Non null-controllability of the Grushin equation in dimension 2

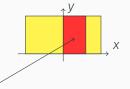
Armand Koenig Université Côte d'azur VII Partial Differential Equations, Optimal Design and Numerics 24th of August 2017

Centro de ciencias de Benasque Pedro Pascual

Some controllability results for the Grushin equation

$$\Omega = [-1, 1] \times \mathsf{T}$$
$$\partial_t f - \partial_x^2 f - x^2 \partial_y^2 f = \mathbf{1}_\omega u$$
$$f_{|\partial\Omega} = 0$$

$$\Omega = [-1, 1] \times \mathbf{T}$$
$$\partial_t f - \partial_x^2 f - x^2 \partial_y^2 f = \mathbf{1}_\omega u$$
$$f_{|\partial\Omega} = 0$$



• Null-controllable in arbitrarily small time if ω (Beauchard, Miller & Morancey 2015)

$$\Omega = [-1, 1] \times \mathbf{T}$$
$$\partial_t f - \partial_x^2 f - x^2 \partial_y^2 f = \mathbf{1}_\omega u$$
$$f_{|\partial\Omega} = 0$$

- Null-controllable in arbitrarily small time if ω
 (Beauchard, Miller & Morancey 2015)
- Null-controllable only in large time if ω (Beauchard, Cannarsa & Guglielmi 2014)

Х

Х

$$\begin{split} \Omega &= [-1,1] \times \mathsf{T} \\ \partial_t f &- \partial_x^2 f - x^2 \partial_y^2 f = \mathsf{1}_\omega u \\ f_{|\partial\Omega} &= 0 \end{split}$$

- Null-controllable in arbitrarily small time if ω
 (Beauchard, Miller & Morancey 2015)
- Null-controllable only in large time if ω (Beauchard, Cannarsa & Guglielmi 2014)
- Never null-controllable if ω -

_↑ У

Х

Х

Х

• Goal: disprove the observability inequality

$$\int_{\Omega} |f(T, \cdot)|^2 \leq C \int_{[0,T] \times \omega} |f|^2$$

• Goal: disprove the observability inequality

$$\int_{\Omega} |f(T, \cdot)|^2 \leq C \int_{[0,T] \times \omega} |f|^2$$

- λ_n first eigenvalue of $-\partial_x^2 + (nx)^2$ with Dirichlet condition on (-1, 1); v_n the associated eigenfunction
- $v_n(x)e^{iny}$ is an eigenfunction of $-\partial_x^2 x^2\partial_y^2$ with eigenvalue λ_n

• Goal: disprove the observability inequality

$$\int_{\Omega} |f(T, \cdot)|^2 \leq C \int_{[0,T] \times \omega} |f|^2$$

- λ_n first eigenvalue of $-\partial_x^2 + (nx)^2$ with Dirichlet condition on (-1, 1); v_n the associated eigenfunction
- $v_n(x)e^{iny}$ is an eigenfunction of $-\partial_x^2 x^2\partial_y^2$ with eigenvalue λ_n
- Approximation of $-\partial_x^2 + (nx)^2$ on (-1, 1) by itself on R: we expect $v_n \sim \left(\frac{n}{4\pi}\right)^{1/4} e^{-nx^2/2}$ et $\lambda_n \sim n$
- Observability inequality with $f(t, x, y) = \sum a_n v_n(x) e^{iny \lambda_n t}$, heuristics $\lambda_n = n$ and $\int v_n v_m = 1$:

$$\int_{\mathsf{T}} \left| \sum a_n e^{-n\mathsf{T}} e^{iny} \right|^2 \, \mathrm{d} y \leq C \int_{[0,\mathsf{T}] \times \omega} \left| \sum a_n e^{-n\mathsf{t}} e^{iny} \right|^2 \, \mathrm{d} \mathsf{t} \, \mathrm{d} y$$

Theorem

Let $H = \{\sum_{n\geq 0} a_n e^{iny}, \sum |a_n|^2 < +\infty\}$ and $D \sum a_n e^{iny} = \sum na_n e^{iny}$. Let ω be a strict open set of the unit circle.

The equation $\partial_t f + Df = \mathbf{1}_{\omega} u$ is never null-controllable.

Theorem

Let $H = \{\sum_{n\geq 0} a_n e^{iny}, \sum |a_n|^2 < +\infty\}$ and $D \sum a_n e^{iny} = \sum na_n e^{iny}$. Let ω be a strict open set of the unit circle.

The equation $\partial_t f + Df = \mathbf{1}_{\omega} u$ is never null-controllable.

Observability inequality $f(t, y) = \sum a_n e^{-nt} e^{iny}$:

$$\int_{\mathsf{T}} \left| \sum a_n e^{-nT} e^{iny} \right|^2 \, \mathrm{d} y \le C \int_{[0,T] \times \omega} \left| \sum a_n e^{-nt} e^{iny} \right|^2 \, \mathrm{d} t \, \mathrm{d} y$$

It is the approximate observability inequality of the Grushin equation!

