A semi-linear Dirichet problem with a singular term at u=0

Juan Casado-Díaz, University of Seville

Work in collaboration with: F. Murat, University Paris VI

We are interested in the semilinear problem

$$\begin{cases}
-\operatorname{div} a(x, \nabla u) = F(x, u) & \text{in } \Omega \\
u = 0 & \text{on } \partial \Omega,
\end{cases}$$

with

$$\Omega \subset \mathbb{R}^N$$
 bounded, open

a satisfies usual conditions to have the operator

$$u \in W_0^{1,p}(\Omega) \longrightarrow -\text{div } a(x, \nabla u) \in W^{-1,p'}(\Omega)$$

a Leray-Lions monotone operator.

$$\lim_{s\to 0} F(x,s) = +\infty$$

This type of problems has been considered by several authors M.G. Crandall, P.H. Rabinowitz, L. Tartar (1977).

$$\begin{cases} -\sum_{ij} a_{ij}(x)\partial_{ij}^2 u + \sum_{i} b_{i}(x)\partial_{i}u + c(x)u = F(x,u) \text{ in } \Omega \\ u = 0 \text{ on } \partial\Omega \end{cases}$$

 Ω smooth, coefficients in $C^0(\overline{\Omega})$.

$$\lim_{s\to 0} F(x,s) = +\infty \text{ uniformly in } \overline{\Omega}, \quad F(x,.) \text{ nonincreasing}$$

It is proved the existence of a positive solution in $C^2(\Omega) \cap C^0(\overline{\Omega})$.

For F not necessarily nonincreasing they take $F(x, u) = \lambda G(x, u)$.

 \exists a set of solutions $(\lambda, u) \in \mathbb{R} \times C^0(\overline{\Omega})$, connected, unbounded and containing (0,0).

Most of the authors consider positive right-hand sides

M.M. Coclite, G. Palmieri (1989).

$$\begin{cases} -\Delta u = \frac{1}{u^{\gamma}} + (\lambda u)^{q} & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

 $\forall \gamma > 0, q > 1, \exists \tilde{\lambda} > 0$ such that \exists a positive solution if and only if $\lambda < \tilde{\lambda}$ L. Boccardo, L. Orsina (2010).

$$\begin{cases} -\operatorname{div}(A(x)\nabla u) = \frac{f(x)}{u^{\gamma}} & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega \end{cases} \quad f \ge 0, \ f \in L^1(\Omega).$$

 \exists a positive solution in $H^1_{loc}(\Omega) \cap W^{1,1}_0(\Omega)$.

It is obtained as the limit for the right-hand sides $\frac{f(x)}{u^{\gamma} + \frac{1}{n}}$.

Integrability results for u and ∇u are also obtained.

L. Boccardo, J. Casado-Díaz (2014). Previous approximation method provides a unique solution. It is also studied the homogenization problem

$$-\operatorname{div}(A_n(x)\nabla u_n) = \frac{f(x)}{u_n^{\gamma}} \text{ in } \Omega, \quad u_n = 0 \text{ on } \partial\Omega$$

D. Giachetti, P.J. Martínez-Aparicio, F. Murat. Several works (2016, 2017, to appear)

$$-\operatorname{div}(A(x)\nabla u) = F(x, u) \text{ in } \Omega, \quad u = 0 \text{ on } \partial\Omega$$

$$0 \le F(x,s) \le \frac{h(x)}{\Gamma(s)}$$
, $h \in L^r(\Omega)$, $\Gamma(0) = 0$, Γ stric. increasing, Lipschitz

It is given a definition of solution for which there is existence and it is stable when the right-hand side varies.

Solution is unique if F(x, ...) nonincreasing.

Strong maximum principle is not used.

Existence of nonnegative solutions

Problem

$$\begin{cases} -\operatorname{div} a(x, \nabla u) = F(x, u) & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega, \end{cases}$$
$$\Omega \subset \mathbb{R}^N \text{ open, bounded}$$

$$p \in (1, \infty), \ p' = \frac{p}{p-1}, \ p^* = \begin{cases} \frac{Np}{N-p} & \text{if } p < N \\ 1 < p^* < \infty & \text{if } p = N \\ \infty & \text{if } p > N \end{cases}$$

Assumptions on $a = a(x, \xi): \Omega \times \mathbb{R}^N \to \mathbb{R}^N$

a Carathéodory function

$$a(x,\xi) \cdot \xi \ge \alpha |\xi|^p, \quad \alpha > 0,$$

$$|a(x,\xi)| \le \beta (|\xi| + b(x))^{p-1}, \quad \beta > 0, b \in L^p(\Omega)$$

$$(a(x,\xi) - a(x,\eta)) \cdot (\xi - \eta) \ge 0$$

We denote

$$\lambda = \liminf_{R \to \infty} \min \left\{ \frac{R}{\int_{\Omega} |v|^p dx} : v \in W_0^{1,p}(\Omega), \int_{\Omega} a(x, \nabla v) \cdot \nabla v dx = R \right\}$$

