfy

Im(s, λ;ψ) ≤ Cm

(
Im,ω(s, λ;ψ) +

∫∫
Q

ρ−2s(sξ)m−3|g|2
)
. (2.4)

Furthermore, λm and Cm only depend on m, Ω and ω and sm can be taken of the form sm = σm(T + T 2),
where σm only depends on m, Ω and ω.

For a detailed justification of the existence and properties of λm, sm and Cm, see the proof of Lemma 1.3
in [24].

Secondly, let us consider the similar complex-valued system⎧⎨⎩
−ψt − (a+ ib)Δψ = g in Q,

ψ = 0 on Σ,

ψ(x, T ) = ψT (x) in Ω,

(2.5)

where now a, b ∈ R, a > 0, g ∈ L2(Q; C) and ψT ∈ L2(Ω; C). It is also possible to deduce global Carleman
estimates for the solutions to (2.5). They are given in the following lemma, whose proof is essentially given
in Fu [25].

Lemma 2.2. For any integer m, there exist constants sm, λm and Cm such that, for any s ≥ sm and any
λ ≥ λm, the solutions to (2.5) satisfy (2.4). Furthermore, λm and Cm only depend on m, Ω, ω, a and b and
sm can be taken of the form sm = σm(T + T 2), where σm only depends on m, Ω, ω, a and b.

Again, the existence and properties of λm, sm and Cm are justified by the arguments in [24].
Let us set g = g1 + ig2 and ψT = ηT + iζT in (2.5). By writting the solutions in the form ψ = η + iζ, we see

that they can also be regarded as solutions to the 2 × 2 system

−
(
ηt

ζt

)
−
(
a −b
b a

)(
Δη
Δζ

)
=
(
g1
g2

)
,

together with Dirichlet boundary and initial conditions for η and ζ.

Let us denote by M∞ the norm of M in L∞(Q;L(Rn)). Now, we present a Carleman estimate for the solutions
to the non-scalar (adjoint) problem (1.10):

Lemma 2.3. Let the assumptions in Theorem 1.1 be satisfied. For any integer m, there exist constants s′m, λ′m
and C′

m such that, for any s ≥ s′m and any λ ≥ λ′m, the solutions to (1.10) satisfy

Im−3(s, λ;ϕ) ≤ C′
mIm,ω(s, λ;ϕ). (2.6)

Furthermore, C′
m only depends on m, Ω, ω and A, λ′m only depends on m, Ω, ω, A and M∞ and s′m can be

taken of the form s′m = σ′
m(T + T 2), where σ′

m only depends on m, Ω, ω, A and M∞.
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Proof. In this proof, we will denote by C0 a generic positive constant only depending on Ω, ω and A.
First, notice that it can be assumed that A is written in the canonical form. Indeed, there exists a non-singular

matrix P ∈ L(Cn) such that A = PJP−1 for some J ∈ L(Cn) of the form

J = diag (J1, . . . , Js),

where the Ji are the Jordan blocks associated to the eigenvalues μi of A. By hypothesis, we have (1.2) and this
implies that, for all i,

Ji =

⎡⎢⎣μi 1
μi 1
μi 1
μi

⎤⎥⎦ (2.7)

or a matrix with the same shape and smaller dimension, with Re μi > 0.
The solutions to (1.10) can be put in correspondance with the solutions to⎧⎪⎨⎪⎩

−ψt − J∗Δψ = P ∗M(x, t)∗(P ∗)−1ψ in Q,

ψ = 0 on Σ,

ψ(x, T ) = P ∗ϕT (x) in Ω,

(2.8)

through the change of variable ϕ = (P ∗)−1ψ and, obviously, it suffices to prove (2.6) for ψ.
For instance, let us assume that, in (2.8), the first four PDEs correspond to the same block and let us write

them in the form

−ψ1,t − μΔψ1 =
n∑

j=1

M̃1j(x, t)ψj ,

−ψ2,t − μΔψ2 =
n∑

j=1

M̃2j(x, t)ψj +Δψ1,

−ψ3,t − μΔψ3 =
n∑

j=1

M̃3j(x, t)ψj +Δψ2,

−ψ4,t − μΔψ4 =
n∑

j=1

M̃4j(x, t)ψj +Δψ3, (2.9)

where the M̃ij(x, t) stand for the components of the matrix P ∗M(x, t)∗(P ∗)−1.
Let us write (2.4) for ψ1, ψ2, ψ3 and ψ4 respectively with m = 3, 2, 1 and 0. The following is found for all

large s and λ:

I3(s, λ;ψ1) ≤ C0

(
I3,ω(s, λ;ψ1) +M2

∞

∫∫
Q

ρ−2s|ψ|2
)
,

I2(s, λ;ψ2) ≤ C0

(
I2,ω(s, λ;ψ2) +M2

∞

∫∫
Q

ρ−2s(sξ)−1|ψ|2 +
∫∫

Q

ρ−2s(sξ)−1|Δψ1|2
)
,

I1(s, λ;ψ3) ≤ C0

(
I1,ω(s, λ;ψ3) +M2

∞

∫∫
Q

ρ−2s(sξ)−2|ψ|2 +
∫∫

Q

ρ−2s(sξ)−2|Δψ2|2
)
,

I0(s, λ;ψ4) ≤ C0

(
I0,ω(s, λ;ψ4) +M2

∞

∫∫
Q

ρ−2s(sξ)−3|ψ|2 +
∫∫

Q

ρ−2s(sξ)−3|Δψ3|2
)
. (2.10)
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Therefore, an appropriate linear combination of the left hand sides can be used to control and absorb all the
second-order terms in the right. Indeed, it is clear that (sξ)n1 ≤ C(sξ)n2 whenever n1 ≤ n2. Accordingly, if
s ≥ σ0(T + T 2) for some σ0 only depending on Ω and ω, we have:

I3(s, λ;ψ1) + I2(s, λ;ψ2) + I1(s, λ;ψ3) + I0(s, λ;ψ4)

≤ C0

(
I3,ω(s, λ;ψ1) + I2,ω(s, λ;ψ2) + I1,ω(s, λ;ψ3) + I0,ω(s, λ;ψ4)

)
+ C0M

2
∞

∫∫
Q

ρ−2s|ψ|2.

In order to absorb as many terms as possible in the last integral in the right hand side, we do as follows:

(1) We take s ≥ s3 + C0M
2/3
∞ T 2 and λ ≥ λ3; this makes it possible to skip |ψ1|2.

(2) Then, we take s and λ as before and also satisfying s ≥ s2 + C0M∞T 2 and λ ≥ λ2; in this way, we can
suppress |ψ2|2.

(3) Then, with s and λ as in the previous step and also satisfying s ≥ s1 + C0M
2∞T 2 and λ ≥ λ2, we can also

skip |ψ3|2 and, finally,
(4) We choose s and λ as in the previous step and also satisfying s ≥ s0 and λ ≥ λ0 +C0M

1/2
∞ , in order to skip

|ψ4|2.

Hence, there exist s′3 and λ′3 (as in the statement) such that, for all s ≥ s′3 and λ ≥ λ′3, one has:

I3(s, λ;ψ1) + I2(s, λ;ψ2) + I1(s, λ;ψ3) + I0(s, λ;ψ4)

≤ C0

(
I3,ω(s, λ;ψ1) + I2,ω(s, λ;ψ2) + I1,ω(s, λ;ψ3) + I0,ω(s, λ;ψ4)

)
+ C0M

2
∞

∫∫
Q

ρ−2s
∑
j≥5

|ψj |2. (2.11)

Obviously, similar estimates can also be obtained for the ψi corresponding to any other Jordan block of equal
or lower dimension.

