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FLATNESS FOR A STRONGLY DEGENERATE 1-D

PARABOLIC EQUATION

IVÁN MOYANO

Abstract. We consider the degenerate equation

∂tf(t, x)− ∂x (x
α
∂xf) (t, x) = 0,

on the unit interval x ∈ (0, 1), in the strongly degenerate case α ∈ [1, 2)
with adapted boundary conditions at x = 0 and boundary control at
x = 1. We use the flatness approach to construct explicit controls
in some Gevrey classes steering the solution from any initial datum
f0 ∈ L2(0, 1) to zero in any time T > 0.

Keywords– partial differential equations; degenerate parabolic equation;
boundary control; null-controllability; motion planning; flatness.

1. Introduction

We consider the following control system

(1.1)















∂tf(t, x)− ∂x (x
α∂x) f(t, x) = 0, (t, x) ∈ (0, T ) × (0, 1),

(xα∂x) f(t, x)|x=0 = 0, t ∈ (0, T ),
f(t, 1) = u(t), t ∈ (0, T ),
f(0, x) = f0(x), x ∈ (0, 1),

where the state is the solution f(t, x) and the control is the function u(t).
The parameter α ∈ [1, 2) is fixed through the whole article.

The aim of this work is to construct explicit controls u for the null-
controllability of system (1.1) in finite time T > 0, using the flatness method.

1.1. Main result. We will make use of the Gevrey class of functions.

DEFINITION 1.1. Let s ∈ R
+ and t1, t2 ∈ R with t1 < t2. A function

h ∈ C∞([t1, t2]) is said to be Gevrey of order s if

∃M,R > 0 such that sup
t1≤r≤t2

∣

∣

∣
h(n)(r)

∣

∣

∣
≤ M(n!)s

Rn
.

We then write h ∈ G s([t1, t2]).

Before stating the main result, we have to recall the notion of weak solu-
tions of the inhomogeneous system (1.1).

DEFINITION 1.2 (Weak solutions). Let f0 ∈ L2(0, 1), T > 0 and u ∈
H1(0, T ). A weak solution of system (1.1) is a function f ∈ C 0([0, T ];L2(0, 1))
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2 I. MOYANO

such that for every t′ ∈ [0, T ] and for every

(1.2) ψ ∈ C
1([0, t′];L2(0, 1)) ∩ C

0([0, t′];H2(0, 1))

such that

(1.3) (xα∂x)ψ(t, x)|x=0 = ψ(t, 1) = 0, ∀t ∈ [0, t′],

one has
∫ t′

0

∫ 1

0
f(t, x) (∂tψ + ∂x(x

α∂xψ)) (t, x) dt dx

=

∫ 1

0
f(t′, x)ψ(t′, x) dx−

∫ 1

0
f0(x)ψ(0, x) dx +

∫ t′

0
u(t)∂xψ(t, 1) dt.

As we show in Section 2 (see Corollary 2.2), system (1.1) has a unique
weak solution under suitable assumptions. Our main result is the following.

THEOREM 1.3. Let f0 ∈ L2(0, 1), T > 0, τ ∈ (0, T ) and s ∈ (1, 2).
Then, there exists a flat output y ∈ G s([τ, T ]) such that the control

(1.4) u(t) =

{

0, if t ∈ [0, τ ],
∑∞

k=0
y(k)(t)

(2−α)2kk!
∏k

j=1(j+
α−1
2−α )

, if t ∈ (τ, T ],

steers to zero at time T the weak solution of system (1.1). Furthermore, the
control u belongs to G s([0, T ]).

1.2. Previous work.

1.2.1. Null-controllability. The null-controllability of system














∂tf(t, x)− ∂x (x
α∂x) f(t, x) = 1ω(x)v(t, x), (t, x) ∈ (0, T ) × (0, 1),

(xα∂x) f(t, x)|x=0 = 0, t ∈ (0, T ),
f(t, 1) = 0, t ∈ (0, T ),
f(0, x) = f0(x), x ∈ (0, 1),

where ω ⊂ (0, 1), has been studied by P. Cannarsa, P. Martinez and J. Van-
costenoble in [8]. Their strategy relies on appropriate Carleman estimates.
To deal with the degeneracy at {x = 0}, they use an adequate functional
framework that we recall in Section 2, and Hardy-type inequalities.

The null-controllability of system (1.1) is a consequence of the internal
null-controllability and the extension principle, since the control is located
on {x = 1}, away from the degeneracy. The interest of the present article is
to provide explicit controls.

In the case of a control located on {x = 0}, an approximate controlla-
bility result for α ∈ [0, 1) has been proven by P. Cannarsa, J. Tort and
M. Yamamoto in [10] using Carleman estimates. The exact controllability
was later proven by M. Gueye in [13] again in the weakly degenerate case
α ∈ [0, 1) by using the transmutation method.
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Other related one-dimensional problems have been treated: see [6, 7, 2],
see [5] for a non-divergence setting, see [20] for a system with a singular
potential. A multi-dimensional case has been studied in [9].

1.2.2. The flatness method. The main interest of the flatness method is to
provide explicit controls. It has been developed for finite-dimensional sys-
tems (see [12]) and then generalised to some infinite-dimensional systems; see
[17] for the heat equation on a cylindrical domain with boundary control,
[18] for one-dimensional parabolic equations with varying coefficients and
[19] for the one-dimensional Schrödinger equation. However, the strongly
degenerate case α ∈ [1, 2) considered in Theorem 1.3 does not belong to the
class concerned in [18]. Our goal is to adapt the flatness method to this
case.