Example (p-Laplacian): $a(x, \xi) = |\xi|^{p-2} \xi$,

$$\lambda = \min_{\substack{v \in W_0^{1,p}(\Omega) \\ v \neq 0}} \frac{\int_{\Omega} |\nabla v|^p dx}{\int_{\Omega} |v|^p dx}$$

Assumptions on $F: \Omega \times [0, +\infty) \to \mathbb{R} \cup \{+\infty\}$

F Carathéodory function

$$F(x,0) \ge 0$$
, a.e. $x \in \Omega$

$$\begin{cases} \exists \nu < \lambda, \text{ such that } \forall \delta > 0, \exists k_{\delta} \in L^{(p^*)'}(\Omega) \\ F(x,s) \leq k_{\delta}(x) + \nu s^{p-1} \ \forall s \geq \delta, \text{ a.e. } x \in \Omega \end{cases}$$

If
$$p \le N$$
,
$$\begin{cases} \exists \tilde{v}, \tilde{k} \in L^{(p^*)'}(\Omega) \\ F(x,s) \ge -\tilde{k}(x) - \tilde{v}s^{p^*} \ \forall s \ge 0, \text{ a.e. } x \in \Omega \end{cases}$$

If
$$p > N$$
,
$$\begin{cases} \forall m \in \mathbb{N}, \ \exists \tilde{k}_m \in L^1(\Omega) \\ F(x,s) \ge -\tilde{k}_m(x), \ \forall s \in [0,m], \text{ a.e. } x \in \Omega \end{cases}$$

Definition of solution

It is inspired in D. Giachetti, P.J. Martínez-Aparicio and F. Murat

We say that $u: \Omega \to \mathbb{R}$ is a nonnegative solution of

$$\begin{cases} -\operatorname{div} a(x, \nabla u) = F(x, u) \text{ in } \Omega \\ u = 0 \text{ on } \partial \Omega, \end{cases} \text{ if } \\ u \in L^{p^*}(\Omega), \ u \geq 0 \text{ in } \Omega \\ (u - \delta)^+ \in W_0^{1,p}(\Omega), \ \forall \delta > 0 \end{cases}$$

$$\nabla u \phi \in L^p(\Omega)^N, \ \forall \phi \in W_0^{1,p}(\Omega) \cap L^{\infty}(\Omega)$$

$$F(x, u)^+ \phi^p \in L^1(\Omega), \ \forall \phi \in W_0^{1,p}(\Omega) \cap L^{\infty}(\Omega), \phi \geq 0$$

$$\begin{cases} \int_{\Omega} a(x, \nabla u) \nabla [h(u) \phi^p] dx = \int_{\Omega} F(x, u) h(u) \phi^p dx \\ \forall h \in W^{1,\infty}(\mathbb{R}), \forall \phi \in W_0^{1,p}(\Omega) \cap L^{\infty}(\Omega), \phi \geq 0. \end{cases}$$

Remark: Conditions

$$\begin{cases} \exists \tilde{v}, \tilde{k} \in L^{(p^*)'}(\Omega) \\ F(x,s) \geq -k(x) - \tilde{v}s^{p^*} \ \forall s \geq 0, \text{ a.e. } x \in \Omega \end{cases} & \text{if } p \leq N, \\ \begin{cases} \forall m \in \mathbb{N}, \ \exists \tilde{k}_m \in L^1(\Omega) \\ F(x,s) \geq -\tilde{k}_m(x), \ \forall s \in [-m,m], \text{ a.e. } x \in \Omega \end{cases} & \text{if } p > N \end{cases}$$

$$\Rightarrow F(x,u)^- \in L^1(\Omega). \text{ Combined with }$$

$$F(x,u)^+ \phi^p \in L^1(\Omega), \ \forall \phi \in W_0^{1,p}(\Omega) \cap L^\infty(\Omega), \phi \geq 0,$$
we get $F(x,u)\phi^p \in L^1(\Omega),$

$$\text{Conditions } u \in L^{p^*}(\Omega), \nabla u\phi \in L^p(\Omega)^N, \ \forall \phi \in W_0^{1,p}(\Omega) \cap L^\infty(\Omega)$$

$$\Rightarrow |a(x,\nabla u)\nabla[h(u)\phi^p]|$$

$$\leq \beta (|\nabla u| + b(x))^{p-1}|h'(u)\nabla u\phi^p + ph(u)\phi^{p-1}\nabla\phi| \in L^1(\Omega)$$