It is also clear that, if we choose s and eventually λ as indicated, after addition, we get in the left hand side
terms that can absorb all the zero-order terms in the right. Therefore,

I0(s, λ;ψ) ≤ C0I3,ω(s, λ;ψ)

for all s ≥ s′3, λ ≥ λ′3. This proves the lemma for m = 3.
With similar computations, it is possible to prove (2.6) for any other integer m. We skip the details, that can

be easily deduced from the previous argument. �

Remark 2.4. From the proof of this lemma, we see that the best possible choices of s′m and λ′m are as follows
(recall that dmax denotes the maximal dimension of a Jordan block for A):

• If dmax = 1 (i.e. A is diagonalizable), then we can choose s′m = sm + C0M
2/3
∞ T 2 and λ′m = λm.

• If dmax = 2, we can take s′m = sm + C0M∞T 2 and λ′m = λm.
• If dmax = 3, then we need s′m = sm + C0M

2
∞T

2 and λ′m = λm.
• Finally, if dmax = 4, we have to take s′m = sm and λ′m = λm + C0M

2
∞.

Remark 2.5. It is also clear that a proof of (2.6) of the same kind cannot work when dmax ≥ 5. Indeed, if
(for instance) the first block is of dimension 5, the associated components ψ1, . . . , ψ5 are coupled through
second-order terms and we must add to (2.9) a fifth PDE:

−ψ5,t − μΔψ5 =
n∑

j=1

M̃5j(x, t)ψj +Δψ4.
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If we look for an estimate of ψ5 and we try to incorporate a new Carleman inequality to (2.10), in view of the
term Δψ4 in the right hand side, we are forced to take m = −1. But then the zero-order term for ψ5 that we
obtain in the left is ∫∫

Q

ρ−2s(sξ)−1λ4|ψ5|2

and this is not sufficient to control the similar zero-order term in the right coming from the first Carleman
inequality in (2.10).

We can now achieve the proof of Theorem 1.1.
In the remainder of this section, R (resp. C) denotes various positive constants only depending on Ω, ω, A

and M∞ (resp. Ω, ω, A, M∞ and T ).
First, recall that, in view of classical arguments, the null controllabilty of (1.1) is equivalent to the observability

of (1.10), that is, to the estimate

‖ϕ(· , 0)‖2
L2 ≤ C

∫∫
ω×(0,T )

|B∗ϕ|2 (2.12)

for any solution to (1.10); for a detailed explanation, see for instance [24].
In view of the assumption (1.9), this is also equivalent to the simpler estimate

‖ϕ(· , 0)‖2
L2 ≤ C

∫∫
ω×(0,T )

|ϕ|2. (2.13)

Therefore, let us check that the Carleman inequality (2.6), together with the usual parabolic energy estimates,
imply (2.13) for some C.

Indeed, let us take (for example) m = 3, s = s′3 and λ = λ′3 in (2.6). In view of the energy estimates

− d
dt

‖ϕ‖2
L2 + 2a0‖∇ϕ‖2

L2 ≤ R‖ϕ‖2
L2,

we find that

‖ϕ(· , 0)‖2
L2 ≤ 2

T
eRT

∫ 3T/4

T/4

‖ϕ(· , t)‖2
L2 dt. (2.14)

The left hand side of (2.6) is bounded from below as follows:

I0(s′3, λ
′
3;ϕ) ≥

∫∫
Q

ρ−2s′
3λ′43 |ϕ|2

≥ R

∫ 3T/4

T/4

e−2s′
3α∗(t)‖ϕ(· , t)‖2

L2 dt,
(2.15)

where
α∗(t) := max

Ω
α(x, t) ≤ R

T 2
·

Since s′3 has the form s′3 = R(T + T 2), the following is obtained:

I0(s′3, λ
′
3;ϕ) ≥ e−R(1+ 1

T )
∫ 3T/4

T/4

‖ϕ(· , t)‖2
L2 dt

and this inequality, together with (2.14), yields:

I0(s′3, λ
′
3;ϕ) ≥ e−R(1+T+ 1

T )‖ϕ(· , 0)‖2
L2.
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On the other hand, the right hand of (2.6) can be easily bounded from above:

I3,ω(s′3, λ
′
3;ϕ) =

∫∫
ω×(0,T )

ρ−2s′
3(s′3ξ)

3λ′43 |ϕ|2

≤ R

∫∫
ω×(0,T )

1
t3(T − t)3

e−
R(T+T2)

t(T−t) |ϕ|2

≤
∫∫

ω×(0,T )

e−R(1+ 1
T )|ϕ|2

(2.16)

and, from (2.15) and (2.16), we find (2.13) with a constant C of the form

C = eR(1+T+ 1
T ). (2.17)

Consequently, (1.10) is observable and the null controllability of (1.1) is proved.

Remark 2.6. From (2.13) and the fact C takes the form (2.17), we find an estimate of the cost C(y0) of the
null controllability of (1.1). In other words, one has:

C(y0) := inf{ ‖v‖L2(ω×(0,T );Rn′) : y and v satisfy (1.1) and (1.4) }
≤ eK(1+T+ 1

T )‖y0‖L2 .

In fact, this estimate can be improved if we use the “optimal” s′m and λ′m indicated in Remark 2.4. Thus, it
can be seen that C(y0) ≤ C∗‖y0‖L2, where

C∗ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
eR(1+ 1

T +M2/3
∞ ) if dmax = 1,

eR(1+ 1
T +M∞) if dmax = 2,

eR(1+ 1
T +M2

∞) if dmax = 3,

eR
(
1+ 1

T +eRM2∞
)

if dmax = 4,

(2.18)

and R only depends on Ω, ω and A. The computations are lenghty and will be omitted.

Remark 2.7. Similar results to Theorem 1.1 can be established for linear systems of the form⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
yt −AΔy = M(x, t)y +

N∑
k=1

∂k(W k(x, t)y) +Bv1ω in Q

y = 0 on Σ

y(x, 0) = y0(x) in Ω

(2.19)

and ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
yt − AΔy = M(x, t)y +

N∑
k=1

W k(x, t)∂ky +Bv1ω in Q

y = 0 on Σ

y(x, 0) = y0(x) in Ω

with M,W k ∈ L∞(Q;L(Rn)). In these cases, in order to prove the observability of the associated adjoint states,
we have to assume that the Jordan blocks of the canonical form of A must have dimensions ≤ 2. Indeed, let us
see this for instance for (2.19). The adjoint system is the following one:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−ϕt −A∗Δϕ = M(x, t)∗ϕ−
N∑

k=1

W k(x, t)∗∂kϕ in Q

ϕ = 0 on Σ

ϕ(x, T ) = ϕT (x) in Ω.
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Again, it can be assumed that A is in the canonical form. In the Carleman estimates corresponding to the
components ϕ1, ϕ2, . . . associated to a Jordan block, we find in the left hand side exponents of s of orders 1, 0,
−1, etc. for |∇ϕ1|2, |∇ϕ2|2, |∇ϕ3|2, etc. However, in the right hand side, we now have all the |∇ϕi|2 multiplied
by s0. Consequently, we can deal with Jordan blocks of at most dimension 2.

3. Proof of Theorem 1.4

This section is devoted to proving that, under the assumptions in Theorem 1.4, the semilinear system (1.11)
is exactly controllable to the trajectories. The proof of this controllability property can be obtained from
Lemma 2.3 essentially as in the scalar case; see [23, 26].

The argument is the following.
Let us fix a trajectory ŷ, that is, a weak solution to (1.11) for v ≡ 0. By introducing the change of variable

y = ŷ + w, it is clear that what we have to prove is the null controllability of the system⎧⎨⎩
wt −AΔw = h(x, t;w) + v1ω in Q

w = 0 on Σ

w(x, 0) = w0(x) in Ω

(3.1)

where we have introduced
h(x, t; s) := f(s+ ŷ(x, t)) − f(ŷ(x, t)).

Let us first assume that f ∈ C1(Rn; Rn) (and is globally Lipschitz).
Notice that, for each i, hi(x, t;w) can be written in the form

hi(x, t;w) =
n∑

�=1

(∫ 1

0

∂�fi(σw + ŷ(x, t)) dσ
)
w� := Gi(x, t;w)w

and then
h(x, t;w) ≡ G(x, t;w)w for some G ∈ C0(Q× R

n;L(Rn)).

