Asymptotic stabilization of a 2x2 hyperbolic system in BV space

J.-M. Coron, <u>S. Ervedoza[†]</u>, S.S. Ghoshal, O. Glass and V. Perrollaz

[†] Institut de Mathématiques de Toulouse

Benasque 2017 23/08/2017

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Outline

Introduction

Main result

Introduction – General setting

 Stabilization issues for one-dimensional hyperbolic systems of conservation laws:

$$\partial_t u + \partial_x (f(u)) = 0, \quad f : \Omega \subset \mathbb{R}^n \to \mathbb{R}^n,$$
 (SCL)

ション ふゆ アメリア メリア しょうくしゃ

satisfying the (strict) hyperbolicity condition that at each point Strict hyperbolicity

df has *n* distinct real eigenvalues $\lambda_1 < \cdots < \lambda_n$.

 Typical examples: compressible fluid flows, fluid through a canal, traffic flow, etc.

Characteristic fields

- Corresponding to the characteristic speeds λ₁ < · · · < λ_n, the Jacobian A(u) := df(u) has n right eigenvectors r_i(u).
- ► We denote $(\ell_i)_{i=1,...,n}$ the left eigenvectors of df(u) satisfying $\ell_i \cdot r_j = \delta_{ij}$.
- The characteristic families will be supposed to be genuinely non-linear (GNL), that is:

 $\nabla \lambda_i \cdot r_i \neq 0$ for all u in Ω .

 \rightsquigarrow Convention: $\nabla \lambda_i \cdot r_i > 0$.

Boundary conditions

System of conservation laws in a bounded interval (0, L):

$$\partial_t u + \partial_x (f(u)) = 0, \quad t \ge 0, x \in (0, L),$$
 (SCL)

 \rightarrow Has to be completed with suitable boundary conditions.

We suppose moreover that the characteristic speeds are stricly separated from 0:

$$\lambda_1 < \cdots < \lambda_m < 0 < \lambda_{m+1} < \cdots < \lambda_n.$$

We will be interested in boundary conditions put in the following form:

$$\begin{pmatrix} u_+(t,0)\\ u_-(t,L) \end{pmatrix} = G \begin{pmatrix} u_+(t,L)\\ u_-(t,0) \end{pmatrix}$$

with

$$u_+ := (u_{m+1}, \ldots, u_n)$$
 and $u_- := (u_1, \ldots, u_m)$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Stabilization problem

- ▶ We consider an equilibrium point \overline{u} of the system. To simplify, we fix $\overline{u} = 0$ and G(0) = 0.
- ► The question is to design boundary conditions, i.e. *G* so that *u* becomes an asymptotically stable point for the resulting closed-loop system.
- We recall that a point *u* is called stable when for any neighborhood *V* of *u*, there exists a neighborhood *U* of *u* such that any trajectory of the system starting from *u* stays in *V* for all *t* ≥ 0.

ション ふゆ アメリア メリア しょうくしゃ

It is called asymptotically stable when moreover any trajectory starting from U satisfies u(t, ·) → u as t → +∞.

Stabilization problem

A point <u>u</u> = 0 is called exponentially stable when any trajectory starting from some neighborhood U of <u>u</u> = 0 satisfies

```
\|u(t,\cdot)\| \leq C \exp(-\gamma t) \|u(0,\cdot)\| for all t \geq 0,
```

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

for some fixed $\gamma > 0$ and C > 0.

Careful...

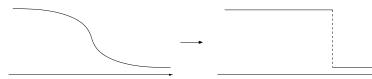
Stabilization properties may depend on the functional setting under consideration !

On the functional setting – Appearance of shocks

When considering the Burger's equation

$$\partial_t u + \partial_x \left(\frac{u^2}{2} \right) = 0, \quad t > 0, x \in \mathbb{R},$$

solutions with smooth initial data may develop singularities in finite time:



 \Rightarrow 2 possible functional settings:

▶ Smooth functions (e.g. C^1 or H^2) with small norms;

Discontinuous functions, corresponding to weak solutions.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Weak solutions

Weak solutions can account for shock waves.

