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Some controllability results for the Grushin equation

Grushin equation

Ω = [−1, 1]× T
∂tf − ∂2x f − x2∂2y f = 1ωu

f|∂Ω = 0

• Null-controllable in arbitrarily small time if ω
(Beauchard, Miller & Morancey 2015)

• Null-controllable only in large time if ω

(Beauchard, Cannarsa & Guglielmi 2014)
• Never null-controllable if ω
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Non null-controllability of the
Grushin equation: heuristics



Non null-controllability of the Grushin equation: heuristics

• Goal: disprove the observability inequality∫
Ω

|f (T, ·)|2 ≤ C
∫
[0,T]×ω

|f |2

• λn first eigenvalue of −∂2x + (nx)2 with Dirichlet condition on
(−1, 1); vn the associated eigenfunction

• vn(x)einy is an eigenfunction of −∂2x − x2∂2y with eigenvalue λn

• Approximation of −∂2x + (nx)2 on (−1, 1) by itself on R: we expect
vn ∼

( n
4π
)1/4 e−nx2/2 et λn ∼ n

• Observability inequality with f (t, x, y) =
∑
anvn(x)einy−λnt,

heuristics λn = n and
∫
vnvm = 1:∫

T

∣∣∣∑ane−nTeiny
∣∣∣2 dy ≤ C

∫
[0,T]×ω

∣∣∣∑ane−nteiny
∣∣∣2 dt dy
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The toy model: D =
√
−∆

Theorem
Let H = {

∑
n≥0 aneiny,

∑
|an|2 < +∞} and D

∑
aneiny =

∑
naneiny .

Let ω be a strict open set of the unit circle.

The equation ∂tf + Df = 1ωu is never null-controllable.

Observability inequality f (t, y) =
∑
ane−nteiny :∫

T

∣∣∣∑ane−nTeiny
∣∣∣2 dy ≤ C

∫
[0,T]×ω

∣∣∣∑ane−nteiny
∣∣∣2 dt dy

It is the approximate observability inequality of the Grushin

equation!
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Proof of the non null-controllability of the toy model

Observability inequality with f (t, y) =
∑
ane−nteiny :∑

|an|2e−2nT ≤ C
∫
[0,T]×ω

∣∣∣∑ane−nteiny
∣∣∣2 dt dy

Let z = e−t+iy = µ+ iν and f (z) =
∑

n≥1 anzn−1∫
z∈D(0,e−T)

|f (z)|2 dµdν

≤ π
∑

|an|2e−2nT

≤ πC
∫

z∈D

|f (z)|2 dµdν

ω

D

θ

False thanks to Runge’s theorem (take fk −→ 1/z uniformly on every
compact subset of C \ eiθR+)

5



Proof of the non null-controllability of the toy model

Observability inequality with f (t, y) =
∑
ane−nteiny :∑

|an|2e−2nT ≤ C
∫
[0,T]×ω

∣∣∣∑ane−nteiny
∣∣∣2 dt dy

Let z = e−t+iy = µ+ iν and f (z) =
∑

n≥1 anzn−1∫
z∈D(0,e−T)

|f (z)|2 dµdν

≤ π
∑

|an|2e−2nT

≤ πC
∫

z∈D

|f (z)|2 dµdν

ω

D

θ

False thanks to Runge’s theorem (take fk −→ 1/z uniformly on every
compact subset of C \ eiθR+)

5



Proof of the non null-controllability of the toy model

Observability inequality with f (t, y) =
∑
ane−nteiny :∑

|an|2e−2nT ≤ C
∫
[0,T]×ω

∣∣∣∑ane−nteiny
∣∣∣2 dt dy

Let z = e−t+iy = µ+ iν and f (z) =
∑

n≥1 anzn−1∫
z∈D(0,e−T)

|f (z)|2 dµdν

≤ π
∑

|an|2e−2nT

≤ πC
∫

z∈D

|f (z)|2 dµdν

ω

D

θ

False thanks to Runge’s theorem (take fk −→ 1/z uniformly on every
compact subset of C \ eiθR+)

5



Differences between the Grushin equation and the Toy model

“Holomorphic” observability inequality (we know it is false):∑
|an|2e−2nT ≤ C

∫
D

∣∣∣∑an(z)n−1
∣∣∣2 dµdν

D

Observability inequality of the Grushin equation

• Let λn = n+ ρn and z = µ+ iν :

∑
|an|2e−2nTe−2ρnT ≤ C

1∫
−1

∫
z∈D

∣∣∣∑ vn(x)anzn|z|ρn
∣∣∣2 dµdν dx

• Solution:
• e−2ρnT in the lhs: not a problem
• Treat x as a parameter
• Write γn = vn(x)|ζ|ρn and prove∣∣∣∑ γnanzn

∣∣∣
L∞(D)

≤ C
∣∣∣∑ anzn

∣∣∣
L∞(U)
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Conclusion



Open problems

• What about other domains ω?
• Fourier approach: works, but limits the geometry of the domain
we can treat

• Proof very specific to the potential x2 in the equation
(∂t − ∂2x − x2∂2y)f = 1ωu

• Invoked holomorphic structure too rigid
• Is there any initial condition that can be steered to 0 at all?
• What about higher dimension?

That’s all folks!
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Tools

Definition
Let S(r) the space of functions γ such that for all 0 < θ < π/2:

• γ is holomorphic on {|z| > r(θ), | arg(z)| < θ}
• γ has sub-exponential growth on each of these domains

Theorem
There exists γ in a S(r) such that

λα = α+ γ(α)e−α

γ ∼ 4√
π
α3/2

Theorem
Let γ in S(r), and Hγ(

∑
anzn) =

∑
γ(n)anzn. Let U a bounded

domain star-shaped with respect to 0, let δ > 0 and
Uδ = {z,distance(z,U) < δ}. For all polynomials f :

|Hγ(f )|L∞(U) ≤ C|f |L∞(Uδ)

θ
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Holomorphic and exponential estimate of the eigenvalues

Theorem
There exists γ in some S(r) such that:

λα = α+ γ(α)e−α γ ∼ 4√
π
α3/2

Idea of the proof.

• Explicitly solve the ODE (solution as an integral on some
complex path)

• Deduce from that solution an implicit equation between α and
λα

• Solve that equation with Newton’s method (necessary estimates
provided by the stationary phase theorem)
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Estimates on some operators on entire functions

Theorem
Let γ in S(r), and Hγ(

∑
anzn) =

∑
γ(n)anzn. Let U an bounded

domain, star shaped with respect to 0, let δ > 0 and
Uδ = {z,distance(z,U) < δ}. For all entire functions f :

|Hγ(f )|L∞(U) ≤ C|f |L∞(Uδ)

Idea of the proof.

• Write Hγ(f )(z) =
∮
∂D(0,R)

1
ζ
Kγ

(
z
ζ

)
f (ζ)dζ with

Kγ(ζ) = 1
2iπ

∑
γ(n)ζn (Cauchy’s integral formula)

• Extend Kγ to C \ [1,+∞[ thanks to Poisson’s summation formula
(we can do it because the holomorphy of γ allows us to extend
the Fourier transform of γ to C \ iR+)

• Change the path of integration
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