Consequently, it suffices to find a fixed-point of the mapping z �→ w, where we assume that w is, together with
some v ∈ L2(ω × (0, T ); Rn), a solution to the linear system⎧⎨⎩

wt −AΔw = G(x, t; z)w + v1ω in Q

w = 0 on Σ

w(x, 0) = w0(x) in Ω

(3.2)

satisfying
w(x, T ) = 0 in Ω. (3.3)

Observe that G = {Gij} for some uniformly bounded Carathéodory functions Gij : Q × Rn �→ R. Let us
denote by G∞ the norm of G in L∞(Q × Rn;L(Rn)). Then (3.2) is a system of the form (1.1) and, for each
z ∈ L2(Q; Rn), we can apply Theorem 1.1 to (3.2) and deduce that there exist controls v ∈ L2(ω × (0, T ); Rn)
and associated states w satisfying (3.3). It is also clear from this theorem and Remark 2.6 that v and w can be
found satisfying the following estimates:

‖v‖L2(ω×(0,T );Rn) ≤ eR(1+T+ 1
T )‖w0‖L2 (3.4)

and
‖w‖L2(Q;Rn) ≤ eR(1+T+ 1

T )‖w0‖L2 , (3.5)

where R depends on Ω, ω, A and G∞ but is independent of z ∈ L2(Q; Rn).
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Let us introduce the multi-valued mappings Λ0 : L2(Q; Rn) �→ L2(ω × (0, T ); Rn) and Λ : L2(Q; Rn) �→
L2(Q; Rn), with

Λ0(z) = { v ∈ L2(ω × (0, T ); Rn) : v is a null control for (3.2) satisfying (3.4) }
and

Λ(z) = {w ∈ L2(Q; Rn) : w solves (3.2) with v ∈ Λ0(z) }
for all z ∈ L2(Q; Rn).

At this point, it is easy to check that, as in the scalar case, Λ satisfies all the hypotheses of Kakutani’s
fixed-point Theorem (see for instance [12]). Consequently, Λ possesses at least one fixed-point w ∈ L2(Q; Rn)
and, obviously, w solves together with some v ∈ L2(ω× (0, T ); Rn) the nonlinear system (3.1) and satisfies (3.3).
This proves Theorem 1.4 when f ∈ C1(Rn; Rn).

Let us now assume that f satisfies (1.12) but is not necessarily C1. Then, there exist regular functions
f1, f2, . . . satisfying

fk → f weakly-∗ in W 1,∞(Rn; Rn), strongly in L2
loc(R

n; Rn) and a.e.
|f ′

k| ≤ C in R
n ∀k ≥ 1.

We can solve the nonlinear null controllability problems associated to the fk and find controls vk and states
wk uniformly bounded in the L2 norms. After some work, using standard energy estimates, we can extract
convergent sequences and deduce that the limits v and w again satisfy (3.1) and (3.3).

This ends the proof of Theorem 1.4.

Remark 3.1. Kakutani’s Theorem has been used in the context of the controllability of nonlinear PDEs a lot
of times. See for instance [18, 21, 23].

Remark 3.2. As we said in Section 1, the hypothesis (1.12) can be weakened. In fact, a more involved fixed-
point argument shows that (1.11) is exactly controllable to the trajectories whenever the following conditions
are satisfied:

(1) A and B are as in Theorem 1.1.
(2) f : Rn �→ Rn is locally Lipschitz-continuous and there exists at least one globally defined solution y = y(x, t)

to the PDE in (1.11), with
y ∈ L∞(Q; Rn) ∩ L2(0, T ;H1

0(Ω; Rn)).

(3) One has

lim sup
|z|→+∞

|f(z)|
|z|X(|z|) = 0,

where the function X : R+ �→ R+ is given by

X(r) =

⎧⎪⎪⎨⎪⎪⎩
(log(1 + r))3/2 if dmax = 1
(log(1 + r)) if dmax = 2
(log(1 + r))1/2 if dmax = 3
(log(log(1 + r))) if dmax = 4

To get this result, it suffices to prove that, under these assumptions, when y0 ∈ L∞(Ω; Rn), the multi-valued
mapping Λ possesses at least one fixed-point in L∞(Q; Rn). This can be shown arguing as in the scalar case;
the main tool is an improved obervability estimate of the form

‖ϕ(· , 0)‖2
L2 ≤ C

(∫∫
ω×(0,T )

|ϕ|
)2

,

where C behaves similarly to the constant C∗ in (2.18). We omit the details, that can again be deduced easily
adapting the arguments in [23].
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4. Proof of Theorem 1.5

In this section, we will assume that M is a constant matrix.
Recall that the null controllability of (1.1) is equivalent to the existence of a constant C such that

‖ϕ(· , 0)‖2
L2 ≤ C

∫∫
ω×(0,T )

|B∗ϕ|2 (4.1)

for any solution to (1.10).
Let us first assume that (1.1) is null-controllable.
If we have rank [λiA −M |B] ≤ n− 1 for some i, then it is very easy to check that the associated ordinary

differential system is not null-controllable. In other words, there exists ΦT ∈ Rn \ {0} such that the solution to
the Cauchy problem

−Φt + (λiA
∗ −M∗)Φ = 0, t ∈ (0, T ); Φ(T ) = ΦT

satisfies
B∗Φ(t) ≡ 0.

If we now set ϕT = ΦTw
i, where wi is an eigenfunction associated to λi, we see that the corresponding

solution to (1.10) cannot satisfy (4.1).
Consequently, (1.13) must hold.
Conversely, let us assume that (1.13) is satisfied. In order to prove that (1.1) is null-controllable, we will

adapt some arguments from [5]. More precisely, the following estimates will be established:

(1) An estimate of ‖ϕ(· , t)‖L2 in terms of an integral in Ω concerning high-order spatial derivatives of ϕ:∫
Ω

|ϕ(x, t)|2 dx ≤ R

∫
Ω

|(−Δ)k(K∗ϕ)(x, t)|2 dx (4.2)

for any t ∈ [0, T ) and any k ≥ 2(n − 1)2, where R only depends on n, A and M . Here, the components of
K∗ϕ are appropriate linear combinations of the components of ϕ and their second-order in space derivatives;
see (4.4) below.
Notice that, for all t ∈ [0, T ), ϕ(· , t) is regular enough to give a sense to (−Δ)k(K∗ϕ)(· , t), which belongs
to L2(Ω).

(2) A weighted global estimate of these high-order derivatives in terms of a local integral of |B∗ϕ|2:∫∫
Q

ρ̂−2s|(−Δ)k(K∗ϕ)|2 ≤ C

∫∫
ω×(0,T )

|B∗ϕ|2 (4.3)

for some ρ̂ = ρ̂(t).

From (4.2) and (4.3), we will easily deduce (4.1) and, therefore, the null controllability of (1.1).

4.1. Proof of the space-like estimate (4.2)

Let us introduce the operators K : D(K) ⊂ L2(Ω; Rnn′
) �→ L2(Ω; Rn) and K∗ : D(K∗) ⊂ L2(Ω; Rn) �→

L2(Ω; Rnn′
), with

D(K) = { v ∈ L2(Ω; Rnn′
) : [−AΔ−M |B]v ∈ L2(Ω; Rn) },

D(K∗) = {ϕ ∈ L2(Ω; Rn) : [−AΔ−M |B]∗ϕ ∈ L2(Ω; Rnn′
) }

and
Kv := [−AΔ−M |B]v, K∗ϕ := [−AΔ−M |B]∗ϕ. (4.4)

Then K and K∗ are densely defined unbounded linear operators.
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Let us also introduce the matrices Ki, with

Ki := [λiA−M |B] ∈ L(Rnn′
; Rn) ∀i ≥ 1.