- In the context of weak solutions, uniqueness holds provided we consider entropy conditions.
- ► We thus consider bounded variation functions, with small total variation in x ("à la Glimm").

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Entropy solutions

Definition

An entropy/entropy flux couple for a hyperbolic system of conservation laws (SCL) is defined as a couple of regular functions $(\eta, q) : \Omega \to \mathbb{R}$ satisfying:

$$\forall u \in \Omega$$
, $D\eta(u) \cdot Df(u) = Dq(u)$.

Definition

A function $u \in L^{\infty}(0, T; BV(0, L)) \cap \text{Lip}(0, T; L^{1}(0, L))$ is called an entropy solution of (SCL) when, for any entropy/entropy flux couple (η, q) , with η convex, one has in the sense of measures

 $\partial_t(\eta(u)) + \partial_x(q(u)) \leq 0.$

ション ふゆ く 山 マ チャット しょうくしゃ

Entropy conditions, 2

- Of course (η, q) = (±ld, ±f) are entropy/entropy flux couples. So entropy solutions are particular cases of weak solutions.
- The entropy inequalities are automatically satisfied by vanishing viscosity limits:

$$u^{\varepsilon} \to u$$
 with $\partial_t u^{\varepsilon} + \partial_x (f(u^{\varepsilon})) - \varepsilon \partial_{xx} u^{\varepsilon} = 0.$

• Glimm (1965) showed the existence of global entropy solutions with the assumption of small total variation, that is when $\partial_x u_0$ is small in the space of bounded measures.

ション ふゆ アメリア メリア しょうくしゃ

References on stabilization in the context of classical solutions

- Slemrod, Greenberg-Li, ...
- Bastin-Coron, Bastin-Coron-d'Andrea-Novel, Bastin-Coron-d'Andrea-Novel-de Halleux-Prieur, Bastin-Coron-Krstic-Vazquez, ...
- Leugering-Schmidt, Dick-Gugat-Leugering, Gugat-Herty,...
- ▶ Ta-Tsien Li, Tie Hu Qin, ...
- ► Many others! ~→ See the recent book of Bastin-Coron.

The stabilization of (SCL) indeed depends on the functional setting at hand !

 \rightsquigarrow Coron-Nguyen 2015.

In the context of entropy solutions

Scalar cases:

- Ancona and Marson (1998), (reachable set)
- Horsin (1998), (reachable set)
- Perrollaz (2011), (Stabilization)
- Adimurthi-Gowda-Ghoshal (2013), (reachable set)
- Andreianov-Donadello-Marson (2015), (reachable set)

Several works on the system case:

- Bressan-Coclite (asymptotic result and a counterexample, 2002),
- Ancona-Coclite (Temple systems, 2005, reachable set),
- Ancona-Marson (one-side open loop stabilization, 2007),
- Glass (Euler equations, 2007, 2014),
- Andreianov-Donadello-Ghoshal-Razafison (2015, triangular system),

ション ふゆ く 山 マ チャット しょうくしゃ

Coron-E.-Glass.-Ghoshal-Perrollaz (2017).

A simple framework

• Here we consider 2×2 systems of conservation laws:

$$\partial_t u + \partial_x(f(u)) = 0$$
 in $[0, +\infty) \times [0, L]$,

with characteristic speeds $\lambda_1 < \lambda_2$ and satisfying the conditions:

- each characteristic field is genuinely non-linear,
- velocities are positive: $0 < \lambda_1 < \lambda_2$.
- ► The boundary conditions are as follows:

$$u(t,0)=Ku(t,L),$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

where K is a 2×2 (real) matrix.

The goal is to find conditions on K ensuring the (exponential) stability of the system.