Proof of the non null-controllability of the toy model

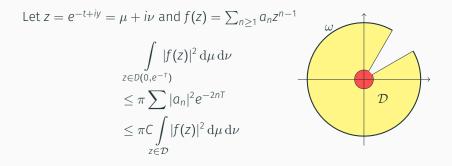
Observability inequality with $f(t, y) = \sum a_n e^{-nt} e^{iny}$:

$$\sum |a_n|^2 e^{-2nT} \leq C \int_{[0,T]\times\omega} \left|\sum a_n e^{-nt} e^{iny}\right|^2 \,\mathrm{d}t \,\mathrm{d}y$$

Proof of the non null-controllability of the toy model

Observability inequality with $f(t, y) = \sum a_n e^{-nt} e^{iny}$:

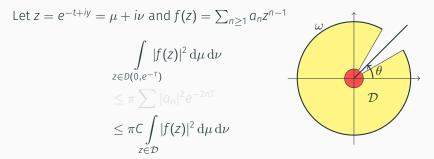
$$\sum |a_n|^2 e^{-2nT} \leq C \int_{[0,T]\times\omega} \left| \sum a_n e^{-nt} e^{iny} \right|^2 \, \mathrm{d}t \, \mathrm{d}y$$



Proof of the non null-controllability of the toy model

Observability inequality with $f(t, y) = \sum a_n e^{-nt} e^{iny}$:

$$\sum |a_n|^2 e^{-2nT} \leq C \int_{[0,T]\times\omega} \left|\sum a_n e^{-nt} e^{iny}\right|^2 \, \mathrm{d}t \, \mathrm{d}y$$



False thanks to Runge's theorem (take $f_k \longrightarrow 1/z$ uniformly on every compact subset of $C \setminus e^{i\theta}R_+$)

Differences between the Grushin equation and the Toy model

"Holomorphic" observability inequality (we know it is false):

$$\sum |a_n|^2 e^{-2nT} \leq C \int_{\mathcal{D}} \left| \sum a_n(z)^{n-1} \right|^2 \, \mathrm{d}\mu \, \mathrm{d}\nu$$

Differences between the Grushin equation and the Toy model

"Holomorphic" observability inequality (we know it is false):

$$\sum |a_n|^2 e^{-2nT} \leq C \int_{\mathcal{D}} \left| \sum a_n(z)^{n-1} \right|^2 \, \mathrm{d}\mu \, \mathrm{d}\nu$$

Observability inequality of the Grushin equation

• Let
$$\lambda_n = n + \rho_n$$
 and $z = \mu + i\nu$:

$$\sum |a_n|^2 e^{-2nT} e^{-2\rho_n T} \leq C \int_{-1}^1 \int_{z \in \mathcal{D}} \left| \sum \mathbf{v}_n(\mathbf{x}) a_n z^n |\mathbf{z}|^{\rho_n} \right|^2 \, \mathrm{d}\mu \, \mathrm{d}\nu \, \mathrm{d}\nu$$

 \mathcal{D}

Differences between the Grushin equation and the Toy model

"Holomorphic" observability inequality (we know it is false):

$$\sum |a_n|^2 e^{-2nT} \leq C \int_{\mathcal{D}} \left| \sum a_n(z)^{n-1} \right|^2 \, \mathrm{d}\mu \, \mathrm{d}\nu$$

Observability inequality of the Grushin equation

• Let
$$\lambda_n = n + \rho_n$$
 and $z = \mu + i\nu$:

$$\sum |a_n|^2 e^{-2nT} e^{-2\rho_n T} \leq C \int_{-1}^1 \int_{z \in \mathcal{D}} \left| \sum \mathbf{v}_n(\mathbf{x}) a_n z^n |z|^{\rho_n} \right|^2 \, \mathrm{d}\mu \, \mathrm{d}\nu \, \mathrm{d}\mathbf{x}$$

- Solution:
 - $e^{-2\rho_n T}$ in the lhs: not a problem
 - Treat x as a parameter
 - Write $\gamma_n = v_n(x)|\zeta|^{\rho_n}$ and prove

$$\left\|\sum \gamma_n a_n z^n\right\|_{L^{\infty}(\mathcal{D})} \leq C \left\|\sum a_n z^n\right\|_{L^{\infty}(\mathcal{U})}$$

 \mathcal{D}

Conclusion

- What about other domains ω ?
- Fourier approach: works, but limits the geometry of the domain we can treat

- What about other domains ω ?
- Fourier approach: works, but limits the geometry of the domain we can treat
- Proof very specific to the potential x^2 in the equation $(\partial_t \partial_x^2 x^2 \partial_y^2)f = 1_\omega u$
- Invoked holomorphic structure too rigid

- What about other domains ω ?
- Fourier approach: works, but limits the geometry of the domain we can treat
- Proof very specific to the potential x^2 in the equation $(\partial_t \partial_x^2 x^2 \partial_y^2)f = 1_\omega u$
- Invoked holomorphic structure too rigid
- Is there any initial condition that can be steered to 0 at all?

