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Geometric evolution laws for networks

Aim: given a geometric functional F
we let evolve the network N
by the (L2) gradient flow of F

Prototype: F is the total length of N

motion by curvature

“Evolution of Networks with Multiple Junctions”

Mantegazza, Novaga, Pluda, Schulze

“On short time existence for the planar network flow”

Ilmanen, Neves, Schulze

Main difficulty: presence of junctions
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Geometric L2 gradient flow of the elastic energy

Given a network N = ∪N
i=1γ

i , we consider the elastic energy functional defined as

E (N ) =

∫
N
k2 ds =

3∑
i=1

∫
γi

k2 ds .

We are interested in the L2 gradient flow for E(N ).

Alessandra Pluda Evolution of networks



Geometric L2 gradient flow of the elastic energy

Given a network N = ∪N
i=1γ

i , we consider the elastic energy type functional defined as

F (N ) =

∫
N
k2+1 ds =

3∑
i=1

∫
γi

k2+1 ds .

We are interested in the L2 gradient flow for F (N ).

Formally we derive the motion equation computing the first variation of F (N )

d

dt
F (Ñ )|t=0 =

3∑
i=1

∫
γ i

〈
ψi ,

(
2k i

ss +
(
k i
)3
− k i

)
ν i
〉

ds

+ boundary terms ,

we obtain

(γ i
t)
⊥ =− 2k i

ss −
(
k i
)3

+ k i

+ boundary conditions .
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Possible asymptotic behaviours

We let evolve a Theta network by the gradient flow of the elastic energy E =
∫
N k2 ds.
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Possible asymptotic behaviours

If instead we let evolve a Theta network by the gradient flow of the functional
F =

∫
N k2 + 1 ds, in principle, more behaviours are expected.

vanishing of a curve;
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Examples of different conditions at the junctions

and at the end points

Case 1:

Case 2: Case 3: Case 4:

Theta–network

Theta–network Lens Triod
with fixed with fixed with fixed
equal angles end points points and

fixed angles
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Examples of different conditions at the junctions and at the end points

Case 1: Case 2: Case 3: Case 4:
Theta–network Theta–network Lens Triod

with fixed with fixed with fixed
equal angles end points points and

fixed angles
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The (geometric) problem

Problem

Consider an admissible initial Theta network Θ = ∪3
i=1γ

i , we study its evolution by

(v i )⊥ = −(2k i
ss + (k i )3 − k i )ν i =: −Aiν i ,

coupled with the following conditions at the triple junctions:

for every time

the curves stay attached (concurrency condition);

γ i
xx = 0 (second order condition);∑3
i=1

(
2k i

sν
i − τ i

)
= 0 (third order condition).
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The (analytic) problem

Problem

For every t ∈ [0,T ) , x ∈ [0, 1] and for i ∈ {1, 2, 3}

(γ i
t)
⊥(t, x) = −Ai (t, x)ν i (t, x) motion

γ1 (t, y) = γ2 (t, y) = γ3 (t, y) for y ∈ {0, 1} concurrency condition

γ i
xx(t, y) = 0 for y ∈ {0, 1} second order condition∑3

i=1

(
2k i

sν
i − τ i

)
(t, y) = 0 for y ∈ {0, 1} third order condition

γ i (0, x) = ϕi (x) for x ∈ [0, 1] initial data

with ϕi admissible initial data.
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+ 5 γxx |γxx |
2

|γx |6
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|γ ix |6
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|γ ix |8
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Short time existence

Theorem (Short time existence)

Let (ϕi )i=1,2,3 be an admissible inital data. Then there exists a strictly positive time T

such that the system (1) has a unique solution in C
4+α
4
,4+α ([0,T ]× [0, 1]) =: ET .

The proof is based on the following steps:

linearisation of the system;

resolution of the linearised system;

fixed point argument.
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Idea of the proof

We introduce the following notation: given a Theta–network Θ = ∪N
i=1γ

i , with
γ i : [0, 1]→ R2, we denote with γ the triple (γ1, γ2, γ3).

Moreover 
0 = γ i

t + 2
γ ixxxx

|γ ix |4
− f̃ (γ i

xxx , γ
i
xx , γ

i
x) =:M(γ i )

γ1 (t, y) = γ2 (t, y) = γ3 (t, y)

γ i
xx(t, y) = 0

0 =
∑3

i=1
1
|γ ix |3

〈
γ i
xxx , ν

i
〉
ν i −

∑3
i=1

γ ix
|γ ix |

=: B(γ)
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Linearisation around the initial data

We fix an admissible initial data Θ0 =
⋃3

i=1 ϕ
i .

We linearise M(γ i ) and B(γ) around the initial data:

γ
i
t +

2

|ϕi
x |4
γ
i
xxxx =

(
2

|ϕi
x |4
−

2

|γ i
x |4

)
γ
i
xxxx + f̃ (γ i

xxx , γ
i
xx , γ

i
x ) =: f i ,

−
3∑

i=1

1

|ϕi
x |3
〈
γ
i
xxx , ν

i
0

〉
ν
i
0 = −

3∑
i=1

1

|ϕi
x |3
〈
γ
i
xxx , ν

i
0

〉
ν
i
0 +

3∑
i=1

1

|γ i
x |3
〈
γ
i
xxx , ν

i
〉
ν
i + hi (γ i

x ) =: b .

obtaining the linear operator

LT : ET → C
α
4
,

t

α

x ([0,T )× [0, 1]; (R2)3)× C
1+α
4
,

t

1+α

x ([0,T )× {0, 1};R2) =: FT

defined by

LT (γ) =

 (
γ i
t + 2

|ϕi
x |4
γ i
xxxx

)
i∈{1,2,3}

−tr∂[0,1]
∑3

i=1
1
|ϕi

x |3
〈
γ i
xxx , ν

i
0

〉
ν i0

 =:

(
LT ,1(γ i )
LT ,2(γ)

)
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Existence for the linearised system

The associated linearised system is given by

γ i
t + 2

|ϕi
x |4
γ i
xxxx = f i motion

γ1 − γ2 = 0 concurrency

γ1 − γ3 = 0 concurrency

γ i
xx = 0 second order

−
∑3

i=1
1
|ϕi

x |3
〈
γ i
xxx , ν

i
0

〉
ν i0 = b third order

(2)

Theorem

Let α ∈ (0, 1). There exists T > 0 such that if

f i ∈ C
α
4
,

t

α

x ([0,T )× [0, 1];R2) for i ∈ {1, 2, 3} ;

b ∈ C
1+α
4
,

t

1+α

x ([0,T )× {0, 1};R2) ;

linear compatibility conditions are fulfilled;

then system (2) has a unique solution γ = (γ1, γ2, γ3) in C
4+α
4
,

t

4+α

x ([0,T )× [0, 1]; (R2)3).
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Fixed point argument

We define NT : ET → FT as

NT (γ) =

(
LT ,1(γ i )−M(γ i )
LT ,2(γ)− B(γ)

)
=

(
f i

b

)
and the map KT : L−1

T NT : ET → ET .

Proposition

For any positive radius M there exists a strictly positive time T (M) such that for all
T ∈ (0,T (M)] the map KT : ET ∩ BM → ET ∩ BM is a contraction.

As the solutions of (1) in C
4+α
4
,4+α ([0,T ]× [0, 1]) ∩ BM are precisely the fixed points of

KT in EϕT ∩ BM , the short time existence Theorem follows.
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