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Introduction Problem formulation

Reference

P. Cannarsa, G. F., A. Y. Khapalov, Multiplicative controllability for semilinear
reaction-diffusion equations with finitely many changes of sign , Journal de
Mathématiques Pures et Appliquées, (2017), DOI: 10.1016/j.matpur.2017.07.002
ArXiv: 1510.04203.

ut − (a(x)ux )x = α(x , t)u + f (x , t , u) in QT := (−1, 1)× (0,T )



β0u(−1, t) + β1a(−1)ux (−1, t) = 0 t ∈ (0,T )

(for WDP)

γ0 u(1, t) + γ1 a(1) ux (1, t) = 0 t ∈ (0,T )

a(x)ux (x , t)|x=±1 = 0 t ∈ (0,T ) (for SDP)

u(0, x) = u0(x) x ∈ (−1, 1) .

(1)

α ∈ L∞(QT ), (bilinear control), u0 ∈ L2(−1, 1);
f : QT × R→ R is such that

(x , t , u) 7−→ f (x , t , u) is a Carathéodory function; u 7−→ f (x , t , u) is differentiable
at u = 0; t 7−→ f (x , t , u) is locally absolutely continuous;
∃γ∗ ≥ 0, ϑ ≥ 1 and ν ≥ 0 such that, for a.e. (x , t) ∈ QT , ∀u, v ∈ R, we have

|f (x , t , u)| ≤ γ∗ |u|ϑ,
−ν
(
1 + |u|ϑ−1 + |v |ϑ−1)(u − v)2 ≤

(
f (x , t , u)− f (x , t , v)

)
(u − v) ≤ ν(u − v)2,

ft (x , t , u) u ≥ −ν u2 ;
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Introduction Problem formulation

Semilinear degenerate problems


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γ0 u(1, t) + γ1 a(1) ux (1, t) = 0 t ∈ (0,T )

a(x)ux (x , t)|x=±1 = 0 t ∈ (0,T ) (for SDP)

u(0, x) = u0(x) x ∈ (−1, 1) .

a ∈ C0([−1, 1]) ∩ C1(]− 1, 1[) : a(x) > 0 ∀ x ∈ (−1, 1), a(−1) = a(1) = 0.

We distinguish two cases:

? 1
a ∈ L1(−1, 1) (WDP), e.g. a(x) =

√
1− x2, a 6∈ C1([−1, 1])

(β0β1 ≤ 0, γ0γ1 ≥ 0);

? 1
a 6∈ L1(−1, 1) (SDP), e.g. a(x) = 1− x2 (see later Budyko-Sellers climate
model) a ∈ C1([−1, 1]) (assume that

∫ x
0

1
a(s)

ds ∈ Lqϑ(−1, 1), for same qϑ ≥ 1).
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Introduction Problem formulation

(SD) H1
a (−1, 1) := {u ∈ L2(−1, 1) : u loc. abs. continuous in (−1, 1),

√
aux ∈ L2} ;

(WD) H1
a (−1, 1) := {u ∈ L2(−1, 1) : u absolutely continuous in [−1, 1],

√
aux ∈ L2} .

H2
a (−1, 1) := {u ∈ H1

a (−1, 1)| aux ∈ H1(−1, 1)}
Given T > 0, let us define the function spaces

B(QT ) := C0([0,T ]; L2(−1, 1)) ∩ L2(0,T ; H1
a (−1, 1))

H(QT ) := L2(0,T ; D(A)) ∩ H1(0,T ; L2(−1, 1)) ∩ C([0,T ]; H1
a (−1, 1))

Theorem

For all u0 ∈ H1
a (−1, 1) there exists a unique strict solution u ∈ H(QT ) to (1).

Theorem

For all u0 ∈ L2(−1, 1) there exists a unique strong solution u ∈ B(QT ) to (1).

