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We are interested in the semilinear problem

{—div a(x,Vu) = F(x,u) in
u =0 ono|,

with
Q c RY bounded, open
a satisfies usual conditions to have the operator
u € W,"P(Q) — —div a(x, Vu) € WP (Q)

a Leray-Lions monotone operator.

lim F(x,s) = 4o

s—0



This type of problems has been considered by several authors
M.G. Crandall, P.H. Rabinowitz, L. Tartar (1977).

.
— z a; (x)al-zju + Z b;(x)0;u + c(x)u = F(x,u) in Q

] i

\ u =0 on 0Q

Q) smooth, coefficients in C°(Q).

AN

lincl) F(x,s) = +oo uniformly in Q, F(x,.) nonincreasing
S—

It is proved the existence of a positive solution in C%(Q) N C°(Q).

For F not necessarily nonincreasing they take F(x,u) = A G(x, u).

3 a set of solutions (1, u) € RxC°(Q), connected, unbounded and
containing (0,0).



Most of the authors consider positive right-hand sides

M.M. Coclite, G. Palmieri (1989).

uY
u =0 on dQ

vy > 0,q > 1,31 > 0 such that 3 a positive solution if and only if 1 < A
L. Boccardo, L. Orsina (2010).

1
{—Au =—+ (Au)? in Q

. fx)

{—dlv(A(x)Vu) =— in Q, F>0, feL(Q).
u =0 on 0()

3 a positive solution in H\ () N Wol'1 (Q).

It 1s obtained as the limit for the right-hand sides ! (x)l :

uY+=
n

Integrability results for u and Vu are also obtained.



L. Boccardo, J. Casado-Diaz (2014). Previous approximation method
provides a unique solution. It is also studied the homogenization problem

f(x)

14
n

D. Giachetti, P.J. Martinez-Aparicio, F. Murat. Several works (2016, 2017,
to appear)

—div(4,,(x)Vu,) = in Q, u, =0 on 0Q

—div(A(x)Vu) = F(x,u)in Q, u =0 on 0Q

h(x
0<F(x,s)< %, h el (Q), I'(0)=0,r stric.increasing, Lipschitz

It 1s given a definition of solution for which there 1s existence and it is
stable when the right-hand side varies.

Solution is unique if F (X, .) nonincreasing.

Strong maximum principle 1s not used.



Existence of nonnegative solutions

Problem
{—div a(x,Vu) = F(x,u) inQ
u =0 onol,
Q c RY open, bounded
N
i ifp <N
p € (1,0), p’ S p* =4 N=p
p—1 1<p"<o ifp=N




Assumptions on a = a(x, §): QxRN - RV

We denote

A = liminf min <

a Carath¢odory function

a(x,é)-& = alélP, a> 0,

la(x, &) < (1€l + b)), B>0,b € LP(Q)
(a(x,&) —a(x,n)-(E—n) =0

R

R—o00

\fﬂ lv|Pdx

U E Wol’p (Q),f a(x,Vv) -Vvdx = R
Q

Example (p-Laplacian): a(x, §) = |§|P~4¢,

A=

Jo, IVv|Pdx

min

vew, P (@ [ |v|Pdx

v*#0

\

Y

J



Assumptions on F: (QX[0, +00) = RU{+o0}
F Carathéodory function
F(x,0) > 0,a.e.x € Q

3v < A, such that V& > 0,3ks € LP'(Q)
F(x,s) <ks(x)+vsP~! Vs> 6,ae.x €Q
v,k e L@)'(Q)
F(x,s) = —k(x) —9sP” Vs> 0,a.e.x €

vm € N, 3k,, € L1(Q)
F(x,s) = —k,,(x), Vs € [0,m], a.e. x € Q

Ifp <N, {

Ifp >N, {



Definition of solution
It 1s inspired in D. Giachetti, P.J. Martinez-Aparicio and F. Murat

We say that u: 0 - R 1s a nonnegative solution of

{—div a(x,Vu) = F(x,u) in Q
u = 0 on 0.,

u€ELP(Q), u=0 inQ

if

(u—8)*ew;?), vé>0
Vug € LP(Q)N, Vo € W,'P(Q) N L= ()
F(x,u)*¢P € L*(Q), V¢ € W,"P(Q) N L°(Q),¢ = 0

(
f a(x, V) V[h(w)pP]dx = f F (e, w)h(u) P dox
< QO Q

L Vh € WY (R), Ve € W,"P(Q) N L®(Q), ¢ = 0.




Remark: Conditions

5 I (p*)r
{ A7,k € L * (Q) ifp <N,
F(x,s) = —k(x) —VsP Vs>0,ae.x €
vm €N, 3k, € L1 (Q
m m € L(Q) if p> N
F(x,s) = —k,,(x), Vs € [-m,m],a.e.x €

= F(x,u)” € L*(Q). Combined with
F(x,u)*¢? € L1(Q), V¢ € W,'P(Q) N L= (Q), ¢ = 0,
we get F(x,u)¢p? € L1 (Q),
Conditions u € LP"(Q), Vug € LP(Q)V, v € W, () N L*(Q)
= |a(x, Vw)V[h(u) 7]l
< B(IVul + ()" | ()Vug? + ph(W$? V| € L (Q)



Remark. We can take more general test functions. Namely,
W:={w e WP (Q): 3¢ € W,;"P(Q) N L*(Q),¢ = 0
[Vw]
¢pr—1
W is a vectorial space, w € W,v € Wol’p QDNLQ) =>wveWw
{wewl?(Q) nL*®(Q), supp(w) compact} c W
{h(w)¢P: h € W' (R), ¢ € W, P () NL°(Q),p =0} c W

lw| < ¢P,a.e.in Q, Xiwzo} € LP(Q)}

u solution of the singular semilinear problem implies
F(x,0) = 0a.e.in {u = 0}
IVu|?P~1|Vw]| € L1 (Q)), vw e W

j a(x, Vu)Vwdx =f F(x,u)wdx, Vw € W,
Q Q



Theorem (Stability result). Assume a, a sequence F,, and a function F as
above with v, kg, k, k,,, indepdent of n.