1.3. Open questions and perspectives. The flatness method may also
be successful on similar equations, for instance in non-divergence form as in
[5]. For the time being, this is an open problem.

1.4. Structure of the article. In Section 2 we recall a well-posedness
result and the functional framework. In Section 3 we derive, thanks to
an heuristic method, an explicit solution of system (1.1) consisting on a
formal series development. We prove its convergence, provided that the
corresponding flat output is in a Gevrey class. In Section 4 we discuss
the spectral analysis of the associated stationary problem. In Section 5 we
study the regularising effect of system (1.1) when u = 0. In Section 6 we
construct an appropriate flat output steering the solution of (1.1) to zero,
which concludes the proof of Theorem 1.3. Finally, we give in Appendices
A and B a brief account of some results concerning the Gamma and Bessel
functions needed in the proofs.

1.5. Notation. Since all the functions appearing in the article are real-
valued, we omit any explicit mention by writing, for instance, L2(0, 1) in-
stead of L2((0, 1);R). If h ∈ C k([t1, t2]), for some t1, t2 ∈ R with t1 < t2
and k ∈ N

∗, we will denote by h′(t) and h′′(t) its first and second derivatives
and by h(n)(t), for every n ∈ N, 2 < n ≤ k, the n−th derivative.

If h1, h2 : R → R are two real-valued functions and µ ∈ R, we will write

h1 ∼ h2 as x→ µ to denote that limt→µ
h1(t)
h2(t)

= 1.

We will denote by 〈·, ·〉 the inner product in L2(0, 1).

2. Well-posedness

We consider, for T > 0 and f0 ∈ L2(0, 1), the following system

(2.5)















∂tf(t, x)− ∂x (x
α∂x) f(t, x) = h(t, x), (t, x) ∈ (0, T )× (0, 1),

(xα∂x) f(t, x)|x=0 = 0, t ∈ (0, T ),
f(t, 1) = 0, t ∈ (0, T ),
f(0, x) = f0(x), x ∈ (0, 1).
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We recall below a well-posedness result for system (2.5) proven originally
in [7]. The strategy of the proof consists in a semigroup approach and the
introduction of adequate weighted Sobolev spaces, that we recall below. We
refer to [7, 4] for further details.

We introduce the weighted Sobolev space

H1
α(0, 1) :=

{

f ∈ L2(0, 1); f is loc. absolutely continuous on (0, 1],

x
α
2 f ′ ∈ L2(0, 1) and f(1) = 0

}

,

endowed with the norm

‖f‖2H1
α(0,1)

:= ‖f‖2L2(0,1) + ‖xα
2 f ′‖2L2(0,1), ∀f ∈ H1

α(0, 1).

We remark that H1
α(0, 1) is a Hilbert space with the scalar product

(2.6) 〈f, g〉H1
α
:=

∫ 1

0
f(x)g(x) dx+

∫ 1

0
xαf ′(x)g′(x) dx, ∀f, g ∈ H1

α(0, 1).

PROPOSITION 2.1 ([7], Proposition 3.2 and Theorem 3.1). Let

(2.7)

{

D(A) :=
{

f ∈ H1
α(0, 1); x

αf ′ ∈ H1(0, 1)
}

,

Af := −(xαf ′)′.

Then, A : D(A) → L2(0, 1) is a closed self-adjoint positive operator with
dense domain. As a consequence, A is the infinitesimal generator of a
strongly continuous semigroup, and for any f0 ∈ L2(0, 1), and h ∈ L2((0, T )×
(0, 1)) there exists a unique weak solution of system (2.5), i.e., a function
f ∈ C 0([0, T ];L2(0, 1)) ∩ L2(0, T ;H1

α(0, 1)) such that

f(t) = S(t)f0 +

∫ t

0
S(t− s)h(s) ds, in L2(0, 1), ∀t ∈ [0, T ].

As a consequence, using classical arguments (see for instance [11, Section
2.5.3]), we deduce the following result.

COROLLARY 2.2. Let T > 0, f0 ∈ L2(0, 1) and u ∈ H1(0, T ). Then,
system (1.1) has a unique weak solution (see Definition 1.2).

Proof. Let f0 ∈ L2(0, 1), u ∈ H1(0, T ) and

θ(x) := x2, x ∈ [0, 1].

We consider the system














(∂t − ∂x (x
α∂x)) g(t, x) = H(t, x), (t, x) ∈ (0, T ) × (0, 1),

(xα∂x) g(t, x)|x=0 = 0, t ∈ (0, T ),
g(t, 1) = 0, t ∈ (0, T ),
g(0, x) = f0(x)− u(0)θ(x), x ∈ (0, 1),

with

H(t, x) := −u′(t)θ(x)− u(t)Aθ(x), ∀(t, x) ∈ (0, T )× (0, 1).
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Since H ∈ L2((0, T )× (0, 1)), by Proposition 2.1 there exists a unique weak
solution g ∈ C 0([0, T ];L2(0, 1)) ∩L2(0, T ;H1

α(0, 1)) of this problem. We set

f(t, x) := g(t, x) + u(t)θ(x).

Then, using the integral formulation associated to g, one shows that f is a
weak solution of system (1.1) in the sense of Definition 1.2.

The uniqueness follows since, if f1 and f2 are weak solutions of (1.1), then
f1 − f2 is the unique weak solution of system (2.5) with h ≡ 0, and then by
Proposition 2.1, f1 − f2 = 0. �

3. Explicit solution

3.1. Heuristics. We consider the following formal expansion

f(t, x) =

∞
∑

k=0

c2k(t)
(

x1−
α
2

)2k
, ∀(t, x) ∈ (0, T )× (0, 1).

where (c2k(t))k∈N is a sequence of real numbers. We formally have

∂x (x
α∂xf) (t, x) =

∞
∑

k=0

c2(k+1)(t)(2 − α)2(k + 1)

[

k + 1 +
α− 1

2− α

]

(

x1−
α
2

)2k
,

∂tf(t, x) =
∞
∑

k=0

c′2k(t)
(

x1−
α
2

)2k
.

