Regularity of optimal ship forms based on Michell's wave resistance

Morgan PIERRE

Laboratoire de Mathématiques et Applications, UMR CNRS 7348, Université de Poitiers, France

Benasque, August 23rd, 2017

joint work with J. Dambrine

(日) (四) (분) (분) (분) 분

We use a simplified approach, where the resistance of water to the motion of a ship is represented as

$$R_{water} = R_{viscous} + R_{wave},$$

and *R_{wave}* is given by **Michell's formula (1898)**.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The domain of parameters (x, z)

▲ロト ▲園ト ▲画ト ▲画ト ▲目 ● のへの

Consider a ship moving with constant velocity U on the surface of an unbounded fluid.

- coordinates xyz are fixed to the ship
- the *xy*-plane is the (undisturbed) water surface, *z* is vertically upward

The (half-)immerged hull surface is represented by a continuous nonnegative function

$$y = f(x,z) \ge 0, \quad (x,z) \in \omega,$$

with f(x, z) = 0 on Γ^- (= the boundary of ω under the surface)

- The fluid is incompressible, inviscid, the flow is irrotational
- A steady state has been reached
- Linearized theory (flow potential with linearized boundary conditions)
- Thin ship assumptions: $|\partial_x f| \ll 1$, $|\partial_z f| \ll 1$.

Michell's wave resistance is the **drag force** in this linearized model (recall d'Alembert's paradox !).

Experiments starting in the 1920's (Wigley, Weinblum): reasonable good agreement between Michell's theory and experiment (Gotman'02).

About the optimization problem for ω fixed

1st idea: finding a ship of minimal wave resistance among admissible functions $f : \omega \to \mathbf{R}_+$, for a constant speed U and a given volume V of the hull.

 $f \mapsto R_{Michell}(f)$ is a positive semi-definite quadratic functional, but the problem above is **ill-posed** (Sretensky'35, Krein'52).

About the optimization problem for ω fixed

1st idea: finding a ship of minimal wave resistance among admissible functions $f : \omega \to \mathbf{R}_+$, for a constant speed U and a given volume V of the hull.

 $f \mapsto R_{Michell}(f)$ is a positive semi-definite quadratic functional, but the problem above is **ill-posed** (Sretensky'35, Krein'52).

Many authors proposed to add conditions and/or to work in finite dimension (Weinblum'56, Kostyukov'68,...) Another approach, that we chose: add the viscous resistance which can be interpreted as a regularization (Krein & Sizov'60 and '00, Lian-en'84, Michalski et al'87, Dambrine, P. & Rousseaux'15)

Figure: Symmetrization $z \mapsto -z$ and a possible bounding box

 $f: \omega \to \mathbf{R}$ becomes $u: D \to \mathbf{R}$ with support Ω

(日) (四) (문) (문) (문)

The normalized total resistance is

$$J(u) = J_0(u) + J_{wave}(u), \qquad (1)$$

where

$$J_0(u) = \int_D |\nabla u(x,z)|^2 dx dz$$
(2)

is the normalized viscous resistance, and

$$J_{wave}(u) = \int_{D} \int_{D} k(x, z, x', z') u(x, z) u(x', z') dx dz dx' dz' \ge 0$$
(3)

is the **normalized wave resistance** functional. Here, $k: D \times D \rightarrow \mathbf{R}$ belongs to $L^q(D \times D)$ for some $q \in (1, +\infty]$ and satisfies the following symmetry assumptions:

$$k(x, z, x', z') = k(x', z', x, z) \quad (x, z, x', z') \in D \times D,$$

$$k(x, -z, x', z') = k(x, z, x', z') \quad (x, z, x', z') \in D \times D.$$

Formulation of the optimization problem

Let V > 0 (the volume of the hull) and 0 < a < |D| (the area of Ω).

Find an open and symmetric set Ω^\star such that

$$J(u_{\Omega^{\star}}) = \inf \left\{ J(u_{\Omega}), \ \Omega \subset D \text{ open and symmetric}, \ |\Omega| = a \right\}, \ (4)$$

where u_{Ω} is uniquely defined by

$$J(u_{\Omega}) = \min\left\{J(v), v \in H_0^1(\Omega), \check{v} = v, \int_{\Omega} v = V\right\}.$$
 (5)

(We denote $\check{v}(x, z) = v(x, -z)$, $\forall (x, z) \in D$). **Two questions:** existence of Ω^* and regularity of u_{Ω^*} Following a standard approach, we work with the space

$$\check{H} = \{ u \in H^1_0(D), \ \check{u} = u \text{ a.e. in } D \},$$

which is a closed subspace of $H^1_0(D)$. For a function $u \in \check{H}$, we denote

$$\Omega_u = \{(x,z) \in D : u(x,z) \neq 0\}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

We also set $|\Omega_u|$ the area of Ω_u .

Following a standard approach, we work with the space

$$\check{H}=\{u\in H^1_0(D),\,\,\check{u}=u\,\, ext{a.e.}\,\, ext{in}\,\,D\},$$

which is a closed subspace of $H_0^1(D)$. For a function $u \in \check{H}$, we denote

$$\Omega_u = \{(x,z) \in D : u(x,z) \neq 0\}.$$

We also set $|\Omega_u|$ the area of Ω_u . We define

$$C_V^a = \{ v \in \check{H} : \int_D v dx dz = V, \ |\Omega_v| \le a \},$$

and we reformulate the previous problem as follows:

$$(\mathcal{P}_V^a) igg\{ egin{array}{l} \mathsf{Find} \ u \in C_V^a \ \mathsf{such} \ \mathsf{that} \ J(u) \leq J(v), \ orall v \in C_V^a. \end{array} igg]$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ●

Theorem (Dambrine & P.)