Main result

Theorem[Coron-E.-Glass-Ghoshal-Perrollaz 2017]Suppose the above assumptions satisfied. If K satisfies

$$\begin{split} \inf_{\alpha \in (0,+\infty)} \left(\max \left\{ |\ell_1(0) \cdot \mathit{Kr}_1(0)| + \alpha |\ell_2(0) \cdot \mathit{Kr}_1(0)|, \right. \\ \left. \alpha^{-1} |\ell_1(0) \cdot \mathit{Kr}_2(0)| + |\ell_2(0) \cdot \mathit{Kr}_2(0)| \right\} \right) < 1, \end{split}$$

 \exists positive constants *C*, ν , $\varepsilon_0 > 0$, such that $\forall u_0 \in BV(0, L)$ satisfying

 $|u_0|_{BV} \leq \varepsilon_0,$

 \exists an entropy solution u in $L^{\infty}(0,\infty; BV(0,L))$ satisfying $u(0,\cdot) = u_0(\cdot)$, and the boundary conditions for almost all times, s.t.

$$|u(t)|_{BV} \leq C \exp(-\nu t)|u_0|_{BV}, \qquad t \geq 0.$$

ション ふゆ アメリア メリア しょうくしゃ

Rewriting the condition

Denoting for $p \in [1,\infty)$

$$\|(x_1,\ldots,x_n)\|_{p} := \left(\sum_{i=1}^{n} |x_i|^{p}\right)^{1/p}, \quad \|(x_1,\ldots,x_n)\|_{\infty} := \max_{i=1\ldots,n} |x_i|$$
$$\|M\|_{p} := \max_{\|x\|_{p}=1} \|Mx\|_{p} \quad \text{for} \quad M \in \mathbb{R}^{n \times n},$$

one defines

 $\rho_{\rho}(K) := \inf\{\|\Delta K \Delta^{-1}\|_{\rho}, \ \Delta \text{ diagonal with positive entries}\}.$

It is easy to check that

$$\inf_{\alpha \in (0,+\infty)} \left(\max \left\{ |\ell_1(0) \cdot Kr_1(0)| + \alpha |\ell_2(0) \cdot Kr_1(0)|, \\ \alpha^{-1} |\ell_1(0) \cdot Kr_2(0)| + |\ell_2(0) \cdot Kr_2(0)| \right\} \right) = \rho_1(K),$$

▲□▶ ▲□▶ ★ □▶ ★ □▶ = ● ● ●

so that the condition can be written as $\rho_1(K) < 1$.

Analogous conditions

► For the same question for classical solutions in C^m-norm (m ≥ 1), a sufficient condition is:

$$\rho_{\infty}(K) < 1.$$

Cf. T. H. Qin, Y. C. Zhao, T. Li and Bastin-Coron.

In the case of Sobolev spaces W^{m,p}([0, L]) with m ≥ 2 and p ∈ [1, +∞], a sufficient condition is:

 $\rho_p(K) < 1.$

Cf. Coron-d'Andréa-Novel-Bastin for p = 2, Coron-Nguyen for general p.

One can actually show that

$$\rho_1(K) = \rho_\infty(K).$$

ション ふゆ アメリア メリア しょうくしゃ

Remarks: Cauchy problem with boundary

The known results on the existence of a standard Riemann semigroup for initial-boundary problem do not seem to cover our situation exactly and uniqueness of solutions in the spirit of Bressan-LeFloch or Bressan-Goatin seems open.

ション ふゆ アメリア メリア しょうくしゃ

Cf. Amadori, Amadori-Colombo, Colombo-Guerra, Donadello-Marson, Sablé-Tougeron,...

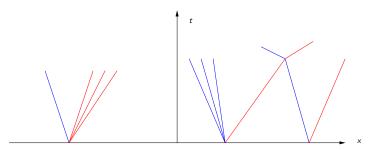
A general idea of the proof

- One constructs solutions using the wave-front tracking approach (here, DiPerna's approach since we consider 2 × 2 systems)
- ► Then the result relies on a Lyapunov function.
- This Lyapunov function is mainly inspired by two sources:
 - Lyapunov functions constructed in the classical case, cf. Coron-Bastin-d'Andrea-Novel, Coron-Bastin, ...
 - Glimm's functional used to construct entropy solutions in BV

