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Setting up the problem

The fluid-structure interaction problems appear naturally in
aerodynamics, aeroacoustics and biology. They are of two types of
fluid-structure interaction:

e A solid is immersed in a fluid : movement of fish or a submarine in
a river or ocean, flow around an aircraft or formula 1 car.

e A fluid is contained in a domain and all or part of the boundary is

deformable (blood flow in an artery or the respiratory movement
mechanism)



Fluid Structure Interaction
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Q =(0,L) x (0,1) ~» The domain in the reference configuration.

s =(0,L) x {1} ~ The elastic part of the fluid boundary in the
reference configuration.

For t > 0 and x € (0, L), n(t, x) denotes the vertical displacement
of the elastic structure.

The domain occupied by the fluid at time t > 0 is

Qe(t) = {(x,y) | x € (0,1), 0<y < 1+n(t,x)}.

rs(e) = {(y) | x € (O,L), y = 1+ n(t.0)].



Model Problem:

e Fluid equation : written in unknown moving domain Qg(t).
= Navier-Stokes equations

pf(Oru+ (u.V)u) —div o(u,p) =0, divu=0
o(u,p) = v(Vu+vVu') - pl
e Structure equation : written in reference configuration
psOun + adin — Bz — 1020 = —/1+ (0.:m)20(u, p)ii - n

e Coupling condition : The fluid sticks to the boundary of the
structure and consequently the fluid velocity and the structure
velocity are equal at the interface.

u(t,x,1+n(t,x)) = dm(t,x)es fort > 0,x € (0, L).



Boundary and Initial conditions

Fluid Boundary Conditions :
e Enclosed Cavity : u=0on 0Q\ I's(t).

e Inflow and Outflow Boundary conditions :
U(u7 p)n = —Pin\outh ON rin\out

e Periodic boundary conditions.
Structure Boundary Conditions :

e Clamped \Periodic
Initial Conditions :

(n(0), 2en(0)) = (n2,m3) in T,
u(0) = u® in Q£(0).



State of the Art

psOun + adin — BO2n — 7020m = - - -
e Existence of at least one weak solution

e 3D/2D coupling with damped plate («,~ > 0) - Chambolle,
Desjardins, Esteban, Grandmont, 05

e 3D/2D coupling with plate (o > 0,y = 0) - Grandmont, 09 .
Also true for 2D /1D coupling if « =y =0 and 8 > 0.

e 2D /1D coupling with o > 0 and v > 0 - Muha, Cani¢, 13

e Existence of unique strong solution

e 2D /1D coupling with & > 0, > 0 - local in time existence for
small data - Beirao Da Veiga, 04

e 2D/1D or 3D/2D coupling o > 0,7 > 0 - local in time
existence for any initial data - Julien Lequeurre, 11 and 13

e 2D/1D coupling with & > 0,7 > 0 - global in time strong
solution - Grandmond and Hillairet, 16



State of the Art

o Local Stabilization - Damped Plate equation

e Control acts everywhere on the structure equation - J.-P.
Raymond, 10

e Boundary Control - Ndiaye, Matignon and Raymond - 14

e Boundary control for weak solutions - Badra and Takahashi -
17



Controlled System
The controlled system that we consider is
pr(ur + (U.V)u) —vAu+Vp=0, divu=0 in (0,00) x Qp(t),
u(t,x, 1+ n(t,x)) = dn(t,x)ex fort > 0,x € (0, L)
u="Llu. on X2, u(0)=u’in Q0.
psDeen — Do + (=A5) 7 = H(u, p,7) (1.1)
(U(O)vnt(o)) = (77(1)7772) in rs7
u(-,t), p(,t), and n(-,t) are L-periodic with respect to x,

where

H(u, p,n) = Plrsey — V(Vu+ VuT)|r oy (—nxe1 + €2) - e2.

The operator L localizes the action of the control u. in a relatively
compact subset of [, and such that

/ Lu. -n=0.
My



Goal

o \We choose a control finite dimension of the form
Nc
uc(t,x) = gi(t)wi(x),
i=1

where (w;(x))1<i<n, is chosen suitably and and the control variable
isg=(g1,8, - &N.)-
e To determine a control g in feedback form, able to stabilize, with

any exponential decay rate —w < 0, the system (1.1) in some
appropriate space locally around (u, p,n) = (0,0, 0).



Some Remarks

The incompressibility condition together with boundary conditions

imply:
L
0
For simplicity we assume

n(t,) € 12, 4(Ts) = {feB rs) /f—o}

Consequently, for any regular solution (u, p, ), we have

/ H(u, p,n) =0.
s

We introduce the orthogonal projection Ms € L(L%(Ts), L% 4(Ts)),
and rewrite the structure equation as

psattn - AST] + (*As)%atn = MS(H(U, P, 77))



Method

Rewrite the system in the reference configuration.

X(t,-) : Q+— Qp(t)
(X,Z) — (va) = (Xa (1 + n(t7x))z) .