If f solves (1.1), then the following recurrence relation holds

c2(k+1)(t) =
c′2k(t)

(2− α)2(k + 1)
(

k + 1 + α−1
2−α

) , ∀k ∈ N.

Choosing a flat output c0(t) := y(t) and iterating, we readily have

c2k(t) =
y(k)(t)

(2− α)2kk!
∏k

j=1

(

j + α−1
2−α

) , ∀t ∈ (0, T ), ∀k ∈ N.

This gives a formal solution of (1.1),

(3.8) f(t, x) =
∞
∑

k=0

y(k)(t)
(

x1−
α
2

)2k

(2− α)2kk!
∏k

j=1

(

j + α−1
2−α

) ,

and a control given by u(t) = f(t, 1), which is

(3.9) u(t) =
∞
∑

k=0

y(k)(t)

(2− α)2kk!
∏k

j=1

(

j + α−1
2−α

) .
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3.2. Pointwise solutions. The goal of this section is to introduce a notion
of pointwise solution of system (1.1) to give a sense to the heuristics made
in the previous section.

We define

C
2
α(0, 1) :=

{

f ∈ C
0([0, 1]) ∩ C

2((0, 1)) such that xαf ′(x) ∈ C
0([0, 1))

}

.

DEFINITION 3.1 (Pointwise solution). Let t1, t2 ∈ R with t1 < t2. Let
ft1 ∈ C 0(0, 1) and u ∈ C 0([t1, t2]). A pointwise solution of system

(3.10)















∂tf(t, x)− ∂x (x
α∂xf) (t, x) = 0, (t, x) ∈ (t1, t2)× (0, 1),

xα∂xf(t, x)|x=0 = 0, t ∈ (t1, t2),
f(t, 1) = u(t), t ∈ (t1, t2),
f(t1, x) = ft1(x), x ∈ (0, 1),

is a function f ∈ C 0([t1, t2]× [0, 1]) ∩ C 1((t1, t2)× (0, 1)) such that

(1) f(t, ·) ∈ C 2
α(0, 1), ∀t ∈ (t1, t2),

(2) ∂tf − ∂x(x
α∂xf) = 0 pointwisely in (t1, t2)× (0, 1),

(3) limx→0+ x
α∂xf(t, x) = 0, ∀t ∈ (t1, t2),

(4) f(t, 1) = u(t), ∀t ∈ (t1, t2),
(5) f(t1, x) = ft1(x), ∀x ∈ (0, 1).

REMARK 3.2. The usual energy argument proves that, given u ∈ C 0([t1, t2]),
the pointwise solution of system (3.10) is unique. We observe that, changing
parameters adequately in Definition 1.2 a pointwise solution of (3.10) is also
a weak solution.

3.3. Convergence. The goal of this section is the proof of the following
result.

PROPOSITION 3.3. Let t1, t2 ∈ R, with t1 < t2. If y ∈ G s([t1, t2]) for
some s ∈ (0, 2), then

(1) the control u given by (3.9) is well defined and belongs to G s([t1, t2]),
(2) the function given by (3.8) is a pointwise solution (see Definition

3.1) of system (3.10) in (t1, t2) × (0, 1) with u given by (3.9) and
initial datum

ft1(x) :=

∞
∑

k=1

y(k)(t1)
(

x1−
α
2

)2k

(2− α)2kk!
∏k

j=1

(

j + α−1
2−α

) , ∀x ∈ [0, 1].

Proof. LetM,R > 0 be such that |y(n)(t)| ≤ Mn!s

Rn , for any n ∈ N, t ∈ [t1, t2].

Step 1: We prove that u is well defined and belongs to C∞([t1, t2]).
For any t ∈ [t1, t2], k ∈ N

∗, we have, as α−1
2−α

≥ 0,

|y(k)(t)|
(2− α)2kk!

∏k
j=1

(

j + α−1
2−α

) ≤ Mk!s

Rk(2− α)2kk!2
=

M

Rk(2− α)2kk!2−s
.
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Hence, the series in (3.9) converges uniformly w.r.t. t ∈ [t1, t2] and
u ∈ C 0([t1, t2]). Furthermore, for any n ∈ N

∗, the function ξn,k(t) :=
y(k+n)(t)

(2−α)2kk!
∏k

j=1(j+
α−1
2−α)

satisfies

|ξn,k(t)| ≤
M(k + n)!s

Rn+k(2− α)2kk!2
, ∀t ∈ [t1, t2], k, n ∈ N.

Thus,
∑

k ξn,k(t) converges uniformly w.r.t t ∈ [t1, t2]. Whence, u ∈
C∞([t1, t2]) and for every n ∈ N, t ∈ [t1, t2], u

(n)(t) =
∑∞

k=0 ξn,k(t).
Step 2: We prove that u is Gevrey of order s.

Let n ∈ N. We deduce from last inequality that

∣

∣

∣
u(n)(t)

∣

∣

∣
≤

∞
∑

k=0

M(k + n)!s

Rn+k(2− α)2kk!2

≤ M

[ ∞
∑

k=0

1

(k!)2−s

(

2s

R(2− α)2

)k
]

(

2s

R

)n

n!s,(3.11)

where we have used (A.41). The D’Alembert criterium for entire
series shows that, whenever s ∈ (0, 2), the series above converges,
which shows that u ∈ G s([t1, t2]).