Problem (\mathcal{P}_V^a) has a solution u such that $J(u) < +\infty$.

Existence by considering a minimizing sequence in C_V^a .

(4回) (日) (日)

3

Theorem (Dambrine & P.)

Let u solve problem (\mathcal{P}_V^a) with $k \in L^q(D \times D)$, q > 1, and assume that u is nonnegative.

- 1. If $q \in (1,2)$, then u is locally α -Hölder continuous on D with $\alpha = 2/q'$.
- 2. If q = 2, then u is locally α -Hölder continuous on D for all $\alpha < 1$.
- 3. If q > 2, then u is locally Lipschitz continuous on D.

Method of Alt & Caffarelli'81, and adaptations to the Dirichlet energy (+ symmetry + integral kernel k):

- Penalized version of the problem (isoperimetric inequality used)
- elliptic estimates and measure-theoretic arguments

3

Michell's wave resistance kernel reads

$$k_{\nu}(x,z,x',z') = \frac{4\nu^4}{\pi C_F(\nu)} \mathcal{K}(\nu(x-x'),\nu(|z|+|z'|)), \qquad (6)$$

with $\nu=g/\mathit{U}^2$ (g=gravity and U=speed of ship), and

$$K(X,Z) = \int_{1}^{\infty} e^{-\lambda^{2}Z} \cos(\lambda X) \frac{\lambda^{4}}{\sqrt{\lambda^{2} - 1}} d\lambda.$$
(7)

(日) (同) (三) (三)

Proposition

Michell's normalized wave resistance kernel k_{ν} (6) belongs to $L^q(D \times D)$ for all $1 \le q < 5/4$. Moreover, if D contains an open disc centered on the x-axis, then k_{ν} does not belong to $L^{5/4}(D \times D)$.

Theorem

Let u be a solution of problem (\mathcal{P}_V^a) . If u is nonnegative, then u is locally α -Hölder continuous on D for all $\alpha \in (0, 2/5)$.

Theorem (Improved regularity below the water/air interface)

Let the assumptions of Theorem 3.2 be satisfied. Then u is locally Lipschitz continous on $D^* = \{(x, z) \in D : z \neq 0\} = D \cap (\mathbf{R} \times \mathbf{R}^*)$ (where $\mathbf{R}^* = \mathbf{R} \setminus \{0\}$).

Using analycity, we also proved

Theorem

Let u solve problem (\mathcal{P}_V^a) . If $D^+ = \{(x, z) \in D : z > 0\}$ is connected, then the constraint $|\Omega_u| \leq a$ is saturated, and so $|\Omega_u| = a$.

(日本) (日本)

An optimized form for a variable domain (algorithm from Allaire's book)

<ロト (四) (注) (注) () ()

The bulbous bow of "Harmony of the Seas" (2015)

< 口 > < 四

A minimizing sequence for Fr = 0.75

(日) (四) (三)

Work in progress

- More robust numerical simulations
- Dependence with respect to the speed U

A 1

Some open questions

• Study regularity of *u* with the positivity condition, i.e. consider problem

$$(\mathcal{P}_V^{a,+}) egin{cases} \mathsf{Find} & u \in \mathcal{C}_V^{a,+} \text{ such that} \\ J(u) \leq J(v), \ \forall v \in \mathcal{C}_V^{a,+}, \end{cases}$$

where

$$C_V^{a,+} = \{ v \in \check{H} : v \ge 0 \text{ a. e. in } D, \int_D v dx dz = V, |\Omega_v| \le a \};$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

• Prove existence without the bounding box *D* ? (at least for some values of *U*).

Some open questions (continued)

• Study regularity of $u \in H^1(\mathbf{R}^d)$ which solves

$$\begin{cases} u \in K^{a,+} \\ \mathcal{F}(u) \leq \mathcal{F}(v), \ \forall v \in K^{a,+}, \end{cases}$$

where

$$\mathcal{F}(v) = \frac{1}{2} \int_{\mathbf{R}^d} |\nabla v|^2 dx - \int_{\mathbf{R}^d} f v dx$$

and

$$\mathcal{K}^{a,+}=\{v\in \mathcal{H}^1(\mathbf{R}^d)\ :\ v\geq 0 \text{ a.e. in } \mathbf{R}^d,\ |\Omega_v|\leq a\}.$$

Here, $f \in C_c^0(\mathbf{R}^d)$ (for instance).

Some open questions (continued)

• Study regularity of $u \in H^1(\mathbf{R}^d)$ which solves

$$\begin{cases} u \in K^{a,+} \\ \mathcal{F}(u) \leq \mathcal{F}(v), \ \forall v \in K^{a,+}, \end{cases}$$

where

$$\mathcal{F}(v) = \frac{1}{2} \int_{\mathbf{R}^d} |\nabla v|^2 dx - \int_{\mathbf{R}^d} f v dx$$

and

$$\mathcal{K}^{a,+}=\{ v\in \mathcal{H}^1(\mathbf{R}^d) \ : \ v\geq 0 \text{ a.e. in } \mathbf{R}^d, \ |\Omega_v|\leq a \}.$$

Here, $f \in C_c^0(\mathbf{R}^d)$ (for instance).

Thank you for your attention !