- What about other domains ω ?
- Fourier approach: works, but limits the geometry of the domain we can treat
- Proof very specific to the potential x^2 in the equation $(\partial_t \partial_x^2 x^2 \partial_y^2)f = 1_\omega u$
- Invoked holomorphic structure too rigid
- Is there any initial condition that can be steered to 0 at all?
- What about higher dimension?

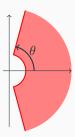
- What about other domains ω ?
- Fourier approach: works, but limits the geometry of the domain we can treat
- Proof very specific to the potential x^2 in the equation $(\partial_t \partial_x^2 x^2 \partial_y^2)f = 1_\omega u$
- Invoked holomorphic structure too rigid
- Is there any initial condition that can be steered to 0 at all?
- What about higher dimension?

That's all folks!

Definition

Let S(r) the space of functions γ such that for all $0 < \theta < \pi/2$:

- γ is holomorphic on $\{|z| > r(\theta), |\arg(z)| < \theta\}$
- + γ has sub-exponential growth on each of these domains



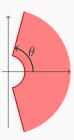
Definition

Let S(r) the space of functions γ such that for all $0 < \theta < \pi/2$:

- γ is holomorphic on $\{|z| > r(\theta), |\arg(z)| < \theta\}$
- + γ has sub-exponential growth on each of these domains

Theorem There exists γ in a S(r) such that

$$\lambda_{\alpha} = \alpha + \gamma(\alpha)e^{-\alpha}$$



Definition

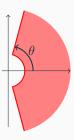
Let S(r) the space of functions γ such that for all $0 < \theta < \pi/2$:

- γ is holomorphic on $\{|z| > r(\theta), |\arg(z)| < \theta\}$
- + γ has sub-exponential growth on each of these domains

Theorem

There exists γ in a S(r) such that

$$\lambda_{\alpha} = \alpha + \gamma(\alpha)e^{-\alpha} \qquad \gamma \sim \frac{4}{\sqrt{\pi}}\alpha^{3/2}$$



Definition

Let S(r) the space of functions γ such that for all $0 < \theta < \pi/2$:

- γ is holomorphic on $\{|z| > r(\theta), |\arg(z)| < \theta\}$
- + γ has sub-exponential growth on each of these domains

Theorem

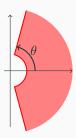
There exists γ in a S(r) such that

$$\lambda_{\alpha} = \alpha + \gamma(\alpha)e^{-\alpha} \qquad \gamma \sim \frac{4}{\sqrt{\pi}}\alpha^{3/2}$$

Theorem

Let γ in S(r), and $H_{\gamma}(\sum a_n z^n) = \sum \gamma(n)a_n z^n$. Let U a bounded domain star-shaped with respect to 0, let $\delta > 0$ and $U^{\delta} = \{z, distance(z, U) < \delta\}$. For all polynomials f:

$$|H_{\gamma}(f)|_{L^{\infty}(U)} \leq C|f|_{L^{\infty}(U^{\delta})}$$



Theorem

There exists γ in some S(r) such that:

$$\lambda_{\alpha} = \alpha + \gamma(\alpha)e^{-\alpha} \qquad \gamma \sim \frac{4}{\sqrt{\pi}}\alpha^{3/2}$$

Idea of the proof.

- Explicitly solve the ODE (solution as an integral on some complex path)
- Deduce from that solution an implicit equation between α and λ_{α}
- Solve that equation with Newton's method (necessary estimates provided by the stationary phase theorem) □

Theorem

Let γ in S(r), and $H_{\gamma}(\sum a_n z^n) = \sum \gamma(n)a_n z^n$. Let U an bounded domain, star shaped with respect to 0, let $\delta > 0$ and $U^{\delta} = \{z, distance(z, U) < \delta\}$. For all entire functions f:

 $|H_{\gamma}(f)|_{L^{\infty}(U)} \leq C|f|_{L^{\infty}(U^{\delta})}$

Idea of the proof.

- Write $H_{\gamma}(f)(z) = \oint_{\partial D(0,R)} \frac{1}{\zeta} K_{\gamma}\left(\frac{z}{\zeta}\right) f(\zeta) \, \mathrm{d}\zeta$ with $K_{\gamma}(\zeta) = \frac{1}{2i\pi} \sum \gamma(n) \zeta^{n}$ (Cauchy's integral formula)
- Extend K_{γ} to $C \setminus [1, +\infty[$ thanks to Poisson's summation formula (we can do it because the holomorphy of γ allows us to extend the Fourier transform of γ to $C \setminus iR_+$)
- \cdot Change the path of integration