Reference

G. F., Approximate controllability for nonlinear degenerate parabolic problems with
bilinear control, Journal of Differential Equations (2014).
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Introduction Climate motivations

Energy balance models

The effect of solar radiation on climate

heat variation
= Ra − Re + D

Ra = absorbed
energy

Re = emitted energy

D = diffusion
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Introduction Climate motivations

The Budyko-Sellers model (1969)

M compact surface without boundary (typically S2)

ut −∆Mu = Ra(t , x , u)− Re(t , x , u)

where u(t , x) = temperature distribution

Ra(x , u) = Q(t , x)β(u)

{
Q = insolation function
β = coalbedo = 1− albedo

Re(x ,u) = A(t , x) + B(t , x)u Budyko

Re(x ,u) w c u4 Sellers
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Introduction Climate motivations

One-dimensional BS model
on M = Σ2, ∆M u =

1
sinφ

{ ∂

∂φ

(
sinφ

∂u
∂φ

)
+

1
sinφ

∂2u
∂λ2

}
φ = colatitude λ = longitude

taking average at x = cosφ BS model reduces to{
ut −

(
(1− x2)ux

)
x = g(t , x) h(u) + f (t , x , u) x ∈]− 1, 1[

(1− x2)ux|x=±1 = 0

Reference

P. Cannarsa, P. Martinez, J. Vancostenoble, Memoirs AMS, 2016

G. Floridia (University of Naples Federico II) Controllability of degenerate reaction-diffusion equations 10 / 26



Introduction Climate motivations

One-dimensional BS model
on M = Σ2, ∆M u =

1
sinφ

{ ∂

∂φ

(
sinφ

∂u
∂φ

)
+

1
sinφ

∂2u
∂λ2

}
φ = colatitude λ = longitude

taking average at x = cosφ BS model reduces to{
ut −

(
(1− x2)ux

)
x = g(t , x) h(u) + f (t , x , u) x ∈]− 1, 1[

(1− x2)ux|x=±1 = 0

Reference

P. Cannarsa, P. Martinez, J. Vancostenoble, Memoirs AMS, 2016

G. Floridia (University of Naples Federico II) Controllability of degenerate reaction-diffusion equations 10 / 26



Introduction Climate motivations

A prophecy by J. von Neumann

Nature (1955):

Microscopic layers of colored matter spread
on an icy surface, or in the atmosphere above
one, could inhibit the reflection-radiation pro-
cess, melt the ice and change the local cli-
mate.

⇒ rather than ↓
ut −∆Mu = g(t , x , u) + f (t , x)

use ↑ as control variable
Reference

Charles L. Epstein, Rafe Mazzeo, Degenerate Diffusion Operators Arising in
Population Biology, book by Princeton University Press, 2011

Other degenerate models: Wright-Fisher models in population genetic and general
Kimura diffusion
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Introduction Additive vs multiplicative controllability

Controllability: heat equation (linear case)
ut = ∆u + vu + h(x , t)1lω
u|∂Ω

= 0 (ω ⊂ Ω)

u|t=0 = u0


ut = ∆u + vu
u|∂Ω

= g(t)
u|t=0 = u0


ut = ∆u + v(x , t)u
u|∂Ω

= 0
u|t=0 = u0

Additive controls Boundary controls Bilinear controls
(locally distributed source terms) (multiplicative controllability)

Definition (Approximate controllability)

∀u0 ∈ H0, u∗ ∈ H∗,(H0,H∗ ⊆ L2(Ω) ), ∀ε > 0, ∃“a control function”,T > 0 such that
‖u(·,T )− u∗‖L2(Ω) < ε.

Multiplicative controllability and Applied Mathematics

⇒ rather than ↓
ut −∆u = v(x , t) u + h(x , t)

use ↑ as control variable

Remark
Φ : “control” 7−→ “solution”

Additive controls vs Bilinear controls
Φ : h 7−→ u is a linear map; Φ : v 7−→ u is a nonlinear map.
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Introduction Additive vs multiplicative controllability

Additive controllability by a duality argument (J.L. Lions, 1989): observability inequality
and Hilbert Uniqueness Method (HUM).

