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We use a simplified approach, where the resistance of water to the
motion of a ship is represented as

Rwater = Rviscous + Rwave ,

and Rwave is given by Michell’s formula (1898).
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Consider a ship moving with constant velocity U on the surface of
an unbounded fluid.

coordinates xyz are fixed to the ship

the xy -plane is the (undisturbed) water surface, z is vertically
upward

The (half-)immerged hull surface is represented by a continuous
nonnegative function

y = f (x , z) ≥ 0, (x , z) ∈ ω,

with f (x , z) = 0 on Γ− (= the boundary of ω under the surface)
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The fluid is incompressible, inviscid, the flow is irrotational

A steady state has been reached

Linearized theory (flow potential with linearized boundary
conditions)

Thin ship assumptions: |∂x f | << 1, |∂z f | << 1.

Michell’s wave resistance is the drag force in this linearized
model (recall d’Alembert’s paradox !).

Experiments starting in the 1920’s (Wigley, Weinblum):
reasonable good agreement between Michell’s theory and
experiment (Gotman’02).
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About the optimization problem for ω fixed

1st idea: finding a ship of minimal wave resistance among
admissible functions f : ω → R+, for a constant speed U and a
given volume V of the hull.
f 7→ RMichell(f ) is a positive semi-definite quadratic functional, but
the problem above is ill-posed (Sretensky’35, Krein’52).

Morgan PIERRE Optimal ship forms



Formulation of the optimization problem
Existence and regularity

Application to Michell’s wave resistance
Conclusion

About the optimization problem for ω fixed

1st idea: finding a ship of minimal wave resistance among
admissible functions f : ω → R+, for a constant speed U and a
given volume V of the hull.
f 7→ RMichell(f ) is a positive semi-definite quadratic functional, but
the problem above is ill-posed (Sretensky’35, Krein’52).

Many authors proposed to add conditions and/or to work in finite
dimension (Weinblum’56, Kostyukov’68,. . . )
Another approach, that we chose: add the viscous resistance
which can be interpreted as a regularization (Krein & Sizov’60
and ’00, Lian-en’84, Michalski et al’87, Dambrine, P. &
Rousseaux’15)
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Figure: Symmetrization z 7→ −z and a possible bounding box

f : ω → R becomes u : D → R with support Ω



The normalized total resistance is

J(u) = J0(u) + Jwave(u), (1)

where

J0(u) =

∫

D

|∇u(x , z)|2dxdz (2)

is the normalized viscous resistance, and

Jwave(u) =

∫

D

∫

D

k(x , z , x ′, z ′)u(x , z)u(x ′, z ′)dxdzdx ′dz ′ ≥ 0 (3)

is the normalized wave resistance functional. Here,
k : D × D → R belongs to Lq(D × D) for some q ∈ (1,+∞] and
satisfies the following symmetry assumptions:

k(x , z , x ′, z ′) = k(x ′, z ′, x , z) (x , z , x ′, z ′) ∈ D × D,

k(x ,−z , x ′, z ′) = k(x , z , x ′, z ′) (x , z , x ′, z ′) ∈ D × D.
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Formulation of the optimization problem

Let V > 0 (the volume of the hull) and 0 < a < |D| (the area of
Ω).
Find an open and symmetric set Ω⋆ such that

J(uΩ⋆) = inf {J(uΩ), Ω ⊂ D open and symmetric, |Ω| = a} , (4)

where uΩ is uniquely defined by

J(uΩ) = min

{

J(v), v ∈ H1
0 (Ω), v̌ = v ,

∫

Ω

v = V

}

. (5)

(We denote v̌(x , z) = v(x ,−z), ∀(x , z) ∈ D).
Two questions: existence of Ω⋆ and regularity of uΩ⋆
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Following a standard approach, we work with the space

Ȟ = {u ∈ H1
0 (D), ǔ = u a.e. in D},

which is a closed subspace of H1
0 (D). For a function u ∈ Ȟ , we

denote
Ωu = {(x , z) ∈ D : u(x , z) 6= 0}.

We also set |Ωu| the area of Ωu.



Following a standard approach, we work with the space

Ȟ = {u ∈ H1
0 (D), ǔ = u a.e. in D},

which is a closed subspace of H1
0 (D). For a function u ∈ Ȟ , we

denote
Ωu = {(x , z) ∈ D : u(x , z) 6= 0}.