Step 3: We show that the function f given by (3.8) is well defined and
f ∈ C 0([t1, t2]× [0, 1]) ∩ C 1((t1, t2)× (0, 1)).

Let, for every k ∈ N,

fk(t, x) :=
y(k)(t)

(

x1−
α
2

)2k

(2− α)2kk!
∏k

j=1

(

j + α−1
2−α

) , ∀(t, x) ∈ [t1, t2]× [0, 1].

Then,

|fk(t, x)| ≤
M

k!2−s

(

1

R(2− α)

)k

, ∀(t, x) ∈ [t1, t2]× [0, 1].

This proves that
∑

k fk converges uniformly w.r.t. (t, x) ∈ [t1, t2] ×
[0, 1]. Thus, f ∈ C 0([t1, t2]× [0, 1]).

We observe that ∃k0 = k0(α) ∈ N
∗ such that (2− α) k0 ≥ 1. Then,

for every k ≥ k0, fk(t, ·) ∈ C 1([0, 1]) and

|∂xfk(t, x)| =

∣

∣

∣

∣

∣

∣

∣

y(k)(t)2k
(

1− α
2

)

x−
α
2

(

x1−
α
2

)2k−1

(2− α)2kk!
∏k

j=1

(

j + α−1
2−α

)

∣

∣

∣

∣

∣

∣

∣

≤ 2M
(

1− α

2

) k

k!2−s

(

1

R(2− α)2

)k

, ∀x ∈ [0, 1],

since
(

1− α
2

)

(2k − 1) − α
2 ≥ 0. This proves that

∑

k≥k0
∂xfk con-

verges uniformly w.r.t. (t, x) ∈ [t1, t2] × [0, 1]. Thus, f(t, ·) ∈
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C 1((0, 1]) for every t ∈ [t1, t2]. Note that f may not be differ-
entiable w.r.t. x at x = 0 because of the finite number of terms
∑k0

k=0 ∂xfk. Moreover, ∂xf(t, x) =
∑∞

k=0 ∂xfk(t, x) for every (t, x) ∈
(t1, t2)× (0, 1).

A similar argument shows that, for every x ∈ (0, 1), f(·, x) ∈
C 1(t1, t2) and

(3.12) ∂tf(t, x) =

∞
∑

k=0

∂tfk(t, x), ∀(t, x) ∈ (t1, t2)× (0, 1).

Finally, since the partial derivatives of f exist and are continuous in
(t1, t2)× (0, 1), f ∈ C 1((t1, t2)× (0, 1)).

Step 4: We show that f(t, ·) ∈ C 2
α(0, 1), for every t ∈ (t1, t2).

Let k1 = k1(α) ∈ N
∗ such that k1(2 − α) ≥ 2. Working as in

Step 3, we see that
∑

k≥k1
∂2xfk converges uniformly w.r.t. (t, x) ∈

(t1, t2)× (0, 1). Thus, f(t, ·) ∈ C 2(0, 1), ∀t ∈ (t1, t2). Furthermore,

(3.13) ∂x (x
α∂xf) (t, x) =

∞
∑

k=1

y(k)(t)
(

x1−
α
2

)2(k−1)

(2− α)2(k−1)(k − 1)!
∏k−1

j=1

(

j + α−1
2−α

) .

for every (t, x) ∈ (t1, t2)× (0, 1). From Step 3, we obtain

|xα∂xf(t, x)| =

∣

∣

∣

∣

∣

∣

∞
∑

k=1

y(k)(t)2k
(

1− α
2

)

x2k(1−
α
2 )+α−1

(2− α)2kk!
∏k

j=1

(

j + α−1
2−α

)

∣

∣

∣

∣

∣

∣

≤ 2M
(

1− α

2

)

∞
∑

k=1

[

k

k!2−s

(

1

R(2− α)2

)k
]

x,

for all (t, x) ∈ (t1, t2)× (0, 1), which implies, since α ∈ [1, 2), that

xα∂xf(t, x) → 0, as x→ 0+.

Therefore, f(t, ·) ∈ C 2
α , for every t ∈ (t1, t2).

Step 5: According to (3.12) and (3.13), an straightforward computa-
tion shows that the equation in (3.10) is satisfied.

�

4. Spectral Analysis

The goal of this section is to give the explicit expression of the eigenfunc-
tions and eigenvalues of the spectral problem

(4.14)

{

Aϕ(x) = λϕ(x), x ∈ (0, 1),
(xαϕ′) |x=0 = ϕ(1) = 0,

where A is given by (2.7). We will make use of several results about Bessel
functions recalled in Appendix B. Form now on, we use the notation

(4.15) ν :=
α− 1

2− α
.
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PROPOSITION 4.1. Let

(4.16) ϕk(x) =

√
2− α

|Jν+1(jν,k)|
x

1−α
2 Jν

(

jν,kx
1−α

2

)

, ∀x ∈ (0, 1), k ∈ N
∗.

Then,

(1) ϕk ∈ D(A), ∀k ∈ N
∗,

(2) ϕk satisfies (4.14) with

(4.17) λk :=
(

1− α

2

)2
j2ν,k, ∀k ∈ N

∗,

(3) (ϕk)k∈N∗ is a Hilbert basis of L2(0, 1),

(4) for every f0 ∈ L2(0, 1) the solution of (2.5) with h = 0 writes

(4.18) f(t) =

∞
∑

k=1

e−λkt〈f0, ϕk〉ϕk in L2(0, 1), ∀t ∈ [0, T ].

