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Motivation: Chemical engineering

® |Increasing need for
more effective
(bio-)chemical products

(cosmetics,
medicaments, @
semiconductors) l
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product is not only 0O
influenced by its °¢°
different components, @)
but also by the [e]
so-called disperse

properties (particle l_
size, morphology, etc.) @ ‘ X
® Phenomena in the

nanometer regime not
neglectable

@ q
®

o
(=]

Figure 1: Ripening process in a reactor with particle size distributions at
two different points in time (own illustration based on [10, p. 11]).
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thesis processes
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A model for ripening processes




Ripening process

e Letbe T > 0. General population balance law:

0 0
Qt-i-x(HQ)-FE(VQ) =B-D

Internal coordinate: x € R Spatial coordinate:  r € [0, T]
Particle size Source terms: B—-D
distribution (PSD): g = q(t,x,r)
Velocity functions: R = R[q|(t,x,r), V= V[q](t,x,r)
* By 3 denoting a coagulation kernel “birth” B and “death” D of x-sized
particles can be modeled as

Blq](t,x) := /ﬁ(x y:y)a(t,x —y)a(t, y)dy

oo

Dlal(t.) = a(t,x) [ B(x.v)alt.»)y

0
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Nonlocal terms in the ripening velocity term

Nonlocal terms also occur in the ripening velocity function. Reason:

* Due to agglomeration effects the ripening of a particle can occur by the
solving of particles in the reaction medium and merging with other particles
on their free surface

e The solvability is influenced by the rate of saturation of synthesized particles

e The saturation again depends on the concentration of the product, which
yields the nonlocal term.

Examples
Spray granulation process Ostwald ripening
(R — i
q ~ = 3
Rlq|(t N/ t,y)d
f yzq(t,y)dy [a](t) yq(t,y)dy

Xmin Xmin
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* Input-PSD q(t, ty, -) as the result
of a control in both locations C at
the time fy

e Backflow of F[qg](1, x) (density of
particles on the bottom of the
reactor at time t) with rate u(t)
where u(t) € [0,1]

e The other part, namely 1 — u(t),
by a PSD qg independent from the
process

= q(to, o, x) = u(to) Fla] (o, x)
+ (1= u(t))g0(x)

Application: Feedback control of hanoparticle synthesis

Figure 2: (Convex) control of the ripening in
the locations C in the case of a synthesis
process with feedback.
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Basic assumptions

e B— D = 0 (reasonable for slow
flow profile)

* R = R(t,x) — Reduction of
the balance law to a continuity
equation allowing an easier
adjoint approach in the
optimization

¢ Diffusion of particles neglected
— admits the consideration of
the flow (of the fluid) in terms of
a residence time distribution
— Consequence: Velocity
function V can be neglected
(see the next slides)
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Figure 3: Flow of volume packages in a laminar
flow profile.
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Poiseuille-flow |

e Association of a residence time distribution k with [ k(t) =1
0

e Starting at time s the probability to reach the bottom of the reactor in time f;
th—s

is | k(t)dt

* g(s,-,-) = q(s,t,x) : PSD at the time t with starting time s (— upper
reactor wall)
= Amount of particles with radius x at the time f; at the bottom of the
reactor: t
0

Flal(to, x) :Z/k(to—s)q(s, ty, ) ds

0
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Poiseuille-flow Il

e |et be vy the maximal flow velocity in the reactor given by pressure and
temperature among others. Then the flow velocity profile reads as:

2
r
v(r) = Viax |1 — () , I €[0,max)

Imax

e Because of the laminar flow the v(r) = % we obtain by setting tmin 1=

Vmax

1
Imi 2
= r=r(t) = rmax {1 - <%>} for t > tmin
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Example: Poiseuille-flow Il

Vi(r)

with the volume flow rate
Vt(rmax)

e Cumulative residence time distribution K =

Vi(r) = 0fr277:sv(s) ds

1
e After integration with upper limit r = ryax [1 — (tmi" )] 2 we obtain with k = K’

- 2
K(t):OfOI’ t < ltmins K(t):1 - (%) for t > fmin
2tr$1in
k(t) = 0 for t < tmin, k(t) = IT for t > tmin
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Solution theory for starting time parametrized
continuity equation




Classical theory |

Method of characteristics

Suitable for solving first order hyperbolic equations. Basic idea: Find differentiable
curves (t,€[0,x](t)) € (0, T) x R for (t,x) € (0, T) x R, parametrized by &,
such that the solution of the (homogeneous) continuity equation is constant
respectively on those.