Reference

P. Baldi, G.F., E. Haus, Exact controllability for quasi-linear perturbations of KdV,
Analysis & PDE, vol. 10 (2017), no. 2, 281–322 (ArXiv: 1510.07538).

nonlinear problem: Nash-Moser theorem (Hörmander version);

controllability of the linearized problem;

observability inequality by classical Ingham inequality

Some references on bilinear control of PDEs
Ball, Marsden and Slemrod (1982)
[rod and wave equation]
Coron, Beauchard, Gagnon, Laurent, Morancey
[Scrödinger equation, . . .]
Khapalov (2002–2010)
[parabolic and hyperbolic equations, swimming models]
Ouzahra, El Harraki, Tsoulli, Boutoulout
[Heat and wave equations]
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Introduction Additive vs multiplicative controllability


ut = ∆u + v(x , t)u in QT := Ω× (0,T )

u|∂Ω
= 0 t ∈ (0,T )

u|t=0 = u0

(2)

Definition (Approximate controllability)

An evolution system is called globally approximately controllable, if any initial state u0

in H0 can be steered into any neighborhood of any target state u∗ ∈ H∗ at time T , by a
suitable control.

Strong Maximun Principle and obstruction to multiplicative controllability: H∗ 6= H1
0 (Ω)

u0(x) = 0=⇒u(x , t) = 0
u0(x) ≥ 0=⇒u(x , t) ≥ 0

If u0(x) ≥ 0 in Ω, then the SMP demands that the respective solution to (2) remains
nonnegative at any moment of time, regardless of the choice of v . This means that
system (2) cannot be steered from any nonnegative u0 to any target state which is
negative on a nonzero measure set in the space domain.
Controllability:

Nonnegative states
Sign changing states
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system (2) cannot be steered from any nonnegative u0 to any target state which is
negative on a nonzero measure set in the space domain.
Controllability:

Nonnegative states
Sign changing states
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Introduction Additive vs multiplicative controllability

Definition

We say that the system (2) is nonnegatively globally approximately controllable in
L2(Ω), if for every η > 0 and for any u0, u∗ ∈ L2(Ω), u0, u∗ ≥ 0, with u0 6= 0 there are
a T = T (η, u0, u∗) ≥ 0 and a bilinear control v ∈ L∞(QT ) such that for the
corresponding solution u of (2) we obtain

‖u(T , ·)− u∗‖L2(Ω) ≤ η .

Reference

P. Cannarsa, G. F., Approximate multiplicative controllability for degenerate parabolic
problems with robin boundary conditions, , CAIM, (2011).

Reference

P. Cannarsa, G. F., Approximate controllability for linear degenerate parabolic
problems with bilinear control, Proc. Evolution Equations and Materials with Memory
2010, vol. Sapienza Roma, 2011, pp. 19–36.

Reference

G. F., Approximate controllability for nonlinear degenerate parabolic problems with
bilinear control, Journal of Differential Equations (JDE, Elsevier, 2014).
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Main results

Inspired by

Reference

P. Cannarsa, G. F., A. Y. Khapalov, Multiplicative controllability for semilinear
reaction-diffusion equations with finitely many changes of sign , Journal de
Mathématiques Pures et Appliquées, (2017), DOI: 10.1016/j.matpur.2017.07.002
ArXiv: 1510.04203.

let us consider (with Carlo Nitsch and Cristina Trombetti)

ut − (a(x)ux )x = α(x , t)u + f (x , t , u) in QT := (−1, 1)× (0,T )



β0u(−1, t) + β1a(−1)ux (−1, t) = 0 t ∈ (0,T )

(for WDP)

γ0 u(1, t) + γ1 a(1) ux (1, t) = 0 t ∈ (0,T )

a(x)ux (x , t)|x=±1 = 0 t ∈ (0,T ) (for SDP)

u(0, x) = u0(x) x ∈ (−1, 1) .

(3)

We assume that u0 ∈ H1
a (−1, 1) has n points of sign change, that is, there exist points

−1 := x0
0 < x0

1 < · · · < x0
n < x0

n+1 := 1 such that

u0(x) = 0 ⇐⇒ x = x0
l , l = 1, . . . , n.

u0(x)u0(y) < 0, ∀x ∈
(

x0
l−1, x

0
l

)
, ∀y ∈

(
x0

l , x
0
l+1

)
.
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Main results

Let u0 ∈ H1
a (−1, 1) have finitely many points of sign change.