Proof. We will note for simplicity bk :=
√
2−α

|Jν+1(jν,k)| and ϕ̃k := 1
bk
ϕk, for every

k ∈ N
∗.

Step 1: We prove that ϕk ∈ D(A), for every k ∈ N
∗ and that Aϕk −

λkϕk = 0.
Let k ∈ N

∗. We observe that ϕk ∈ C∞((0, 1]) ∩C 0([0, 1]), for any
k ∈ N

∗ and x ∈ (0, 1). We have

(4.19) ϕ̃′
k(x) =

1− α

2
x−

1+α
2 Jν(jν,kx

1−α
2 )+jν,k

(

1− α

2

)

x
1
2
−αJ ′

ν(jν,kx
1−α

2 ).

Whence, using (B.48) and Lemma B.3, we deduce

x
α
2 ϕ̃′

k = (1− α) O
x→0+

(

x
α
2
−1
)

+ O
x→0+

(

x1−
α
2

)

.

It follows that x
α
2 ϕ′

n ∈ L2(0, 1). Thus ϕk ∈ H1
α(0, 1). Moreover,

from (4.19), a direct computation shows

(

xαϕ̃′
k

)′
= −

(

1− α

2

)2

x
α−3
2 Jν(jν,kx

1−α
2 )

+
(

1− α

2

)2
jν,kx

− 1
2J ′

ν(jν,kx
1−α

2 )

+
(

1− α

2

)2
j2ν,kx

1−α
2 J ′′

ν (jν,kx
1−α

2 ).(4.20)

Then, evaluating equation (B.47) at z = jν,kx
1−α

2 and multiplying

by x
α−3
2 , it follows

j2ν,kx
1−α
2 J ′′

ν (jν,kx
1−α

2 )

= −jν,kx−
1
2J ′

ν(jν,kx
1−α

2 )− j2ν,kx
1−α
2 Jν(jν,kx

1−α
2 )

+

(

α− 1

2− α

)2

x
α−3
2 Jν(jν,kx

1−α
2 ).
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Substituting in (4.20), this gives

−
(

xαϕ̃′
k

)′
=
(

1− α

2

)2
j2ν,kx

1−α
2 Jν(jν,kx

1−α
2 ) = λkϕ̃k.

Then, we readily have (xαϕ̃′
k)

′ ∈ H1
α(0, 1) ⊂ L2(0, 1). Thus, ϕk ∈

D(A). Moreover, Aϕk = λkϕk.
Step 2: We check the boundary condition of (4.14) at x = 0.

We observe first that the case α = 1 is straightforward. From
(4.19), (B.48) and Lemma B.3, we have

|xαϕ̃′
n(x)| = O

x→0+

(

xα−1
)

.

Then, it follows that limx→0+ x
αϕ̃′

n(x) = 0. This shows, combined
with Step 1, that ϕk satisfies (4.14).

Step 3: We prove that (ϕk)k∈N∗ is an orthonormal family in L2(0, 1).
Let n,m ∈ N

∗. Then, changing variables and using (B.46), we get

∫ 1

0
ϕn(x)ϕm(x) dx

= (2− α)

∫ 1

0
x1−αJν(jν,nx

1−α
2 )

|Jν+1(jν,n)|
Jν(jν,mx

1−α
2 )

|Jν+1(jν,m)| dx

=
2

|Jν+1(jν,n)||Jν+1(jν,m)|

∫ 1

0
yJν(jν,ny)Jν(jν,my) dy = δn,m,

where δn,m stands for the Kronecker delta.
Step 4: We prove that (ϕk)k∈N∗ is a Hilbert basis of L2(0, 1) by check-

ing the Bessel equality. Let f ∈ L2(0, 1) and let

(4.21) ak :=

∫ 1

0
f(x)ϕk(x) dx, ∀k ∈ N

∗.

Then, using Lemma B.1 and changing variables twice, we get

∞
∑

k=1

|ak|2 =

∞
∑

k=1

∣

∣

∣

∣

∫ 1

0
f(x)

√
2− α

|Jν+1(jν,k)|
x

1−α
2 Jν

(

jν,kx
1−α

2

)

dx

∣

∣

∣

∣

2

=
2

2− α

∞
∑

k=1

∣

∣

∣

∣

∫ 1

0
y

α−1
2−α

+ 1
2 f(y

2
2−α )

√
2y

|Jν+1(jν,k)|
Jν(jν,ky) dy

∣

∣

∣

∣

2

=
2

2− α

∫ 1

0
y

2(α−1)
2−α

+1
∣

∣

∣
f(y

2
2−α )

∣

∣

∣

2
dy

=

∫ 1

0
|f(z)|2 dz = ‖f‖2L2(0,1).

Step 5: Finally, (4.18) is a consequence of [3, Theorem 8.2.3, pp.237–
240].

�
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5. Regularising effect

We use the orthonormal basis obtained in Proposition 4.1 and some prop-
erties of Bessel functions to quantify the smoothing of the solution of system
(1.1) when u ≡ 0.

PROPOSITION 5.1. Let f0 ∈ L2(0, 1), T > 0 and let f ∈ C 0([0, T ];L2(0, 1))
be the unique weak solution of system (2.5) when h = 0, according to Propo-
sition 2.1. Then, there exists Y ∈ C∞((0, T ]) such that for every σ ∈ (0, T ),

Y ∈ G
1([σ, T ])

and

(5.22) f(t, x) =

∞
∑

n=0

Y (n)(t)
(

x1−
α
2

)2n

(2− α)2nn!
∏n

j=1

(

j + α−1
2−α

) , ∀(t, x) ∈ [σ, T ]× [0, 1].