Example: Consider the homogeneous transport equation
a:(t,x) + R(t,x)gx(t,x) =0 in(0,7T) xR
q(0,x) = qo(x) onR

and assume the data and the solution are sufficiently smooth. By the chain rule
and the upper equations

ga(t.€[0.x](1)) =0 } {5[0 A1) = R(t,6[0,x](1)

q(0,x) = qo(x) E[0,x](0) =x.
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Classical theory Il

Solution of the continuity equation is

q(t,x) = a0(&[t,x](0)) 28 [t, x](0)- Q)

Starting time parametrized (STP)-continuity equation
Define D7 :={(ty,t) : 0<ity <t < T}.

Si[q](to,t,x) =0 (to,t,x) € Dr xR
q(t01t07x):82[q](t07x) (tO,X)G(O, T)X ERa

where

Si[a](to, t,x) := qi(to, t,x) + I (R(t, x)q(ty, t, x))

fo

S[a)(to, %) = u(to)/k(to — 8)q(s, 10, x) ds+ (1 — u(t)) a0 (x)-
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Solution strategy for the STP-continuity equation

Condition: “f,,-property”

It exists a positive minimal residence time, i.e.

TFtmin € RooVt € [0, i) k(t) =0.

Now use an induction argument and the properties of the solution of the
non-parametrized Cauchy-Problem to obtain a solution of the parametrized one on
whole (0, T) X R.

The characteristics are now defined as the solution of

Elto, xI(t) = R(t,E[to,x1(2)),  Elto,x](t0) = x.

For all ty € [0, tmin) We have q(to, &, x) = (1 — u(t))go(x) such that we have
q(to, t,x) = (1 —u(ty))q0(&[t, x] (1)) 22&[t, x] (1) as a solution.

Michele Spinola (FAU) | Chair of Applied Mathematics 2 | Nanoparticle synthesis: modeling and optimal control 25.08.2017 10



For all ty € [tmin, 2tmin) We have

/k(to —5)q(s, ty,x)ds = / k(to — s)q(s, ty, x)ds
= / k(to — s)(1— u(s))ao(G [io, ] (s)) 926 [10, ] (s)ds

The upper integral term depends only on the given data. Therefore there exists a
solution g of the STP-continuity equation. For bigger t, the argumentation is
similar.

Solution formula:

a(to, t,x) = u(to)q(to, to, E[t, X] (1)) A& [, X] (1)
+ (1= u(t))ao(E[t,x](%)) =& [t, x] (o).
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Main conditions for the weak solution theory

* “tmin-property”, k € L'((0,0)) and k|, o) € C([tmin;>)) -

* o, da € L*(R).
o For T € Rg:
REL'((0,T)iHoo(R)), Rx€L'((0,T)iL”(R))
T L'((0, T); L'(R)) + L' ((0, T); L™(R))
o For M € Rg:

Uaa :=={u e H'((0, 7)) : |[ulltno,ry)) <M, 0<u<tae}.
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Well-posedness |

Remark

For the well-posedness of the problem weaker assumptions on k and u are
possible, furthermore LP-Settings with p € [1, ] considerable.

Proposition: Existence, uniqueness, regularity

Let the main conditions hold true. Then the STP-continuity equation has a unique
solution q in the weak sense with q € L=((0, T)?; L(R)) and

a(to,",-) € C([to, T]; L5(R)) a.e. t, €0, T]. @

Sketch of proof:
Using an induction argument like in the smooth case due to the fact of the
“Imin"-property.

)
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Well-posedness Il

Proposition: Stability of a subsequence

(K, Go.n, Bny Rn.x) und (k, qo, R, Rx) fulfill respectively the main conditions and

Up,U € Ugg.

Ry x are uniformly bounded in L'((0, T); L(R)) and Ry, Ry.x converge for n — o to
R, Ry respectively in L' ((0, T); Lis(R)).

Let g, and q be their corresponding weak solution of the STP-continuity equation.

Ifup, — uin L3((0,T)) and go.» — qo in L3(R), then there exists a subsequence of gy,
which is denoted again by qn, such that:

an(to, ) = q(to,-,-) in C([to, T]; L2(R)) a.e. t, € [0, T]
an — q inL2((0, T)? L3(R)).

Sketch of proof:

Combining the previous existence and regularity results with stability theorems described
exemplarily in [3, p. 38]. Because of the solution formula the pointwise convergence of u,
to u would be required. Since this is in general only possible for subsequences, it will imply
the stated stabilty result for a subsequence of (q,,),,.
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Optimal control problem

For a € R, consider the following optimal control problem

min 1a.0) = I1FTEI(T.) ~aul ey + £l oy

s.t. (3)
S1[q](t07t7x) =0 (to,t,X)EDTXR

Q(To,to,X) :Sg[q](to,X) (to,X) G(O, T)X GR,

where

Si[q](to, t, x) := qi(to, 1, x) + A5 (R(t, x)q(to, 1, X))

f

So[al(to, x) = u(to)/k(to — 8)a(s, 1o, %) ds+ (1 — (1)) qo(x)-

0
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Existence of optimal controls

Proposition: Existence

If the main conditions hold true, there exists an optimal control u* with an optimal
solution g*.