Theorem (G.F., C. Nitsch, C. Trombetti, 2017)

Consider any u∗ ∈ H1
a (−1, 1) which has exactly as many points of sign change in the

same order as u0. Then,

∀η > 0 ∃T > 0, α ∈ L∞(QT ) : ‖ u(·,T )− u∗ ‖L2(−1,1) ≤ η.

-

6

x0
1 x0

2

x∗1 x∗2

u0

u∗

-6• � 6•

u

x−1 1

Figure 1. Control of two points of sign change.
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Main results

Control strategy: main idea of the proof
Given N ∈ N (N will be determined later) we consider the following partition of [0,TN ]
in 2N intervals:

[0,S1] ∪ [S1,T1] ∪ · · · ∪ [Tk−1,Sk ] ∪ [Sk ,Tk ] ∪ · · · ∪ [TN−1,SN ] ∪ [SN ,TN ].

α1 6= 0 0 · · · αk 6= 0 0 · · · αN 6= 0 0
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Main results

Construction of the zero curves
On [Sk ,Tk ] (1 6 k 6 N) we use the Cauchy datum
wk ∈ C2+ϑ([a∗0 , b

∗
0 ]) ∩ H1

a (−1, 1), [a∗0 , b
∗
0 ] ⊂⊂ (−1, 1) in

wt = (a(x)wx )x + f (x , t ,w), in QEk = (−1, 1)× [Sk ,Tk ],

B.C. t ∈ [Sk ,Tk ],

w |t=Sk = wk (x),

as a control parameter to be chosen to move the curves of sign change.
The `-th curve of sign change (1 6 ` 6 n) is given given by solution ξk

`{
ξ̇`(t) = − a(ξl (t))wxx (ξl (t),t)

wx (ξl (t),t) − a′(ξl (t)), t ∈ [Sk ,Tk ]

ξ`(Sk ) = xk
`

where the xk
` ’s are the zeros of wk and so w(ξk

` (t), t) = 0.
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Main results

Construction of the zero curves
On [Sk ,Tk ] (1 6 k 6 N) we use the Cauchy datum
wk ∈ C2+ϑ([a∗0 , b

∗
0 ]) ∩ H1

a (−1, 1), [a∗0 , b
∗
0 ] ⊂⊂ (−1, 1) in

wt = (a(x)wx )x + f (x , t ,w), in QEk = (−1, 1)× [Sk ,Tk ],

B.C. t ∈ [Sk ,Tk ],

w |t=Sk = wk (x),

as a control parameter to be chosen to move the curves of sign change.
The `-th curve of sign change (1 6 ` 6 n) is given given by solution ξk

`{
ξ̇`(t) = − a(ξl (t))wxx (ξl (t),t)

wx (ξl (t),t) − a′(ξl (t)), t ∈ [Sk ,Tk ]

ξ`(Sk ) = xk
`

where the xk
` ’s are the zeros of wk and so w(ξk

` (t), t) = 0.
G. Floridia (University of Naples Federico II) Controllability of degenerate reaction-diffusion equations 20 / 26



Main results

Construction of the zero curves
On [Sk ,Tk ] (1 6 k 6 N) we use the Cauchy datum
wk ∈ C2+ϑ([a∗0 , b

∗
0 ]) ∩ H1

a (−1, 1), [a∗0 , b
∗
0 ] ⊂⊂ (−1, 1) in

wt = (a(x)wx )x + f (x , t ,w), in QEk = (−1, 1)× [Sk ,Tk ],

B.C. t ∈ [Sk ,Tk ],

w |t=Sk = wk (x),

as a control parameter to be chosen to move the curves of sign change.
The `-th curve of sign change (1 6 ` 6 n) is given given by solution ξk

`{
ξ̇`(t) = − a(ξl (t))wxx (ξl (t),t)

wx (ξl (t),t) − a′(ξl (t)), t ∈ [Sk ,Tk ]