In order to prove (4.2), we first notice that the hypothesis (1.13) can be recast in the form

detKiK
∗
i �= 0 ∀i ≥ 1.

Let f ∈ L2(Ω; Rn) be given. We have
f =
∑
i≥1

aiwi (4.5)

for some ai ∈ Rn. Let us assume for the moment that ai = 0 for all i ≥ p + 1, for some p ≥ 1. Then K∗f and
(−Δ)kK∗f are well-defined and belong to L2(Ω; Rnn′

) and one has

K∗f =
∑

i

(
K∗

i a
i
)
wi, (−Δ)kK∗f =

∑
i

λk
i

(
K∗

i a
i
)
wi,

whence
‖(−Δ)kK∗f‖2

L2 =
∑

i

λ2k
i |K∗

i a
i|2. (4.6)

Let us denote by κi
j , for 1 ≤ j ≤ n, the (real and nonnegative) eigenvalues of KiK

∗
i . Then, we have the

following for all i:
|K∗

i a
i|2 = (KiK

∗
i a

i, ai) ≥ κi
1|ai|2. (4.7)

On the other hand, there exists C1 (independent of i) such that

detKiK
∗
i ≥ C1 ∀i ≥ 1. (4.8)

Indeed, let us set k̃(λ) := det K̃(λ)K̃(λ)∗ for all λ, where

K̃(λ) := [λA−M |B].

Then, k̃ is a polynomial function of degree 2n(n− 1), k̃(λ) ≥ 0 for all λ and, by assumption, k̃(λi) �= 0 for all
i. All possible solutions to the equation k̃(λ) = 0 satisfy |λ| < R for some R > 0 and there exists C2 > 0 such
that k̃(λ) ≥ C2 for |λ| ≥ R. Moreover, for some �, one has λ� > R. Hence,

• Either i ≤ �− 1 and then
detKiK

∗
i ≥ C3 := min

j≤�−1

(
detKjK

∗
j

)
,

• Or i ≥ � and then λi ≥ λ� > R and
detKiK

∗
i ≥ C2.

In both cases, we have (4.8) with C1 = min(C2, C3).
We also notice that, for each i ≥ 1 and each � = 1, . . . , n, there exists ã� ∈ Rn \ {0} such that

κi
� =

(KiK
∗
i ã

�, ã�)
|ã�|2 ≤ ‖KiK

∗
i ‖2 ≤ C4(1 + |λi|2(n−1)), (4.9)

where we have denoted by ‖·‖2 the usual Euclidean norm in L(Rn). The last inequality in (4.9) is a consequence
of the structure of Ki.

From (4.8) and (4.9), we see that

κi
1 =

detKiK
∗
i

Π�≥2κi
�

≥ C1

Cn−1
4 (1 + |λi|2(n−1))n−1

≥ C5|λi|−2(n−1)2
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and now, taking into account (4.7), the following is found:

|K∗
i a

i|2 = (KiK
∗
i a

i, ai) ≥ κi
1|ai|2 ≥ C5|λi|−2(n−1)2 |ai|2.

Finally, in view of (4.5) and (4.6), it becomes clear that, for k ≥ 2(n− 1)2, one has

‖(−Δ)kK∗f‖2
L2 =

∑
i

λ2k
i |K∗

i a
i|2 ≥ C5

∑
i

|λi|2(k−(n−1)2)|ai|2 ≥ C‖f‖L2.

Since this is true for all f spanned by a finite amount of the wi, we deduce that it must also hold for all
f ∈ L2(Ω; Rn) such that (−Δ)kK∗f ∈ L2(Ω; Rn). In particular, we find (4.2).

Notice that this estimate (which is implied by (1.13)) indicates that K∗ possesses a continuous inverse
in an appropriate space. The similar result we find in [5] is slightly worse, since there the restriction on k
is k ≥ (2n− 1)(n− 1), see Theorem 2.1, inequality (2.12); see also ([8], Rem. 19, p. 287). A related question is
whether or not an optimal lower bound of k exists.

4.2. Proof of the space-time estimate (4.3)

For the proof of (4.3), we will use the following result, whose proof is posponed to the end of the section:

Lemma 4.1. Let us introduce the notation

P (∂t, Δ) := det [Id ∂t +A∗Δ+M∗] .

Let ω0 and ω1 be non-empty open sets satisfying ω0 ⊂⊂ ω1 ⊂⊂ ω, let α0 be as in (2.1) with ω replaced by ω0

and let us denote by α, ξ and ρ the functions given by (2.2). There exist s and λ with the following property:
for any k ≥ 0 and j ≥ 0, we can find an integer m(k, j) ≥ 0, a constant C(k, j) > 0 and an open set ω(k, j)
satisfying ω0 ⊂⊂ ω(k, j) ⊂⊂ ω1, such that

I12(s, λ; (−Δ)k∂j
t φ) ≤ C(k, j)

∫∫
ω(k,j)×(0,T )

(t(T − t))−m(k,j)ρ−2s |φ|2 (4.10)

for any φ satisfying
∂i

t(−Δ)�φ ∈ L2(Q), ∂i
t(−Δ)�φ = 0 on Σ ∀i, � ≥ 0 (4.11)

and
P (∂t, Δ)φ = 0, (x, t) ∈ Q. (4.12)

Let us check that this result implies (4.3).
Let ϕ be the solution to the adjoint system (1.10) (where M is a constant matrix-valued function) corre-

sponding to a final data ϕT , with

(−Δ)kϕT ∈ D(−Δ) := H2(Ω; Rn) ∩H1
0 (Ω; Rn) ∀k ≥ 0. (4.13)

It is then clear that all the components of ϕ satisfy (4.11).
Let us see that (for instance) the first component ϕ1 also satisfies (4.12).
Indeed, we have:

P (∂t, Δ)ϕ1 =
∑

σ∈Pn

(
pσ(1),1 . . . pσ(n),n

)
ϕ1
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where the pij are the components of Id ∂t +A∗Δ+M∗. Thus,

P (∂t, Δ)ϕ1 =
∑

σ∈Pn

(
pσ(2),2 . . . pσ(n),n

)
(pσ(1),1ϕ1)

= −
∑

σ∈Pn

(
pσ(2),2 . . . pσ(n),n

)
(

n∑
j=2

pσ(1),jϕj)

= −
n∑

j=2

(∑
σ∈Pn

(
pσ(1),jpσ(2),2 . . . pσ(n),n

))
ϕj := −

∑
σ∈Pn

p̃jϕj .

But all the operators in this last sum vanish, since each of them can be written as the determinant of a square
matrix with two columns that are identical. Consequently, we certainly have

P (∂t, Δ)ϕ1 = 0.

Obviously, this argument also holds for ϕ2, . . . , ϕn. Thus, we can write (4.10) for any component of B∗ϕ.
This gives the following inequality for all j, k ≥ 0 and all � = 1, . . . , n′:∫∫

Q

ρ−2s|(B∗((−Δ)k∂j
tϕ))�|2 =

∫∫
Q

ρ−2s|(−Δ)k∂j
t (B∗ϕ)�|2

≤ C(k, j)
∫∫

ω×(0,T )

|(B∗φ)�|2.

Let us fix k ≥ 0. By introducing
ρ̂(t) := max

Ω
ρ(x, t),

and recalling (4.4), we get∫∫
Q

ρ̂(t)−2s|(−Δ)kK∗ϕ|2 ≤ C

n′∑
�=1

∫∫
Q

ρ−2s|(B∗((−Δ)k∂j
tϕ)�|2

≤ C

n′∑
�=1

C(k, j)
∫∫

ω×(0,T )

| (B∗ϕ)� |2

≤ C

∫∫
ω×(0,T )

|B∗ϕ|2.

This yields (4.3).