Sketch of proof:

Minimizing sequence (uj,), bounded in U,y C H'((0, T)). Thus, a subsequence
converges in L2((0,T)) to a u* € U,y. The previous stability results imply the
convergence of the to u, associated solution g, of the STP-continuity equation in
L2((0,T)?; L3(R)) to the solution g* w.r.t. u*.

Remark: (Non)-uniqueness

For T € [0, 2tmin] you can easily show unigueness of the optimal control. The
iterative construction method of the solution of the STP-continuity equation yields
for T >> tmin that u is in a polynomial way involved into the solution g = g[u].
Therefore the reduced cost functional u — I(g[u], u) is in general not strictly
convex, thus the uniqueness of an optimal control is not garantueed.
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First order necessary optimality condition |

Lemma: Uniform Fréchet-differentiability

Letu € Uy and f[-](s, x) : Uag — R be uniformly in (s,x) € (0, T) xR
Fréchet-differentiable in u, i.e.

sup lim | flu+ h](s,x) — f[u](s,x) — £ [u](s,x)B] = o([|hll 41 ((0.7)))-

sx Al 1 (0.7

s

Then also Uag > u— [ u(T)f[u](T,x)dT is uniformly in (s,x) € (0,T) xR
0

Fréchet-differentiable in u.

Sketch of proof:
Use the very definition of Fréchet-differentiability and use the fact that for u € U,y
we have HUHL"“((O,T)) < M.
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First order necessary optimality condition Il

Proposition: Optimality

Assume the main conditions and consider the reduced cost-functional
J(u) := I(q[u], u). Then J is Fréchet-differentiable and every minimum u* of J on
Uyq fulfills the variational inequality

S (v—u") >0 Vv e Uy

Sketch of the proof:
Consider at first the functional

Uag 3 u— Flg[u]](s,x) = /k(s— 7)q[u(t,s,x)dt for (s,x) € (0,T) x R.

If s € [0, tmin), then F[g[u]](s,x) = 0 independent from (s,x) € (0,T) x R.

Therefore this functional is uniformly in (s, x) € (0, T) x R Fréchet-differentiable.
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First order necessary optimality condition Il

Next, consider

Flalell(s.) = [ k(s = 2)all(r.5,)ds
= | K=&l x)(3) () Flalel(7.Els.(7)

+(1 = u(®)ao(Els, x](7)) ) d.

Because of the “tn"-property of k we obtain by an induction argument that
Flal-]1(s, x) is uniformly in (s, x) € (0, T) x R Fréchet-differentiable.

Together with the chain rule for Fréchet-differentiable functions we also get that J
is Fréchet-differentiable and this implies the validity of the stated variational
inequality.
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Formal derivation of necessary optimality conditions |

Forward equation (STP-continuity equation):

ai(to, t, x) + Ix(R(t,x)q(to, t,x)) =0
q(to, o, x) = u(to) Flg] (fo, x) + (1 — u(te) ) go(x)

Backward equation (STP-transport equation):

pi(to, t,x) + R(t, x)px(to, 1, x) = —u(t)k(t — to)p(t, t, x)
p(to, T,x) = —k(T — 1) (F[al(T,x) — qa(x))

Optimality condition: For every U € U,y

/(a—u)- au+/p(to,to,x)(qo(x)—F[q](to,x)) dx | dt > o0.
0 R

Michele Spinola (FAU) | Chair of Applied Mathematics 2 | Nanoparticle synthesis: modeling and optimal control 25.08.2017 20



Formal derivation of necessary optimality conditions Il

Remark: STP-transport equation

e Under the main conditions the previous adjoint equation has a unique solution
p € L=([0, T]?; L3(R)) in the weak sense with p(ty,,-) € C([t, T]; L3(R))
for almost every t, € [0, T]. Stability results for subsequences similar to
those of the STP-continuity equation can be obtained.

e Unfortunately, the upper results don’t guarantee that the presented optimality
system can be rigorously obtained.
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Summary of previous results

® |n alaminar flow: under reasonable assumptions nanoparticle synthesis
based on ripening processes can be modeled by using a fluid velocity -
residence time distribution relation resulting in a continuum of initial
conditions/time delays
— Reduction of the dimension of the spatial variables

e Solution theory for the STP-continuity equation based on the method of
characteristics

e Under the main conditions the presented optimal control problem admits an
optimal control, which in some cases can be unique. Moreover, a first order
necessary optimality condition could be stated and, albeit only formally,
formulated by the solution of the adjoint equation
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Possible problems to tackle

* Nonlocal term in ripening velocity function
* Right-hand sides
e More general cost functionals

e Multi-dimensional internal variable (— consideration of several disperse
properties) and systems

e Numerics
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Thanks for listening.
Any questions? Then please, feel free to ask!
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