ξ`(Sk ) = xk
`

where the xk
` ’s are the zeros of wk and so w(ξk

` (t), t) = 0.
G. Floridia (University of Naples Federico II) Controllability of degenerate reaction-diffusion equations 20 / 26



Main results

The control parameters wk ’s will be chosen to move the curves of sign change in the
following way{

ξ̇`(t) = − a(ξl (t))wxx (ξl (t),t)
wx (ξl (t),t) − a′(ξl (t)), t ∈ [Sk ,Tk ]

ξ`(Sk ) = xk
`

w(ξk
` (t), t) = 0=⇒

=⇒ξ̇`(Sk ) = −a(ξl (Sk ))w
′′
k (ξl (Sk ))

w ′k (ξl (Sk ))
− a′(ξl (Sk )) = sgn(x∗l − x0

l )
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Main results

To fill the gaps between two successive [Sk ,Tk ]’s, on [Tk−1,Sk ] we construct the
bilinear control αk that steers the solution of

ut = (a(x)ux )x + αk (x , t)u + f (x , t , u) in (−1, 1)× [Tk−1,Tk−1 + σk ],

B.C. t ∈ [Tk−1,Tk−1 + σk ],

u |t=Tk−1 = uk−1 + rk−1 ∈ H1
a (−1, 1),

from uk−1 + rk−1 to wk , where uk−1 and wk have the same points of sign change,
and ‖rk−1‖L2(0,1) is small. αk (x , t) piecewise static

Sketch of the proof. In the particular case: rk−1 = 0 and

∃δ∗ > 0 : δ∗ ≤ wk (x)

uk−1(x)
< 1, ∀ x ∈ (−1, 1) \

n⋃
l=1

{xl} ,

let us consider αk (x , t) := 1
T ᾱk (x) , where

ᾱk (x) =

{
log
(

wk (x)
uk−1(x)

)
, for x 6= −1, 1, xl (l = 1 . . . , n)

0, for x = −1, 1, xl (l = 1 . . . , n) .

u(x ,T ) = eᾱk (x)uk−1(x) +

∫ T

0
eᾱk (x)

(T−τ)
T
(
(a(x)ux )x (x , τ) + f (x , τ, u(x , τ))

)
dτ

⇒ ‖u(·,T )− wk (·)‖2
L2(−1,1) ≤ T ‖ (a(·)ux )x + f (·, ·, u) ‖2

L2(QT ) .
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Main results

Closing the loop

The distance-from-target function satisfies the following estimate, for some
C1,C2 > 0 and 0 < β < 1,

0 ≤
n∑
`=1

|ξN
` (TN)− x∗` | ≤

n∑
`=1

|x0
` − x∗` |+ C1

N∑
k=1

1

k1+ β2

− C2

N∑
k=n+1

1
k

N→∞−→ −∞

So the distances of each branch of the null set of the solution from its target
points of sign change decreases at a linear-in-time rate while the error caused
by the possible displacement of points already near their targets is negligible

This ensures, by contradiction argument, that
n∑
`=1

|ξN
` (TN)− x∗` | < ε within a

finite number of steps.
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Main results

Corollary (G.F., C. Nitsch, C. Trombetti, 2017)

Consider any u∗ ∈ H1
a (−1, 1), whose amount of points of sign change is less than or

equal to the amount of such points for u0 and this points are organized in any order of
sign change. Then,

∀η > 0 ∃T > 0, α ∈ L∞(QT ) : ‖ u(·,T )− u∗ ‖L2(−1,1) ≤ η.

-

6

x0
1 x0

2u0

u∗

u

x0 1
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Open problems

Open problems

1-D degenerate reaction-diffusion equations on networks;
To investigate reaction-diffusion equations in higher space
dimensions with initial states that change sign on domains with
specific geometries;
To extend this approach to other nonlinear equations of parabolic
type:

? Porous media equation (???) .
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Open problems

Thank you for your attention!

G. Floridia (University of Naples Federico II) Controllability of degenerate reaction-diffusion equations 26 / 26


	Introduction
	Problem formulation
	Motivations: Energy balance models in climatology 
	Additive vs multiplicative controllability

	Main results: multiplicative controllability for sign changing states
	Open problems