4.3. Conclusion and end of the proof of Theorem 1.5

In view of (4.2) and (4.3) for k = 2(n − 1)2, the following holds for any solution to (1.10) associated to a
final data ϕT satisfying (4.13):∫∫

Q

ρ̂(t)−2s|ϕ|2 =
∫ T

0

ρ̂(t)−2s

(∫
Ω

|ϕ(x, t)|2 dx
)

dt

≤ R(k)
∫∫

Q

ρ̂(t)−2s|(−Δ)k(K∗ϕ)|2

≤ CR(k)
∫∫

ω×(0,T )

|B∗ϕ|2.
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In particular, ∫∫
Q

ρ̂(t)−2s|ϕ|2 ≤ C

∫∫
ω×(0,T )

|B∗ϕ|2.

By density, it is obvious that this inequality remains true for the solutions to (1.10) corresponding to arbitrary
final data in L2(Ω; Rn). Hence, arguing as in the final part of the proof of Theorem 1.1 in Section 2, we get
(4.1), which shows that, under the assumptions of Theorem 1.5, (1.1) is null-controllable.

4.4. Proof of Lemma 4.1

We will adapt the arguments in [5]. The fact that A is not diagonalizable introduces some nontrivial compli-
cations and the computations and estimates are more involved; but the idea is similar.

We will prove (4.10) by induction on k and j.

4.4.1. Step 1: Proof of (4.10) for k = j = 0

Let us see that, if s and λ are large enough, one has

I12(s, λ;φ) ≤ C(0, 0)
∫∫

ω(0,0)×(0,T )

(t(T − t))−m(0,0)ρ−2s |φ|2 (4.14)

for some m(0, 0), C(0, 0) and ω(0, 0).
Again, it can be assumed that A is in the Jordan canonical form. We then have for some p ≥ 1

Id ∂t +A∗Δ+M∗ =

⎡⎢⎢⎢⎣
H1(∂t, Δ) M∗

21 . . . M∗
p1

M∗
12 H2(∂t, Δ) . . . M∗

p2
...

...
. . .

...
M∗

1p M∗
2p . . . Hp(∂t, Δ)

⎤⎥⎥⎥⎦ ,
where we have introduced the non-scalar operators Hi(∂t, Δ) := Id ∂t + J∗

i Δ+M∗
ii, the J∗

i are Jordan blocks,
i.e. each of them is of the form (2.7) for some μi ∈ C and the Mij provide the corresponding block decomposition
of M .

The PDE (4.12) can be written in the form

p∏
i=1

detHi(∂t, Δ)φ = F (φ). (4.15)

In the terms in F (φ) we find the composition of at most p− 2 operators of the kind detHj(∂t, Δ) applied to φ.
Let us introduce the functions ψi, with

ψ1 = φ, ψ2 = detH1(∂t, Δ)ψ1, . . . , ψp = detHp−1(∂t, Δ)ψp−1.

Then we can rewrite (4.15) as the following system for the ψi:⎧⎪⎨⎪⎩
detHp(∂t, Δ)ψp = F (φ),
detHp−1(∂t, Δ)ψp−1 = ψp,
. . . . . . . . .

detH1(∂t, Δ)φ = ψ2.

(4.16)

Recall that, by hypothesis, we also have

φ = ψ2 = . . . = ψp = 0 on Σ. (4.17)

We will now provide global estimates of ψp and its derivatives in terms of local estimates of ψp and (lower
order) estimates of F (φ); then, global estimates of ψp−1 and its derivatives in terms of local estimates of ψp−1
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and lower order estimates of ψp; etc. And, finally, global estimates of φ and its derivatives in terms of local
estimates of φ and (lower order) estimates of ψ2. An appropriate combination of these estimates will lead to
an inequality where we find, in the left hand side, global weighted integrals of φ, ψ2, . . . and, in the right, only
local integrals and a global weighted integral of |F (φ)|2.

Thus, let us consider the first PDE in (4.16). For instance, assume that Jp is a Jordan block of dimension r
associated to the complex eigenvalue α with �α > 0 and let us denote by η1, . . . , ηr the diagonal components
of Mpp; by assumption, r ≤ 4. Then, this PDE can be rewritten in the form

r∏
i=1

(∂t + αΔ+ ηi)ψp = F (φ) −G(ψp), (4.18)

where G(ψp) is a linear combination of partial derivatives of ψp.
Let us introduce the new variables

ζ1 = ψp, ζ2 = (∂t + αΔ+ ηr)ζ1, . . . , ζr = (∂t + αΔ+ η2)ζr−1.

Now, we can rewrite (4.18) as a first-order system for the ζi:⎧⎪⎨⎪⎩
(∂t + αΔ+ η1)ζr = F (φ) −G(ψp),
(∂t + αΔ+ η2)ζr−1 = ζr,
. . . . . . . . .

(∂t + αΔ+ ηr)ζ1 = ζ2.

(4.19)

Again, we have information on the ζi on the lateral boundary:

ζ1 = . . . = ζr = 0 on Σ. (4.20)

In the “worst” possible case, we have r = 4 and (4.19) and (4.20) respectively read⎧⎪⎨⎪⎩
(∂t + αΔ+ η1)ζ4 = F (φ) −G(ψp),
(∂t + αΔ+ η2)ζ3 = ζ4,
(∂t + αΔ+ η3)ζ2 = ζ3,
(∂t + αΔ+ η4)ζ1 = ζ2,

(4.21)

and
ζ1 = ζ2 = ζ3 = ζ4 = 0 on Σ. (4.22)

Notice that |G(ψp)|2 is bounded by a sum of squares of derivatives of ψp. More precisely, we have |G(ψp)|2 ≤
CIG(ψp), with

IG(ψp) :=
3∑

a=0

|(−Δ)aψp|2 +
4∑

j=1

2∑
b=0

|(−Δ)b(∂t + αΔ+ ηj)ψp|2

+
4∑

j,k=1

1∑
c=0

|(−Δ)c(∂t + αΔ+ ηj)(∂t + αΔ+ ηk)ψp|2.

In view of the Carleman estimates (2.4) (established in Lem. 2.2) applied to the functions ζi, we have:

I3(s, λ; ζ4) ≤ C

∫∫
Q

ρ−2s
(|F (φ)|2 + IG(ψp)

)
+ CI3,ω0(s, λ; ζ4),

λ4I6(s, λ; ζ3) ≤ C

∫∫
Q

ρ−2s(sξ)3λ4|ζ4|2 + Cλ4I6,ω0(s, λ; ζ3),

λ8I9(s, λ; ζ2) ≤ C

∫∫
Q

ρ−2s(sξ)6λ8|ζ3|2 + Cλ8I9,ω0(s, λ; ζ2),

λ12I12(s, λ; ζ1) ≤ C

∫∫
Q

ρ−2s(sξ)9λ12|ζ2|2 + Cλ12I12,ω0(s, λ; ζ1),

for any λ ≥ λ0 and s ≥ s0 = σ0(T + T 2).
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Consequently, an appropriate linear combination of the terms in the left hand sides absorbes the global
weighted integrals of |ζ4|2, |ζ3|2 and |ζ2|2. More precisely, for s ≥ s0 and λ ≥ λ0, we get:

I3(s, λ; ζ4) + λ4I6(s, λ; ζ3) + λ8I9(s, λ; ζ2) + λ12I12(s, λ; ζ1)

≤ C(I3,ω0 (s, λ; ζ4)+λ
4I6,ω0(s, λ; ζ3)+λ

8I9,ω0(s, λ; ζ2)+λ
12I12,ω0(s, λ; ζ1))

+ C

∫∫
Q

ρ−2s|F (φ)|2 + C

∫∫
Q

ρ−2sIG(ψp). (4.23)

The next task will be to add some extra terms on the left hand side of the previous inequality. To this end,
we reason as follow. We apply −Δ to the second PDE in (4.21) and we use Lemma 2.1 for the resulting equation
with m = 2. Notice that this is possible, since −Δζ3 = 0 on Σ. We find:

I2(s, λ;Δζ3) ≤ C

∫∫
ω0×(0,T )

ρ−2s(sξ)2λ4|Δζ3|2) + C

∫∫
Q

ρ−2s(sξ)−1|Δζ4|2

≤ C
(
λ4I6(s, λ; ζ3) + I3(s, λ; ζ4)

)
.