Moreover, f solves system (3.10) pointwisely (see Definition 3.1) in (σ, T )×
(0, 1) with u = 0 and initial datum fσ(x) = f(σ, x).

Proof. Let ν be given by (4.15) and ak as in (4.21). Let σ ∈ (0, T ) be fixed
but arbitrary. Let t ∈ [σ, T ] be fixed. By (4.18) and (B.43), we have, for
a.e. x ∈ [0, 1],

f(t, x) =

∞
∑

k=1

e−λkt
ak
√
2− α

|Jν+1(jν,k)|
x

1−α
2 Jν

(

jν,nx
1−α

2

)

=
∞
∑

k=1

e−λkt
ak
√
2− α

|Jν+1(jν,k)|
x

1−α
2

∞
∑

n=0

(−1)n

n!Γ (n+ 1 + ν)

(

jν,kx
1−α

2

2

)2n+ν

=
∞
∑

k=1

∞
∑

n=0

Bn,k(t, x),(5.23)

where, for every (n, k) ∈ N× N
∗,

Bn,k(t, x) := e−λktbk
(−1)nj2n+ν

ν,k

n!Γ(n+ 1 + ν)22n+ν

(

x1−
α
2

)2n

|Jν+1(jν,k)|
,

and bk := ak
√
2− α, ∀k ∈ N

∗.

Step 1: We show that

(5.24)

∞
∑

n=0

( ∞
∑

k=1

|Bn,k(t, x)|
)

<∞, ∀x ∈ [0, 1].

Indeed, since λk > 0, we have for every (n, k) ∈ N×N
∗ and x ∈ [0, 1],

|Bn,k(t, x)| ≤
|bk|j2n+ν

ν,k e−λkσ

22n+νn!Γ(n+ 1 + ν)|Jν+1(jν,k)|
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≤
C1|bk|e−λkσj

2n+ν+ 1
2

ν,k

22nn!Γ(n+ 1 + ν)
,(5.25)

for a constant C1 > 0, using Lemma B.4.
We fix n ∈ N and we define the function hαn ∈ C∞(R+;R+) by

hαn(x) := e−(1−
α
2 )

2
x2σx2n+ν+ 1

2 , ∀x ∈ [0,+∞),

which satisfies that

(5.26)
d

dx
hαn(x) > 0, ∀x ∈ (0, Nα

n ) and
d

dx
hαn(x) < 0, ∀x ∈ (Nα

n ,∞),

where Nα
n := 2

2−α

√

1
σ

(

n+ α
4(2−α)

)

. Hence, from (5.25) and (4.17),

(5.27)

∞
∑

k=1

|Bn,k(t, x)| ≤
C1 supk |bk|

22nn!Γ(n+ 1 + ν)

∞
∑

k=1

hαn(jν,k)

Introducing Kα
n := sup {k ∈ N

∗; jν,k ≤ Nα
n }, we write

(5.28)

∞
∑

k=1

hαn(jν,k) = hαn(jν,Kα
n
) + hαn(jν,Kα

n+1) +
∑

k∈N∗−{Kα
n ,Kα

n+1}
hαn(jν,k)

On one hand, we have

hαn(jν,Kα
n
) + hαn(jν,Kα

n+1) ≤ 2hαn(N
α
n )

≤ 2e
−
(

n+ α
4(2−α)

)(

n+
α

4(2 − α)

)n+ α
4(2−α)

[

1

σ

(

2

2− α

)2
]n+ α

4(2−α)

≤ C2Γ

(

n+
α

4(2− α)
+

1

2

)

[

1

σ

(

2

2− α

)2
]n+ α

4(2−α)

,(5.29)

for a constant C2 > 0, using Lemma A.1 with a = 1, b = 1
2 . On the

other hand, using (5.26), we write
∑

k∈N∗−{Kα
n ,Kα

n+1}
hαn(jν,k) ≤

≤
Kα

n−1
∑

k=1

1

jν,k+1 − jν,k

∫ jν,k+1

jν,k

hαn(x) dx+
∞
∑

Kα
n+1

1

jν,k − jν,k−1

∫ jν,k

jν,k−1

hαn(x) dx

≤ sup
k∈N∗

{

1

jν,k+1 − jν,k

}

(

∫ jν,Kα
n

jν,1

hαn(x) dx+

∫ ∞

jα
ν,Kn+1

hαn(x) dx

)

≤ C3

∫ ∞

0
hαn(x) dx,
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for a constant C3 > 0, using (B.45). Moreover, we have
∫ ∞

0
hαn(x) dx =

∫ ∞

0
e−(1−

α
2 )

2
x2σx

2n+ α
2(2−α) dx

=

∫ ∞

0
e−t

(

2

2− α

√

t

σ

)2n+ α
2(2−α) 1

2
√
σt

(

2

2− α

)

dt

=
1

2

[

1√
σ

(

2

2− α

)]2n+ α
2(2−α)

+1 ∫ ∞

0
e−tt

n+ α
4(2−α)

− 1
2 dt

=
1

2

[

1√
σ

(

2

2− α

)]2n+ α
2(2−α)

+1

Γ

(

n+
α

4(2− α)
+

1

2

)

,

where we have used (A.38) with p = n+ α
4(2−α)+

1
2 . Hence, combining

this with (5.28) and (5.29), we get

∞
∑

k=1

hαn(jν,k) ≤
(

C2 +
C3√

σ(2− α)

)[

1√
σ

(

2

2− α

)]2n+ α
2(2−α)

Γ

(

n+
α

4(2 − α)
+

1

2

)

,

which, according to (5.27), implies

∞
∑

k=1

|Bn,k(t, x)| ≤ C4

[

1√
σ

(

2

2− α

)]2n+ α
2(2−α) Γ

(

n+ α
4(2−α) +

1
2

)

22nn!Γ (n+ ν + 1)
.