Linearize the fluid structure interaction system.
Find a feedback control stabilizes the linearized system.
Stabilization of nonlinear system in reference configuration.

Come back to the original configuration.



System in the reference configuration:

We set

u(t,x,z) = u(t, X(t,x,2)), p(t,x,2) = p(t, X(t, x, y)).

pr(8:0 + (1.V)0) — vAli + VP = F(4, p,7), in (0,00) x Qr(0)
divu=G(u,n) in (0,00) x Qe(0),
u=0n(t,x)ea on (0,00) x ls,

u= Zg;(t)Lw;(x) on (0,00) x Ip,

(1.2)

psne — BAsn + (_As)%nt = Ms(ﬁ_ 2uilp , + ":l\(aa 77)) on (0» OO) x T,

+ initial conditions



Nonlinear Terms
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F(a,p,n) = —nt; + | zn: + vz — Mxx 0,
(4, p,n) = —niy (nt <1+n 77)>

22ni —1n
-2z xﬁxz + ﬁxx + — lI‘\lzz
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N

G0, m) = —niyx + 20y, = div € with & = —niye; + zn, ey,
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Linearized Model

Set 71 = n and ny = 9;n. The system linearized around (0, 0,0, 0), is

prov —vAv+Vp=0, divv=0 in (0,00) x Qr(0),

v=r1peyon X, V=u.on Zgo,

v(0) =v%in Q,
N =12 0n L3,
Psh2,t — BAsm + (_As)%n2 = ’Ys(p - 2VV2,z) on ZZO, (1-3)

n(0) =n%, n2(0)=n3 inT,.

® vsp = Msp Is-

e vy =0o0n T and divv=0implies v, =0on Is.



Damped Wave Equation

We consider
Nt =12 in (Oa OO) X (Ov L)a
pstiae — BAsn1 + (—As) 2z = hin (0,00) x (0, L),

e As generates an analytic semigroup on H;ﬁ X Li with
D(As) = H; X Hj#.

For h € L?(L3,) and regular initial conditions we have 7, € L*(H},)
prov —vAv+Vp=0, divv=0 in (0,00) x Qr(0),

v=r1peyon Xl Vv=u.on Zgo,

e Consequently v € L2(H;/2) and p € LQ(H;f)-

e Qn : How to define p|r,?

In case of damped plate equation 7, € L2(H3¢) and p € L2(H#1}L)



Stabilizability of Abstract Linear control
System

We consider the following system

d
220 = Az(t) + Bu(t),  2(0) = 2.

A :D(A) C H+ H generates a C° semigroup and B € L(U, H).
e A generates an analytic semigroup and has compact resolvent.

(A, B) is stabilazable if and only if

ker(Al — A*) NkerB* = {0} for all ReA > 0.

e There exists K € L(H, U) such that (A + BK) is stable.



Rewriting as an evolution equation

LL(Q) = V3. .(Q) & VHL(Q),
where
Vo (2)={yeLi(Q)|divy=0, yn=00onT,Ul}
and
VHL(Q) = {VF|feHLQ)}.

The orthogonal projection in L7 (Q) onto VY,  is denoted by P. The fluid
equation can be written as

PV’ = APV + (—Ag)PDsn + (—Ao)PDpuc, ,  v(0) =v°
(I = P)v(t) = (I = P)Dsna(t) + (I = P)Dpuc.

o Ay=PA, D(A)) = {H?*N V2 |v=00nT,UTs}.

e The above system is well posed in D(Af)'.



The pressure term

Taking divergence and normal trace of the fluid equation we obtain

Ap=0in Q,

0
a—'ﬁ =vAv-n— pr(LrsOpm) — Lr,Oruc - np

Thus p = N(vAPv - n) — peNg(Opmz) — Np(Oruc - np).
The structure equation becomes

M,e =12
(ps + pevsNs)mae — B + (—Ag)imn = YsN(VAPY - 1) — 4 Ny (D - np)

e The “added mass" operator Ks = (ps + prysNs) is an
automorphism on Li,o.



Evolution equation

d Pv Pv
wlm)= Ars | m | + Big + Bog:,
2 2

Nc
(I =P =(I—P)Dap+Y_ gl — P)Dyw;,
i=1

Ao 0 (=Ao)PD,
Aps = 0 0 / .
(Kslv/SN(VA(') : n) KsilﬂAS Ksl(As)é)
N 0
> gi(—Ao) PDyLw; 0
Big = | i=1 Bog: = N,
0 —Zgi,tK;HsNb(LWi “n)

0 i=1



We equip the space
Z =V () x HL(Ts) x L3 4(Ts), (1.4)
We now consider the unbounded operator (A, D(A; Z)) in Z with
DA Z) = {(Pv,m,m2) € VY, x HE(Ts) x HA(T)

| Ao(Pv — PDyi) € VY, ,(Q)}.

e Qn: How to make sense of the term v, N(vA(Pv)-n) ? Pv & H.

e Perturbation argument and transposition method.