Observe that the previous argument can be applied, this time, to the third and fourth PDE in (4.21). Applying
−Δ and using Lemma 2.1 for the corresponding equations with m = 5 and m = 8, we deduce:

λ4I5(s, λ;Δζ2) ≤ C

∫∫
ω0×(0,T )

ρ−2s(sξ)5λ8|Δζ2|2) + C

∫∫
Q

ρ−2s(sξ)2λ4|Δζ3|2

≤ C
(
λ8I9(s, λ; ζ2) + λ4I6(s, λ; ζ3)

)
and

λ8I8(s, λ;Δζ1) ≤ C

∫∫
ω0×(0,T )

ρ−2s(sξ)8λ12|Δζ1|2) + C

∫∫
Q

ρ−2s(sξ)5λ8|Δζ2|2

≤ C
(
λ12I12(s, λ; ζ1) + λ8I8(s, λ; ζ2)

)
.

Then, we can add all these new terms to the left hand side of (4.23) and, for a new positive constant C,
obtain

I3(s, λ; ζ4) + λ4I6(s, λ; ζ3) + λ8I9(s, λ; ζ2) + λ12I12(s, λ; ζ1)

+ I2(s, λ;Δζ3) + λ4I5(s, λ;Δζ2) + λ8I8(s, λ;Δζ1)

≤ C(I3,ω0(s, λ; ζ4)+λ
4I6,ω0(s, λ; ζ3)+λ

8I9,ω0(s, λ; ζ2)+λ
12I12,ω0(s, λ; ζ1))

+ C

∫∫
Q

ρ−2s|F (φ)|2 + C

∫∫
Q

ρ−2sIG(ψp). (4.24)

We can continue the previous process and add better global terms on the left hand side of (4.24). Thus, if
we apply (−Δ)2 to the third PDE in (4.21) and we use again Lemma 2.1 for the corresponding equations with
m = 1, we get

I1(s,λ; (−Δ)2ζ2) ≤ C

∫∫
ω0×(0,T )

ρ−2ssξλ4|(−Δ)2ζ2|2) + C

∫∫
Q

ρ−2s(sξ)−2|Δζ3|2

≤ C
(
λ4I5(s, λ;Δζ2) + I2(s, λ;Δζ3)

)
.

The previous argument, this time applied to the last PDE in (4.21), also gives

λ4I4(s, λ; (−Δ)2ζ1) ≤ C
(
λ8I8(s, λ;Δζ1) + λ8I5(s, λ;Δζ2)

)
.
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Putting the previous inequalities in (4.24), we obtain

I3(s, λ; ζ4) + λ4I6(s, λ; ζ3) + λ8I9(s, λ; ζ2) + λ12I12(s, λ; ζ1)

+ I2(s, λ;Δζ3) + λ4I5(s, λ;Δζ2) + λ8I8(s, λ;Δζ1)

+ I1(s, λ; (−Δ)2ζ2) + λ4I4(s, λ; (−Δ)2ζ1)

≤C(I3,ω0(s, λ; ζ4)+λ
4I6,ω0(s, λ; ζ3)+λ

8I9,ω0(s, λ; ζ2)+λ
12I12,ω0(s, λ; ζ1))

+ C

∫∫
Q

ρ−2s|F (φ)|2 + C

∫∫
Q

ρ−2sIG(ψp). (4.25)

Finally, let us take (−Δ)3 to the last PDE of (4.21). Again, from the regularity assumptions on φ we have
(−Δ)3ζ1 = 0 on Σ. So, we can apply Lemma 2.1 with m = 0 to the resulting PDE and deduce

I0(s, λ; (−Δ)3ζ1) ≤ C
(
λ4I4(s, λ; (−Δ)2ζ1) + I1(s, λ; (−Δ)2ζ2)

)
.

This inequality together with (4.25) provides

I3(s, λ; ζ4) + λ4I6(s, λ; ζ3) + λ8I9(s, λ; ζ2) + λ12I12(s, λ; ζ1)
+I2(s, λ;Δζ3) + λ4I5(s, λ;Δζ2) + λ8I8(s, λ;Δζ1)
+I1(s, λ; (−Δ)2ζ2) + λ4I4(s, λ; (−Δ)2ζ1)
+I0(s, λ; (−Δ)3ζ1)

≤ C(I3,ω0(s, λ; ζ4)+λ
4I6,ω0(s, λ; ζ3)+λ

8I9,ω0(s, λ; ζ2)+λ
12I12,ω0(s, λ; ζ1))

+ C

∫∫
Q

ρ−2s|F (φ)|2 + C

∫∫
Q

ρ−2sIG(ψp),

for a new positive constant C. Let us denote by Jtot(s, λ; ζ) the sum of the terms on the left hand side of the
previous inequality (with ζ = (ζ1, ζ2, ζ3, ζ4)). Then, the previous inequality can be written as

Jtot(s, λ; ζ) ≤C(I3,ω0(s, λ; ζ4) + λ4I6,ω0(s, λ; ζ3) + λ8I9,ω0(s, λ; ζ2)

+ λ12I12,ω0(s, λ; ζ1)) + C

(∫∫
Q

ρ−2s|F (φ)|2 +
∫∫

Q

ρ−2sIG(ψp)
)
, (4.26)

with s ≥ s1 = σ1(T + T 2) and λ ≥ λ1.
Let ω(0, 0) be an open set satisfying ω0 ⊂⊂ ω(0, 0) ⊂⊂ ω1. From now on, we fix s ≥ s1 and λ ≥ λ1 and we

try to replace the local terms in (4.26) corresponding to ζ2, ζ3 and ζ4 by a term of the form (ψp = ζ1)

Cλ�1

∫∫
ω(0,0)×(0,T )

ρ−2s(sξ)�2 |ψp|2,

where �1 and �2 are nonnegative integers. We need some lengthy computations, but using the cascade structure of
the system (4.21), the process is clear. For instance, let us see what can be done with the local term corresponding
to ζ4.

First, we introduce an open subset ω̃0, with ω0 ⊂⊂ ω̃0 ⊂⊂ ω(0, 0), and a cut-off function χ = χ(x) with
χ ∈ C∞

0 (ω̃0), χ ≥ 0 and χ ≡ 1 in ω0 and we write ζ4 = (∂t + αΔ+ η2)ζ3 (see (4.21))

I3,ω0(s, λ; ζ4) ≤ λ4

∫∫
ω̃0×(0,T )

ρ−2s(sξ)3χ|ζ4|2

= λ4

∫∫
ω̃0×(0,T )

ρ−2s(sξ)3χ(∂t + αΔ+ η2)ζ3ζ4 = I1 + I2 + I3.
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Let us take μ in (2.2) in such a way we have

e(λ+μ)‖α0‖L∞ − eλα0(x) ≥ eλα0(x) ≥ 1, ∀x ∈ Ω.