Remark. We can take more general test functions. Namely,

$$W: = \left\{ w \in W^{1,p}(\Omega) : \exists \phi \in W_0^{1,p}(\Omega) \cap L^{\infty}(\Omega), \phi \ge 0 \right.$$
$$\left| w \right| \le \phi^p, \text{ a.e. in } \Omega, \ \frac{\left| \nabla w \right|}{\phi^{p-1}} \chi_{\{w \ne 0\}} \in L^p(\Omega) \right\}$$

W is a vectorial space, $w \in W$, $v \in W_0^{1,p}(\Omega) \cap L^{\infty}(\Omega) \Longrightarrow wv \in W$

$$\{w \in W^{1,p}(\Omega) \cap L^{\infty}(\Omega), \text{ supp}(w) \text{ compact}\} \subset W$$

$$\left\{h(u)\phi^p\colon h\in W^{1,\infty}(\mathbb{R}), \phi\in W^{1,p}_0(\Omega)\cap L^\infty(\Omega), \phi\geq 0\right\}\subset W$$

u solution of the singular semilinear problem implies

$$F(x,0) = 0$$
 a.e. in $\{u = 0\}$
 $|\nabla u|^{p-1} |\nabla w| \in L^1(\Omega), \ \forall w \in W$

$$\int_{\Omega} a(x, \nabla u) \nabla w dx = \int_{\Omega} F(x, u) w dx, \ \forall w \in W.$$

Theorem (Stability result). Assume a, a sequence F_n and a function F as above with v, k_{δ} , \tilde{k} , \tilde{k}_m independent of n.

For a.e.
$$x \in \Omega$$
, $s_n \to s$, $s_n \ge 0 \Longrightarrow F_n(x, s_n) \to F(x, s)$.

Assume u_n a nonnegative solution of

$$\begin{cases}
-\operatorname{div} a(x, \nabla u_n) = F_n(x, u_n) & \text{in } \Omega \\
u_n = 0 & \text{on } \partial\Omega
\end{cases}$$

Then, for a subsequence of u_n , $\exists u$ nonegative solution of

$$\begin{cases}
-\operatorname{div} a(x, \nabla u) = F(x, u) & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega
\end{cases}$$

such that

$$u_n \to u \text{ in } L^q(\Omega), \ q < p^*$$

$$u_n \to u \text{ in } L^{p^*}(\Omega)$$

$$(u_n - \delta)^+ \to (u - \delta)^+ \text{ in } W_0^{1,p}(\Omega), \ \forall \delta > 0.$$

Theorem: Assume $F_1, F_2: \Omega \times [0, \infty) \to \mathbb{R}$ in the conditions of the singular case,

$$F_1(x,.)$$
 and/or $F_2(x,.)$ nonincreasing, $F_1 \le F_2$ $(a(x,\xi_1) - a(x,\xi_2)) \cdot (\xi_1 - \xi_2) > 0$ if $\xi_1 \ne \xi_2$

 u_1, u_2 nonnegative solutions of

$$\begin{cases} -\operatorname{div} a(x, \nabla u_i) = F_i(x, u_i) \text{ in } \Omega \\ u_i = 0 \text{ on } \partial \Omega. \end{cases}$$

$$\Rightarrow u_1 \leq u_2 \text{ a.e. in } \Omega.$$

Corollary: If F(x, .) nonincreasing, a strictly monotone. Then \exists a unique nonnegative solution of the singular problem.

Sketch of the proof. The idea is to take $[(u_1 - u_2)^+]^{2p}$ as test function in the difference of the equations.

Existence of solutions which are nonpositive

A nonexistence result: Assume a as above, $F:\Omega\times\mathbb{R}\to\mathbb{R}\cup\{\infty\}$ a Carathéodory function.

If
$$p \leq N$$
,
$$\begin{cases} \forall \delta > 0, \ \exists \nu_{\delta} > 0, k_{\delta} \in L^{(p^*)}(\Omega), k_{\delta} \geq 0 \\ |F(x,s)| \leq k_{\delta}(x) + \nu_{\delta}|s|^{p^*} \ \text{if } |s| \geq \delta, \text{ a.e. } x \in \Omega. \end{cases}$$
If $p > N$,
$$\begin{cases} 0 < \delta < m \Longrightarrow \exists k_{\delta,m} \in L^1(\Omega) \\ |F(x,s)| \leq k_{\delta,m}(x), \ \forall s \in [-m+\delta, m-\delta], \text{ a.e. } x \in \Omega. \end{cases}$$

$$\exists \delta_0, \tau_0 > 0, \ F(x,s) \geq -\frac{\tau_0}{s}, \ \forall s \in (-\delta_0, 0), \text{ a.e. } x \in \Omega.$$

Assume *u* a solution of

$$\begin{cases}
-\operatorname{div} a(x, \nabla u) = F(x, u) \text{ in } \Omega \setminus \{u = 0\} \\
u = 0 \text{ on } \partial \Omega.
\end{cases}$$

Then $u \geq 0$ a.e. in Ω .