Henceforth, the D’Alembert criterium for entire series gives (5.24).

Step 2: We find Y ∈ G 1([σ, T ]) such that (5.22) holds.
Thanks to Fubini’s theorem, (5.23) and (A.39), we may write

f(t, x) =

∞
∑

n=0

yn(t)
(

x1−
α
2

)2n

(2− α)2nn!
∏n

j=1(j + ν)
,

where, for every n ∈ N,

yn(t) :=
(−1)n

√
2− α

(

1− α
2

)2n

2νΓ
(

1
2−α

)

∞
∑

k=1

ake
−λkt

j2n+ν
ν,k

|Jν+1(jν,k)|
, ∀t ∈ [σ, T ],

and ν is given by (4.15). Putting

(5.30) Y (t) :=

√
2− α

2νΓ
(

1
2−α

)

∞
∑

k=1

akj
ν
ν,k

|Jν+1(jν,k)|
e
−(1−α

2 )
2
j2
ν,k

t
, t ∈ [σ, T ],

we have that, since σ > 0, Y is analytic in [σ, T ]. Moreover,

Y (n)(t) = yn(t), ∀t ∈ [σ, T ], ∀n ∈ N.

Hence, we obtain (5.22) with this choice. Since σ ∈ (0, T ) is arbi-
trary, we have in addition that Y ∈ C∞((0, T ]).
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Furthermore, applying Proposition 3.3 to (5.22) with t1 = σ and
t2 = T , we deduce that f solves (1.1) pointwisely in (σ, T ) × (0, 1)
with u = 0 and fσ(x) = f(σ, x).

�

6. Construction of the control

Let s ∈ R with s > 1. The function (see [17, Section 2] and [21, Theorem
11.2, p.48])

(6.31) φs(t) :=















1, if t ≤ 0,

e−(1−t)
−

1
s−1

e−(1−t)
−

1
s−1 +e−t

−
1

s−1
, if 0 < t < 1,

0, if t ≥ 1,

belongs to G s([0, 1]) and satisfies

(6.32) φs(0) = 1, φs(1) = 0, φ(i)s (0) = φ(i)s (1) = 0, ∀i ∈ N
∗.

Proof of Theorem 1.3. Let f0 ∈ L2(0, 1), T > 0. Let f and Y be given by
Proposition 5.1.

We pick τ ∈ (0, T ), s ∈ (1, 2) and we set the flat output

y(t) := φs

(

t− τ

T − τ

)

Y (t), ∀t ∈ (0, T ],

which belongs to C∞(0, T ). Moreover, for every σ ∈ (0, T ), y ∈ G s([σ, T ]),
as it is a product of two functions in G s([σ, T ]). We define accordingly the
function

f̃(t, x) :=

∞
∑

k=1

y(n)(t)
(

x1−
α
2

)2n

(2− α)2nn!
∏n

j=1

(

j + α−1
2−α

) , ∀(t, x) ∈ (0, T ]× [0, 1],

and the control

(6.33) u(t) =

{

0, t ∈ [0, τ ],

f̃(t, 1), t ∈ (τ, T ].

Since y ∈ G s([σ, T ]) for some s ∈ (1, 2), Proposition 3.3 shows that

(6.34)
∀σ ∈ (0, T ), f̃ is the pointwise solution of (3.10) with

t1 = σ, t2 = T, ft1 = f(σ, ·) and (6.33).

As a consequence of (6.32), we have

y(t) = Y (t), ∀t ∈ (0, τ ],

y(T ) = 0.(6.35)

Whence, f̃(t, x) = f(t, x), for every (t, x) ∈ (0, τ) × (0, 1). Thus, as f ∈
C 0([0, T ];L2(0, 1)), we deduce

f̃ ∈ C
0([0, T ];L2(0, 1)),(6.36)

f̃(0) = f0 in L2(0, 1).(6.37)
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We have to check that f̃ is the weak solution of system (1.1) on (0, T ). To
do so, and according to Definition 1.2, let t′ ∈ (0, T ) and let ψ satisfying
(1.2) and (1.3). Then, by (6.34) and since a pointwise solution is a weak
solution (see Remark 3.2), we have, for every σ > 0,

∫ t′

σ

∫ 1

0
f̃(t, x) (∂tψ + ∂x(x

α∂xψ)) (t, x) dt dx

=

∫ 1

0
f̃(t′, x)ψ(t′, x) dx−

∫ 1

0
f̃(σ, x)ψ(σ, x) dx +

∫ t′

σ

u(t) (xα∂xψ) (t, 1) dt.

Then, from (6.33), (6.36), (6.37) and (1.2), taking σ → 0+, we get the
conclusion.

Finally, by construction (6.35) implies that f̃(T, x) = 0, for every x ∈
(0, 1).

�

Acknowledgements. I thank Karine Beauchard for suggesting me this
problem and for many fruitful discussions.

Appendix A. Some properties of the Gamma function

For any p ∈ R
+, the Gamma function is defined (see [1, 6.1.1, p.254]) by

(A.38) Γ(p) :=

∫ ∞

0
e−ttp−1 dt,

which is a monotone increasing function on (0,∞). Furthermore, (see [1,
6.1.15, p.256])

(A.39) Γ(x+ 1) = xΓ(x), ∀x ∈ (0,∞).

We have the following asymptotics of the Gamma function.

LEMMA A.1 ([1], 6.1.39 ). Let a ∈ R
+ and b ∈ R. Then,

(A.40) Γ(ax+ b) ∼
x→∞

√
2πe−ax(ax)ax+b− 1

2 .