Then, we also have{
|∇ (ρ−2s(sξ)�

) | ≤ Cλρ−2s(sξ)�+1, |Δ (ρ−2s(sξ)�
) | ≤ Cλ2ρ−2s(sξ)�+2,∣∣∂t(ρ−2s(sξ)�)

∣∣ ≤ Cρ−2s(sξ)�+2
(4.27)

for any (x, t) ∈ Q and s ≥ s1 and λ ≥ λ1.
Using the previous inequalities, we deduce

I1 = −λ4

∫∫
ω̃0×(0,T )

∂t

(
ρ−2s(sξ)3

)
χζ3ζ4 − λ4

∫∫
ω̃0×(0,T )

ρ−2s(sξ)3χζ3∂tζ4

≤ Cλ4

∫∫
ω̃0×(0,T )

ρ−2s(sξ)5χζ3ζ4 + λ4

∫∫
ω̃0×(0,T )

ρ−2s(sξ)3χζ3∂tζ4

≤ εI3(s, λ; ζ4) +
C

ε
λ8

∫∫
ω̃0×(0,T )

ρ−2s(sξ)7|ζ3|2,

with ε > 0.
We can also bound

I2 = αλ4

∫∫
ω̃0×(0,T )

Δ
(
ρ−2s(sξ)3χζ4

)
ζ3

= αλ4

∫∫
ω̃0×(0,T )

[Δ
(
ρ−2s(sξ)3

)
ζ4 + 2∇ (ρ−2s(sξ)3

) · ∇ζ4]χζ3

+ αλ4

∫∫
ω̃0×(0,T )

ρ−2s(sξ)3Δζ4χζ3 + . . .

where the dots contain terms of lower order. Now, we apply the Cauchy-Schwarz inequality and inequality (4.27).
So,

I2 ≤ εI3(s, λ; ζ4) +
C

ε
λ8

∫∫
ω̃0×(0,T )

ρ−2s(sξ)7|ζ3|2.

Finally,

I3 ≤ εI3(s, λ; ζ4) +
C

ε
λ4

∫∫
ω̃0×(0,T )

ρ−2s(sξ)3|ζ3|2.

Putting the previous inequalities together, we get

I3,ω0(s, λ; ζ4) ≤ εI3(s, λ; ζ4) +
C

ε
λ4

∫∫
ω̃0×(0,T )

ρ−2s(sξ)7|ζ3|2.

The previous inequality is valid for any ε > 0, s ≥ s1 and λ ≥ λ1.
Coming back to (4.26), if we take ε small enough, we obtain

Jtot(s, λ; ζ) ≤ C(λ8I7,ω̃0(s, λ; ζ3) + λ8I9,ω0(s, λ; ζ2) + λ12I12,ω0(s, λ; ζ1))

+ C

(∫∫
Q

ρ−2s|F (φ)|2 +
∫∫

Q

ρ−2sIG(ψp)
)

for a new positive constant C.
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Observe that the previous reasoning can be applied twice in order to eliminate the local terms corresponding
to ζ3 and ζ2. The resulting inequality is

Jtot(s, λ; ζ) ≤ Cλ�1

∫∫
ω̃1×(0,T )

ρ−2s(sξ)�2 |ψp|2 + C

(∫∫
Q

ρ−2s|F (φ)|2 +
∫∫

Q

ρ−2sIG(ψp)
)
, (4.28)

with s ≥ s1 = σ1(T+T 2) and λ ≥ λ1. In inequality (4.28) ω̃1 is a new open subset satisfying ω̃0 ⊂⊂ ω̃1 ⊂⊂ ω(0, 0)
and �1 and �2 are nonnegative intergers.

Now, taking into account that the operators ∂t + αΔ + ηi commute, we see that (4.18) (for r = 4) can be
rewritten equivalently in the form

4∏
i=1

(∂t + αΔ+ ησ(i))ψp = F (φ) −G(ψp),

where σ is any permutation in P4. Hence, we can introduce the new variables

ζσ
1 = ψp, ζ

σ
2 = (∂t + αΔ+ ησ(4))ζσ

1 , . . . , ζ
σ
4 = (∂t + αΔ+ ησ(2))ζσ

3

and we can also write (4.18) as a similar first-order system for the ζσ
i :⎧⎪⎪⎪⎨⎪⎪⎪⎩

(∂t + αΔ+ ησ(1))ζσ
4 = F (φ) −G(ψp).

(∂t + αΔ+ ησ(2))ζσ
3 = ζσ

4 ,

(∂t + αΔ+ ησ(3))ζσ
2 = ζσ

3 ,

(∂t + αΔ+ ησ(4))ζσ
1 = ζσ

2 .

(4.29)

Again, we have:
ζσ
1 = ζσ

2 = ζσ
3 = ζσ

4 = 0 on Σ. (4.30)

Arguing as before, we obtain an estimate like (4.28) where, now, we have in the left global weighted integrals
of ζσ

1 = ψp, ζσ
2 , ζσ

3 and ζσ
4 and, in the right, terms concerning F (φ) and IG(ψp):

Jtot(s, λ; ζσ) ≤ Cλ�1

∫∫
ω̃1×(0,T )

ρ−2s(sξ)�2 |ψp|2

+ C

(∫∫
Q

ρ−2s|F (φ)|2 +
∫∫

Q

ρ−2sIG(ψp)
)
.

In this inequality we have used the notation ζσ = (ζσ
1 , ζ

σ
2 , ζ

σ
3 , ζ

σ
1 ).

Let us denote by Itot(s, λ;ψp) the sum of all these left hand sides, obtained for all σ ∈ P4. Then

Itot(s, λ;ψp) ≤ Cλ�1

∫∫
ω̃1×(0,T )

ρ−2s(sξ)�2 |ψp|2

+ C

(∫∫
Q

ρ−2s|F (φ)|2 +
∫∫

Q

ρ−2sIG(ψp)
)
.

Observe that all the terms in IG(ψp) except |(−Δ)3ψp|2 are also in the left multiplied by weights of the form
(sξ)aρ−2s with a > 0. Consequently, for sufficiently large s, these terms are absorbed and we find:

Itot(s, λ;ψp) ≤ Cλ�1

∫∫
ω̃1×(0,T )

ρ−2s(sξ)�2 |ψp|2

+ C

∫∫
Q

ρ−2s|F (φ)|2 + C

∫∫
Q

ρ−2s|(−Δ)3ψp|2.
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Finally the global term corresponding to ρ−2s|(−Δ)3ψp|2 can be absorbed by the term I0(s, λ; (−Δ)3ψp)
(appearing in the expression of Itot(s, λ;ψp)) taking λ large enough. Hence,

Itot(s, λ;ψp) ≤ Cλ�1

∫∫
ω̃1×(0,T )

ρ−2s(sξ)�2 |ψp|2

+ C

∫∫
Q

ρ−2s|F (φ)|2, ∀s ≥ s2 = σ2(T + T 2), λ ≥ λ2,

for some n(0, 0),m(0, 0) ≥ 1.
From now on, we fix λ = λ2. Let us now consider the second PDE in (4.16). Arguing in the same way (and

assuming again that we are in the worst possible situation, associated to a block of dimension 4), we deduce
the following estimate for ψp−1:

I12(s, λ;ψp−1) ≤ C

(∫∫
Q

ρ−2s|ψp|2 +
∫∫

ω̃1×(0,T )

(sξ)�2ρ−2s|ψp−1|2
)
.

The corresponding similar estimate also holds for ψp−2, etc. Thus, after addition and taking into account
that ψ1 = φ and the global integrals of ψp, . . . , ψ2 in the right hand side are smaller than the terms in the left,
we get an estimate for all the ψi:

p∑
i=1

I12(s, λ;ψi) ≤ C

(∫∫
Q

ρ−2s|F (φ)|2 +
∫∫

ω̃1×(0,T )

(sξ)�2ρ−2s|φ|2 +
p∑

i=2

∫∫
ω̃1×(0,T )

(sξ)�2ρ−2s|ψi|2
)
.

Again, using the cascade structure of system (4.16), all the local integrals in the right can be absorbed by the
left hand side, with the exception of the local weighted integral of |φ|2. All we have to do is to enlarge the open
set ω̃1 and argue like in the passage from (4.26) to (4.28). Therefore, the following is obtained:

p∑
i=1

I12(s, λ;ψi) ≤ C

(∫∫
Q

ρ−2s|F (φ)|2 +
∫∫

ω(0,0)×(0,T )

(sξ)m(0,0)ρ−2sχ|φ|2
)
.