Here, we say that u is a solution of

$$\begin{cases}
-\operatorname{div} a(x, \nabla u) = F(x, u) & \text{in } \Omega \setminus \{u = 0\} \\
u = 0 & \text{on } \partial \Omega,
\end{cases}$$

if

$$(u-\delta)^+, (u+\delta)^- \in W_0^{1,p}(\Omega), \ \forall \delta > 0$$

$$\int_{\Omega} a(x, \nabla u) \cdot \nabla v dx = \int_{\Omega} F(x, u) v dx$$

 $\forall v \in W_0^{1,p}(\Omega)$, such that $\exists \delta > 0$ with v = 0 q.e. in $\{|u| < \delta\}$.

The result is a Corollary of

Lemma: a as above, $H, u: \Omega \to \mathbb{R}$

$$(u+\delta)^{-} \in W_{0}^{1,p}(\Omega), \ \forall \delta > 0$$

$$H \in L^{1}(\{u < -\delta\}), \ \forall \delta > 0$$

$$\exists \delta_{0}, \tau_{0} > 0, \ H \geq -\frac{\tau_{0}}{u}, \ \text{a.e. in } \{-\delta_{0} < u < 0\}$$

$$\int_{\Omega} a(x, \nabla u) \cdot \nabla v dx = \int_{\Omega} H v dx$$

 $\forall v \in W_0^{1,p}(\Omega)$, such that $\exists \delta > 0$ with v = 0 q.e. in $\{u > -\delta\}$.

Then $u \geq 0$ a.e. in Ω .

An example in dimension one

We consider the problem

$$\begin{cases} -u'' = \frac{f}{|u|^{\gamma}} + g \text{ in } (0, l) \\ u(0) = u(l) = 0, \end{cases}$$

with $f, g, \gamma \in \mathbb{R}$, $f, \gamma > 0$.

We know, there exists a unique nonnegative solution

If $g \ge 0$ and or $\gamma \ge 1$, only the nonnegative solution is possible.

Take g < 0, $\gamma < 1$. By a change of variables we can assume

$$f = 1$$
, $g = -1$

Are there nonpositive solutions and/or solutions changing the sign?

We define $b: \mathbb{R} \to \mathbb{R}$ by

$$b(s) = -\frac{2}{1-\gamma} \frac{s}{|s|^{\gamma}} + 2s$$

and
$$z: [0, \infty[\to] -\infty, -\left(\frac{1}{1-\gamma}\right)^{\frac{1}{\gamma}}]$$
 by $b(z(r)) + r = 0$

Lemma: Define

$$T(r) = 2 \int_{z(r)}^{0} \frac{dt}{\sqrt{b(t) + r}}$$

$$\Rightarrow T \in C^{0}([0, \infty)), \ T_{0}:= \min_{r \geq 0} T(r) > 0, \ \lim_{r \to \infty} T(r) = \infty$$

Theorem: We consider the problem

$$\begin{cases} -u'' = \frac{1}{|u|^{\gamma}} - 1 & \text{in } (0, l) \\ u(0) = u(l) = 0, \end{cases}$$

- If $0 < l < T_0$, \exists a unique solution. It is positive in (0, l).
- If $l = T_0$, \exists two solutions, one is positive and the other one is negative in (0, l).

- If $kT_0 < l < (k+1)T_0$, $k \ge 1$. \exists at least 4k+1 solutions. One is positive, one is negative and for $1 < m \le k$, there are 3 solutions if m = 1, and 4 if $m \ge 2$, which are the restrictions of periodic functions to (0, l). They are negative in m subintervals and positive in m 1, m or m + 1.
- If $l = kT_0$, $k \ge 2$, often the 4k 3 solutions corresponding to the case $(k-1)T_0 < l < kT_0$, there exists another solution which is the restriction of a periodic solutions. It vanishes at jl.

Remark: If

$$T(r) = 2 \int_{z(r)}^{0} \frac{dt}{\sqrt{b(t) + r}}$$

is increasing, the solutions given by Theorem are the unique solutions.

For $\gamma = 0.5$, T is increasing.

Numerically, it seems that T is increasing for $\gamma \geq \gamma_0$, with $\gamma_0 \leq 0.5$.

Use
$$-u'' = \frac{1}{|u|^{\gamma}} - 1 \Longrightarrow |u'|^2 = -\frac{2}{1-\gamma} \frac{u}{|u|^{\gamma}} + 2u + c \ (= b(u) + c),$$

with $c = |u'(0)|^2 \in \mathbb{R}$, and then a shooting method.