ション ふゆ アメリア メリア しょうくしゃ

1. Wave-front tracking algorithm

- Solutions are constructed directly using a wave-front tracking approach (cf. Dafermos, DiPerna, Bressan, ...):
 - one constructs a sequence of approximations of a solutions,
 - ► these approximations are piecewise constant functions on R₊ × R where the discontinuities are straight lines separating states connected by shocks or rarefactions,



ション ふゆ く 山 マ チャット しょうくしゃ

The Riemann problem... far from the boundary

Find autosimilar solutions $u = \overline{u}(x/t)$ to

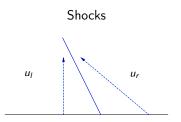
$$\begin{cases} u_t + (f(u))_x = 0\\ u_{|\mathbb{R}^-} = u_l \text{ and } u_{|\mathbb{R}^+} = u_r. \end{cases}$$

Solved by introducing Lax's curves which consist of points that can be joined starting from u_l (in the case of GNL fields):

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- either by a shock,
- or by a rarefaction wave.

Shocks and rarefaction waves (GNL fields)



Discontinuities satisfying:

Rankine-Hugoniot (jump) relations

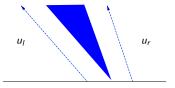
$$[f(u)] = s[u],$$

Lax's inequalities:

$$\lambda_i(u_r) < s < \lambda_i(u_l)$$

Propagates at speed $s \sim rac{1}{u_r-u_l}\int_{u_l}^{u_r}\lambda_l$

Rarefaction waves



Regular solutions, obtained with integral curves of r_i :

$$\begin{cases} \frac{d}{d\sigma}R_i(\sigma) = r_i(R_i(\sigma)), \\ R_i(0) = u_l, \end{cases}$$

with $\sigma \geq 0$.

Propagates at speed $\lambda_i(R_i(\sigma))$

ション ふゆ く 山 マ チャット しょうくしゃ

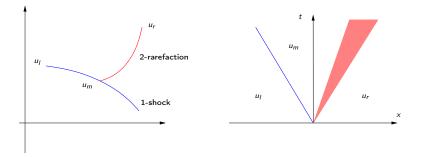
Lax's curves (GNL fields)

- We call $\Phi_i(\cdot, u_i)$ the *i*-th Lax curve consisting of points u_r that can be connected
 - by a *i*-shock (σ < 0)</p>
 - or by a *i*-rarefaction wave ($\sigma \ge 0$).
- When u₊ = Φ_i(σ_i, u_−), we call σ_i the strength of the simple wave (u_−, u₊).
- ▶ By convention, $\sigma_i > 0$ for rarefactions and $\sigma_i < 0$ for shocks.
- ► Lax's theorem asserts that for u_i and u_r sufficiently close, one can find (σ_i) such that

$$u_r = \Phi_2(\sigma_2, \cdot) \circ \Phi_1(\sigma_1, \cdot) u_l.$$

This allows to solve the Riemann problem.

Solving the Riemann problem



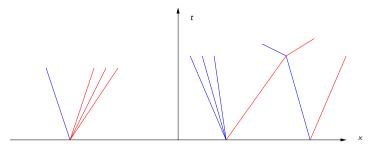
Lax's Theorem proves that one can solve (at least locally) the Riemann problem by first following the 1-curve, then the 2-curve.

イロト イポト イヨト イヨト

ж

Front-tracking algorithm

- Approximate initial condition by piecewise constant functions.
- Solve the Riemann problems and replace rarefaction waves by rarefaction fans.
- For small times, one obtains a piecewise constant function where states are separated by straight lines called fronts.



At each interaction point (points where fronts meet), iterate the process without splitting again rarefaction fronts

Estimates, convergence, etc.

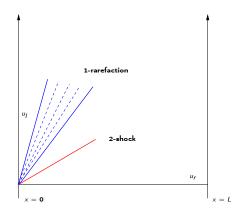
- One shows than this defines a piecewise constant function, with a finite number of fronts and discrete interaction points.
- A central argument is due to Glimm: consider

$$V(au) = \sum_{lpha ext{ wave at time } t} |\sigma_{lpha}| \; ; \quad Q(au) = \sum_{\substack{lpha,eta \ ext{approaching waves}}} |\sigma_{lpha}| . |\sigma_{eta}|,$$

- Analyzing interactions α + β → α' + β' one shows that: for some C > 0, if TV(u₀) is small enough, then V(t) + CQ(t) is non-increasing. (Glimm's functional)
- ► One deduces bounds in L[∞]_tBV_x, then in Lip_tL¹_x, so we have compactness...