We show an inequality used in Proposition 3.3.

LEMMA A.2.

(A.41) (n + k)! ≤ 2k+nn!k!, ∀n, k ∈ N.

Proof. Let us observe first that

(A.42) (2n)! ≤ 22nn!2, ∀n ∈ N.

This inequality follows by induction, since, for every n ∈ N,

(2(n + 1))! = (2n)!(2n + 1)(2n + 2)

≤ (2n)!22(n+ 1)2 ≤ 22(n+1)(n+ 1)!.
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To show (A.41), we assume, w.l.o.g., that n < k. Then, using (A.42),

(n+ k)! = (2n)!

k−n
∏

j=1

(2n+ j)

≤ (2n)!2k−n

k−n
∏

j=1

(n+ j) ≤ 2n+kn!k!.

�

Appendix B. Some properties of Bessel functions

Let ν ∈ R. The Bessel function of order ν of the first kind is ([1, 9.1.10,
p.360])

(B.43) Jν(z) :=

∞
∑

n=0

(−1)n

n!Γ(n+ ν + 1)

(z

2

)2n+ν

, ∀z ∈ [0,∞).

We denote by {jν,n}n∈N∗ the increasing sequence of zeros of Jν , which are
real for any ν ≥ 0 and enjoy the following properties (see [1, 9.5.2, p.370]
and [15, Proposition 7.8, p.135]).

ν < jν,n < jν,n+1, ∀n ∈ N
∗,(B.44)

jν,n+1 − jν,n → π, as n→ ∞.(B.45)

We also have the integral formula ([1, 11.4.5, p.485])

(B.46)

∫ 1

0
yJν(jν,ny)Jν(jν,my) dy =

1

2
|Jν+1(jν,n)|2δn,m, ∀n,m ∈ N

∗.

This allows to show the following.

LEMMA B.1. [14, p.40] Let ν ≥ 0. The family {wn}n∈N∗ defined by

wn(z) :=

√
2z

|Jν+1(jν,n)|
Jν(jν,nz), ∀z ∈ (0, 1),

is an orthonormal basis of L2(0, 1). In particular, if f ∈ L2(0, 1) and dn :=
∫ 1
0 f(z)wn(z) dz, ∀n ∈ N

∗, then ‖f‖2
L2(0,1) =

∑∞
n=1 |dn|2.

We recall that ∀ν ∈ R, the Bessel function Jν satisfies the following
differential equation (see [1, 9.1.1, p.358])

(B.47) z2J ′′
ν (z) + zJ ′

ν(z) + (z2 − ν2)Jν(z) = 0, ∀z ∈ (0,+∞),

and the recurrence relation (see [1, 9.1.27, p.361]),

(B.48) 2J ′
ν(z) = Jν−1(z) + Jν+1(z), ∀z ∈ (0,+∞).
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Asymptotic behaviour. We recall the asymptotic behaviour of Jν for
large arguments and near zero.

LEMMA B.2. [15, Lemma 7.2, p.129] For any ν ∈ R,

Jν(z) =

√

2

πz
cos
(

z − νπ

2
− π

4

)

+ O
z→∞

(

1

z
√
z

)

.

LEMMA B.3. [1, 9.1.7, p.360] For any ν ∈ R \ {−N
∗},

Jν(z) ∼
z→0

zν

2νΓ(ν + 1)
.

The following asymptotic result is important in the proof of Proposition
5.1. We give the proof for the sake of completeness.

LEMMA B.4. Let ν ∈ R
+. Then,

(B.49)
√

jν,k|Jν+1(jν,k)| =
√

2

π
+ O

k→∞

(

1

jν,k

)

.

In particular, there exists a constant C1 > 0 such that for all k ∈ N
∗,

1

|Jν+1(jν,k)|
≤ C1

√

jν,k.

Proof. Using Lemma B.2, for ν + 1 and x = jν,k,

√

jν,k|Jν+1(jν,k)| =

√

2

π

∣

∣

∣

∣

cos

(

jν,k −
π(ν + 1)

2
− π

4

)
∣

∣

∣

∣

+ O
k→∞

(

1

jν,k

)

=

√

2

π

∣

∣

∣
sin
(

jν,k −
πν

2
− π

4

)
∣

∣

∣
+ O

k→∞

(

1

jν,k

)

.

Using again Lemma B.2 with ν and x = jν,k, we have that

cos
(

jν,k −
πν

2
− π

4

)

= O
k→∞

(

1

jν,k

)

,

which gives

∣

∣

∣
sin
(

jν,k −
πν

2
− π

4

)∣

∣

∣
=

√

√

√

√1 + O
k→∞

(

1

j2ν,k

)

= 1 + O
k→∞

(

1

jν,k

)

and then (B.49).
�
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Iván Moyano, Centre de mathématiques Laurent Schwartz, UMR 7640, Ecole

polytechnique, Palaiseau, France

E-mail address: ivan.moyano@math.polytechnique.fr

mailto:ivan.moyano@math.polytechnique.fr

	1. Introduction
	1.1. Main result
	1.2. Previous work
	1.3. Open questions and perspectives
	1.4. Structure of the article
	1.5. Notation

	2. Well-posedness
	3. Explicit solution
	3.1. Heuristics
	3.2. Pointwise solutions
	3.3. Convergence

	4. Spectral Analysis
	5. Regularising effect
	6. Construction of the control
	Acknowledgements

	Appendix A. Some properties of the Gamma function
	Appendix B. Some properties of Bessel functions
	Asymptotic behaviour

	Bibliography
	References