We also set |Ωu| the area of Ωu. We define

C a
V = {v ∈ Ȟ :

∫

D

vdxdz = V , |Ωv | ≤ a},

and we reformulate the previous problem as follows:

(Pa
V )

{

Find u ∈ C a
V such that

J(u) ≤ J(v), ∀v ∈ C a
V .
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Theorem (Dambrine & P.)

Problem (Pa
V ) has a solution u such that J(u) < +∞.

Existence by considering a minimizing sequence in C a
V .
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Theorem (Dambrine & P.)

Let u solve problem (Pa
V ) with k ∈ Lq(D ×D), q > 1, and assume

that u is nonnegative.

1. If q ∈ (1, 2), then u is locally α-Hölder continuous on D with
α = 2/q′.

2. If q = 2, then u is locally α-Hölder continuous on D for all
α < 1.

3. If q > 2, then u is locally Lipschitz continuous on D.

Method of Alt & Caffarelli’81, and adaptations to the Dirichlet
energy (+ symmetry + integral kernel k):

Penalized version of the problem (isoperimetric inequality
used)

elliptic estimates and measure-theoretic arguments
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Michell’s wave resistance kernel reads

kν(x , z , x
′, z ′) =

4ν4

πCF (ν)
K (ν(x − x ′), ν(|z |+ |z ′|)), (6)

with ν = g/U2 (g=gravity and U=speed of ship), and

K (X ,Z ) =

∫

∞

1

e−λ2Z cos(λX )
λ4

√
λ2 − 1

dλ. (7)

Proposition

Michell’s normalized wave resistance kernel kν (6) belongs to
Lq(D × D) for all 1 ≤ q < 5/4. Moreover, if D contains an open
disc centered on the x-axis, then kν does not belong to
L5/4(D ×D).
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Theorem

Let u be a solution of problem (Pa
V ). If u is nonnegative, then u is

locally α-Hölder continuous on D for all α ∈ (0, 2/5).

Theorem (Improved regularity below the water/air interface)

Let the assumptions of Theorem 3.2 be satisfied. Then u is locally
Lipschitz continous on D⋆ = {(x , z) ∈ D : z 6= 0} = D ∩ (R× R⋆)
(where R⋆ = R \ {0}).
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Using analycity, we also proved

Theorem

Let u solve problem (Pa
V ). If D

+ = {(x , z) ∈ D : z > 0} is
connected, then the constraint |Ωu| ≤ a is saturated, and so
|Ωu| = a.
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An optimized form for a variable domain (algorithm from Allaire’s book)



The bulbous bow of “Harmony of the Seas” (2015)



A minimizing sequence for Fr = 0.75
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Work in progress

More robust numerical simulations

Dependence with respect to the speed U
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Some open questions

Study regularity of u with the positivity condition, i.e.
consider problem

(Pa,+
V )

{

Find u ∈ C a,+
V such that

J(u) ≤ J(v), ∀v ∈ C a,+
V ,

where

C a,+
V

= {v ∈ Ȟ : v ≥ 0 a. e. in D,

∫

D

vdxdz = V , |Ωv | ≤ a};

Prove existence without the bounding box D ? (at least for
some values of U).



Formulation of the optimization problem
Existence and regularity

Application to Michell’s wave resistance
Conclusion

Some open questions (continued)

Study regularity of u ∈ H1(Rd ) which solves

{

u ∈ K a,+

F(u) ≤ F(v), ∀v ∈ K a,+,

where

F(v) =
1

2

∫

Rd

|∇v |2dx −
∫

Rd

fvdx

and

K a,+ = {v ∈ H1(Rd ) : v ≥ 0 a.e. in Rd , |Ωv | ≤ a}.

Here, f ∈ C 0
c (R

d ) (for instance).
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Some open questions (continued)

Study regularity of u ∈ H1(Rd ) which solves

{

u ∈ K a,+

F(u) ≤ F(v), ∀v ∈ K a,+,

where

F(v) =
1

2

∫

Rd

|∇v |2dx −
∫

Rd

fvdx

and

K a,+ = {v ∈ H1(Rd ) : v ≥ 0 a.e. in Rd , |Ωv | ≤ a}.

Here, f ∈ C 0
c (R

d ) (for instance).

Thank you for your attention !
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