Boundary Riemann problem

- In our case we have to take the boundary into account, and to be able to solve the boundary Riemann problem.
- Cf. Dubois-LeFloch, Amadori, Amadori-Colombo, Colombo-Guerra, Donadello-Marson, etc.

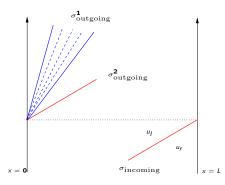


э

Boundary "interactions"

- One can then take "boundary interactions" into account.
- One can measure the size of the oungoing fronts in terms of the size of the incoming one. This highly depends on K!
- Roughly speaking, our condition ensures

$$|\sigma_{ ext{outgoing}}^{1}| + |\sigma_{ ext{outgoing}}^{2}| \le \kappa |\sigma_{ ext{incoming}}|, \ \ 0 < \kappa < 1.$$



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

2. Using Lyapunov functions

Let $\lambda > 0$, and consider here, for sake of simplicity,

$$\begin{cases} \partial_t u + \lambda \partial_x u = 0, & (t, x) \in (0, \infty) \times (0, L), \\ u(t, 0) = k u(t, L), & t \ge 0. \end{cases}$$

Exponential decay $\Leftrightarrow |k| < 1$ An easy way to prove \Leftarrow : Introduce

$$J(t) = \int_0^L |u(t,x)|^2 e^{-2\gamma x} dx,$$

which satisfies

$$\frac{d}{dt}J(t) = -2\gamma\lambda J(t) - \lambda \left(u(t,L)^2 e^{-2\gamma L} - u(t,0)^2\right) \le -2\gamma\lambda J(t)$$

 $\text{if } \exp(-\gamma L) > |k| \text{, so that } \sqrt{J(t)} \leq e^{-\gamma \lambda t} \sqrt{J(0)}.$

Can be generalized to many (much more intricate) settings, see Bastin-Coron's book.

In our context

Our Lyapunov functional is as follows:

$$J := V + CQ$$

where

$$V(U) = \sum_{i=0}^{n} (|\sigma_{i,1}| + |\sigma_{i,2}|) e^{-\gamma x_i},$$

$$Q(U) = \sum_{(x_i,\sigma_i)} |\sigma_i| e^{-\gamma x_i} \left(\sum_{(x_j,\sigma_j) \text{ approaching } (x_i,\sigma_i)} |\sigma_j| e^{-\gamma x_j} \right),$$

for suitable constants, where

σ_{i,k} is the strength of the k-wave at x_i (σ_i when there is no ambiguity, i.e. for i ≥ 1),

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

• x_1, \ldots, x_n are the discontinuities in (0, L),

•
$$u(t,0+) = \Psi_2(\sigma_{0,2}, \Psi_1(\sigma_{0,1}, Ku(t,L-))).$$

Our Lyapunov functional, 2

Analyzing in particular interactions of fronts with the boundary, one shows that for suitable constants and provided that

 $TV(u_0)$ is small enough,

one has for proper $\nu > 0$:

 $J(t) \leq J(0) \exp(-\nu t).$

This allows to construct approximations and the solutions globally in time and to get the result.

ション ふゆ アメリア メリア しょうくしゃ

Open problems

- Considering a less particular case:
 - speeds with different signs,
 - n × n systems,
 - nonlinear boundary conditions,
 - non GNL characteristic fields, etc.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

► What about source terms?

Thank you for your attention!

Ref: Dissipative boundary conditions for 2x2 hyperbolic systems of conservation laws for entropy solutions in BV. J.D.E. 262 (2017), no. 1, 1–30. J.-M. Coron, S. Ervedoza, S.S. Ghoshal, O. Glass, V. Perrollaz.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●