Forae. x € Q,s, = 5,5, =2 0= E,(x,s,) = F(x,s).
Assume u,, a nonnegative solution of

{—div a(x,Vu,) = E,(x,u,) in Q
u, = 0 on d()

Then, for a subsequence of u,,, Au nonegative solution of

{—div a(x,Vu) = F(x,u) in Q
u =0 on d(}

such that
u, »u inL1(Q), g < p”
u, = u in LP (Q)

(Up — &) = (u—8)* inW,;?(Q), vé> 0.



Theorem: Assume F;, F,: (0X[0,00) — R in the conditions of the singular
case,

F,(x,.) and/or F,(x,.) nonincreasing, F, <F,

(a(x, &1) — a(x, Ez)) (&1 — &) >0 if & # &,
U4, U, nonnegative solutions of

{—div a(x,Vu;) = F;(x,u;) in Q
u; = 0 on dQ.

= Uy < U, a.e.in (.

Corollary: If F(x,.) nonincreasing, a strictly monotone. Then 3 a unique
nonnegative solution of the singular problem.

Sketch of the proof. The idea is to take [(u; — u,)T]?P as test function in
the difference of the equations.



Existence of solutions which are nonpositive

A nonexistence result: Assume a as above, F:QOXR — R U {0} a
Carath¢odory function.

v8 >0, vg > 0,ks € LP)'(Q), ks =0
IF(x,5)| < ks(x) + vs|s|P” if |s| =6, a.e.x € Q.

0<8§<m= 3Iks,, € L'(Q)
|F(x,8)| < kg m(x), Vs €E[-m+§,m—6],ae. x € Q.

Ifp <N, {

Ifp > N, {

T
16,, 79 > 0, F(x,s) = —?O, Vs € (—6,,0),a.e.x € Q

Assume u a solution of

{—div a(x,Vu) = F(x,u) in Q\{u = 0}
u =0 on J(.

Then u = 0 a.e. in ().



Here, we say that u is a solution of

{—div a(x,Vu) = F(x,u) in Q\{u = 0}
u = 0 on 01,

if
(u—8)* (u+38)" €W, "(Q), Vs >0

f a(x,Vu) - Vvdx = f F(x,u)vdx
Q Q

Vv E Wol’p(ﬂ), such that 36 > O with v = 0 q.e. in {|u| < 6}.



The result is a Corollary of
Lemma: a as above, H,u: Q) — R
(u+8)" €W,"P(Q), V6 >0
Hel'!{u<—6}), V6§ >0

Lo .
360,79 >0, H=> ——» aein {—6p <u<0}

f a(x,Vu) - Vvdx = f Hvdx
Q Q

Vv € Wol’p (Q)), such that 36 > 0 withv = 0 g.e.in {u > —6}.

Thenu = 0 a.e. in ().



An example in dimension one

We consider the problem

—u'’ = |7f|y + g in (0,1)
u(0) =ul) =0,
with f,g9,vy €ER, f,y > 0.
We know, there exists a unique nonnegative solution
If g = 0and or y = 1, only the nonnegative solution is possible.
Take g < 0, y < 1. By a change of variables we can assume
f=1g9g=-1

Are there nonpositive solutions and/or solutions changing the sign?



We define b: R = R by

2 S

b(s) = —
() 1—VBV+

2S

1

and z: [0, co[— ]—OO, — (ﬁ);l by b(z(r))+r=0

b = b(s)

z=2z(r)




Lemma: Define

0 dt
= 2
T Jz(r) \/b(t) +r

= T e C°([0,x)), T0:=mi(1)1T(r)>O, lim T(r) = o
r r— 00

Theorem: We consider the problem

( I 1 :
—Uu :W_l 1n (O,l)

. uw(0) =ul) =0,

A

e If 0 < | < Ty, 3 aunique solution. It is positive in (0, [).

e If | =T,, 3 two solutions, one is positive and the other one is negative
in (0, 1).



 IfkT, <l < (k+ 1)T,, k = 1.3 at least 4k + 1 solutions. One is
positive, one 1s negative and for 1 < m < k, there are 3 solutions if
m =1, and 4 if m = 2, which are the restrictions of periodic functions
to (0, 1). They are negative in m subintervals and positive inm — 1, m
orm + 1.

o If | = kT, k = 2, often the 4k — 3 solutions corresponding to the case
(k — 1)T, <l < kT,, there exists another solution which is the
restriction of a periodic solutions. It vanishes at jl.



Remark: If

0 dt
T(r)=2
") L(r) \/b(t) + 7T

1s Increasing, the solutions given by Theorem are the unique solutions.
For y = 0.5, T 1s increasing.
Numerically, it seems that T is increasing for y = y,, with y, < 0.5.
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N2=——=2 4t 2u+c (= b(w) + ¢),

Use —u'=—=-1=|u
1=y ul¥

with ¢(= |u'(0)]|%) € R, and then a shooting method.

y =05,c~0 . y=05,c=16 " 4 =05,c=198