However, we see that, taking into account that the operators detHi(∂t, Δ) commute, (4.16) can also be
written in the form

p∏
i=1

detHσ(i)(∂t, Δ)φ = F (φ),

where σ is any permutation in Pn. This means that another equivalent formulation of (4.12) is⎧⎪⎨⎪⎩
detHσ(p)(∂t, Δ)ψσ

p = F (φ),
detHσ(p−1)(∂t, Δ)ψσ

p−1 = ψσ
p ,

. . . . . . . . .
detHσ(1)(∂t, Δ)φ = ψσ

2 ,

and we can also get an estimate of the same form where, now, we have in the left global weighted integrals of
φ, ψσ

2 , . . . , ψσ
p . Recall that F (φ) is a sum of terms where, at most, p − 2 operators of the kind detHj(∂t, Δ)

are applied to φ. Since σ is arbitrary in Pn, using all these possible estimates together and arguing as above, it
becomes also clear that the terms containing |F (φ)|2 can be controlled by the terms in the left.

This proves (4.14).
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4.4.2. Step 2: Induction on k and j

Now, let us assume that (4.10) is true for any k′ = 0, 1, . . . , k, any j′ = 0, 1, . . . , j and any solution to (4.12)
satisfying the assumptions of the lemma and let us prove (4.10) (for instance) with k replaced by k + 1; the
proof with the same k and j replaced by j + 1 is essentially the same.

Since φ̂ := (−Δ)φ also satisfies (4.11) and (4.12), we have by hypothesis

I12(s, λ; (−Δ)k∂j
t φ̂) ≤ C(k, j)

∫∫
ω(k,j)×(0,T )

(t(T − t))−m(k,j)ρ−2s |φ̂|2,

that is,

I12(s, λ; (−Δ)k+1∂j
tφ)≤C(k, j)

∫∫
ω(k,j)×(0,T )

(t(T−t))−m(k,j)ρ−2s|Δφ|2. (4.31)

Let us set m̃ = m(k, j) and ω̃ = ω(k, j), let ω∗ be an open set satisfying ω̃ ⊂⊂ ω∗ ⊂⊂ ω and let χ∗ = χ∗(x)
be a new cut-off function, with χ∗ ∈ C∞

0 (ω∗), χ∗ ≥ 0 and χ∗ ≡ 1 in ω̃. Then, for some integer m∗ ≥ m(k, j),
one has ∫∫

ω(k,j)×(0,T )

(t(T−t))−m(k,j)ρ−2s|Δφ|2

≤
∫∫

ω∗×(0,T )

(t(T−t))−m(k,j)ρ−2sχ∗|Δφ|2

=
∫∫

ω∗×(0,T )

(t(T−t))−m(k,j)ρ−2sχ∗φ (−Δ)2φ + . . .

≤
∫∫

ω∗×(0,T )

(t(T−t))−m∗
ρ−2sχ∗|φ|2 + CI12(s, λ;Δφ) + . . .

≤
∫∫

ω∗×(0,T )

(t(T−t))−m∗
ρ−2sχ∗|φ|2

+ C

∫∫
ω∗×(0,T )

(t(T−t))−m(1,0)ρ−2s|φ|2 + . . . ,

where the dots denote again lower order terms. It is thus clear that there exist m(k+1, j), C(k+1, j) and ω(k+
1, j) such that

I12(s, λ; (−Δ)k+1∂j
t φ) ≤ C(k + 1, j)

∫∫
ω(k+1,j)×(0,T )

(t(T−t))−m(k+1,j)ρ−2s|φ|2.

This ends the proof of the lemma. �

5. Further comments and open questions

This section is devoted to make some comments on extensions of the previous results and, also, to report
some related open problems.

The first question is whether the hypothesis (1.3) can be eliminated or at least weakened in Theorems 1.1
and 1.4. This is not clear; of course, as noticed in Remark 2.4, without new tools for the proof of (2.13), different
from global (scalar) Carleman estimates, it seems very difficult to obtain the same results for dmax ≥ 5. In the
one-dimensional case, when the matrix M does not depend on t, a possible alternative is the reformulation of
the null controllability problem for (1.1) as a moment problem. This has been done in some recent papers (see
for instance [7, 11, 13, 20]) given boundary controllability characterizations for some coupled parabolic systems.

Recall that the analysis and methods in Section 2 can be performed for the more general coupled systems⎧⎪⎨⎪⎩
yt −ASy = M(x, t)y +

∑N
k=1W

k(x, t)∂ky + v1ω in Q,

y = 0 on Σ,

y(x, 0) = y0(x) in Ω
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and ⎧⎪⎨⎪⎩
yt −ASy = M(x, t)y +

∑N
k=1 ∂k(W k(x, t)y) + v1ω in Q,

y = 0 on Σ,

y(x, 0) = y0(x) in Ω,

where A satisfies (1.2) and
dmax ≤ 2, (5.1)

S is a second-order partial differential operator of the form

Sz :=
N∑

i,j=1

aij(x, t)∂i∂jz

with aij = aji ∈W 1,∞(Q) for all i, j and

N∑
i,j=1

aij(x, t)ηiηj ≥ a0|ξ|2 ∀η ∈ R
N , ∀(x, t) ∈ Q, a0 > 0

and W k ∈ L∞(Q;L(Rn; Rn)) for all k = 1, . . . , N .
This also leads to controllability results for semilinear systems of a more general class than (1.11). More

precisely, let us consider the system⎧⎨⎩
yt −AΔy = F (y,∇y) + v1ω in Q,

y = 0 on Σ,

y(x, 0) = y0(x) in Ω,

(5.2)

where F : Rn × Rn×N �→ Rn is given. We then have the following result:

Theorem 5.1. Let A and B be as in Theorem 1.1 and asume that (1.2) and (5.1) hold and

F : R
n × R

n×N �→ R
n is globally Lipschitz-continuous.

Then (5.2) is exactly controllable to the trajectories.

The proof is similar to the proof of Theorem 1.4. The details are left to the reader; they rely on the ideas
in [30], see the proof of Theorem 1.1 in [17].

Of course, it is again unknown whether the assumption dmax ≤ 2 can be suppressed.
For general linear systems of the kind (1.1), it is an open question to characterize those n′ ≤ n and B ∈

L(Rn′
; Rn) such that null controllability holds. Up to now, this is known only for constant matices M , as

indicated in Theorem 1.5; see Remarks 1.2 and 1.3; see also [1,2] for some results in this direction and the recent
paper [16], where the authors have introduced other techniques that could shed some light to this question.

It is also meaningful to consider boundary controllability problems for systems similar to (1.1) and (1.11).
For instance, it makes sense to analyze the null controllability of⎧⎨⎩

yt −AΔy = M(x, t)y in Q,

y = Bv 1γ on Σ,

y(x, 0) = y0(x) in Ω,

(5.3)

where γ ⊂ ∂Ω is a non-empty set, with controls v for instance in L∞(γ × (0, T ); Rn). It also makes sense to
analyze the exact controllability to the trajectories for the semilinear system⎧⎨⎩

yt −AΔy = f(y) in Q,

y = Bv 1γ on Σ,

y(x, 0) = y0(x) in Ω.

(5.4)
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When n′ ≥ n and rankB = n, it is not difficult to deduce the null controllability of (5.3) and the exact
controllability to the trajectories of (5.4) respectively from Theorems 1.1 and 1.4 (under similar assumptions
for A, M and/or f). However, when n′ < n, this is a much more complex question. Almost nothing is known
in this context and, in general, the null controllability of (5.3) is an open question; see however [1, 2, 7, 13, 20],
for some particular results. As we said before, when n′ < n, even when the coupling matrix M has constant
coefficients, a minimal time of controllability T0 = T0(A) ∈ [0,∞] for system (5.3) can appear (see [9]).
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[7] F. Ammar-Khodja, A. Benabdallah, M. González-Burgos and L. de Teresa, The Kalman condition for the boundary control-
lability of coupled parabolic systems. Bounds on biorthogonal families to complex matrix exponentials. J. Math. Pures Appl.
96 (2011) 555–590.
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