Rewrite Afs in the form Ags = A; + B, with

Ao 0 (—Ao)PDs
Ai=10 0 |
0 K;lﬁAs —K;l(—As)
and
B 0 00
B = 0 0 0
K N(A(-)-n) 0 0



Rewrite Afs in the form Ags = A; + B, with

AO 0 (_AO)PDS
A =10 0 /
0 KIBAs —KH(-A,):
and
B 0 00
B= 0 0 0
K 1ysN(A()-n) 0 0

e The operator (A1, D(A; Z)) is the infinitesimal generator of an

analytic semigroup on Z, and the resolvent of A; is compact in Z.
We show

IMA = A1) 7|z < €.

e To show ysN(vA(Pv) - n) € L3, o(T's) for all (Pv,m1,72) € D(Ay).
e For all € > 0, there exists C. > 0, such that

sN(Av - )12 () < €llAL(PY, n,m2)llz + Cell Py, me) Iz



(Pv,m1,m2) € D( A1), iff (v, n1,m2)
Av —divo(v,q)=f, divv=0inQ,
v=1peronls, v=0onT,
A —m=gin Ty
N = By + (—Ds)>mp = hin T,
for some A >0 and f € V2 (Q),g € H'(Ts) and h e L*(Ts).

* qlr = (a(v,q)n-n)|r € L3 o(Ts).

° Av-n:g—zwhere

~Ag=0inQ, q|r<c L?().
9q
on

e Hence, 7:N(Av - n) € L3, ,(T).

€ H=Y(T"), by transposition method.

Theorem

The operator (A, D(A; Z)) is the infinitesimal generator of an analytic
semigroup on Z, and the resolvent of A is compact.



Extended System

e Time derivative of the control variable g appears. We want to
obtain an evolution equation without the time derivative of the
control variable.

e We choose g as a new state variable and by introducing
f = g; — \g as a new control variable, where A is a diagonal matrix
that we choose later on.

e The extended system:

Pv Pv
d m m
il — f 1.
at | A m + B.f, (1.5)
g g

(Ae, D(Ae; Ze)) is the unbounded operator on Z, = Z x RN
defined by

_ (Ars Bi+BA
Ae_(O A )’



The operator Be € L(RN,Z.) is defined by

0
0
N,
B.f = - _
S =D KT N (w; - n)
i=1
f

e The operator (Ae, D(Ae; Z.)) is the infinitesimal generator of an
analytic semigroup on Z., and its resolvent is compact.

e The spectrum of A, is a discrete spectrum, the eignevalues are
isolated and of finite multiplicity.

e For simplicity let us assume that there is only one unstable
eigenvalue which is real, say .



Choice of A and (w);

Let us assume (v, 71,72, 8) € Ker(Al — A%) N KerB:.

(M = Ags)(v,m1,m2) " =0,

(M —=Ng=— </Fb a(v,p)n- LW,-> e
<gi - /rb Ns(n2)n - Lw,-) =0.

)\%O’(A) - (V»Pa771,772ag):0~
a(A)Na(A) ={0}. A = diag(as, az).
Jr,I(A = a1)(Nsnz2)n + o (v, p)n] - Lwy =0

e Unique continuation results (Fabre-Lebeau, Trigianni)



Closed Loop Non homogeneous System

vi —VvAv+Vp=F divv=G=divE€ in Qu,
Nc
v=1peonXi  v= Zg,-(t)w,-(x) on X2 .
i=1
v(0) =v%in Q,
M,e =12 on X5,
Moe — BAm + (—As) 21 = 75(p — 2vv2) + H on T2,
m(0) =77, m(0) =n3in Ty,
gt — Ag = ’C(V('a t)a 771('5 t)7 7]2('7 t): g)T7 g(O) =0.

We define

Yaiv = {5 S Li(QooNdiV e L2(O,oo; H#l#(Q))vgt c Liﬁ(Qoo),
(€. t)-n, 1>H;1/2(|')7H_1/2(F) - 0} '

#



Theorem

Let (v0,79,79) € HL(Q) N VY(Q) x H3(Ts) x HL(Ts) + Compatibility
condition. Let e“'F € L?(0,00;L%(R)), e*€ € Yai, and

e“tH € L2(0, o0; ’Hl/2(rs)). Then above system has a unique solution

e“'v € L2(0, 00; H?) N HY(0, o0; L?)
e“tp € L%(0, 00; HL(Q))
ety € L2(0, 00, HY2(T5)) N HA(0, 00, HY/*(T)),
et € L2(0, 00 H3/*(Ts)) N HY(0, 00; Hif(Ty)),

e“tg € H(0, 00; RM).



Nonlinear closed loop system in the
deformed configuration

prOru+ (u.V)u — divo(u, p) =0,divu =0 in (0,00) x Qp(t)
u(x, 14 n(x,t),t) = n:(x, t)ey for (x,t) € (0,L) x (0, 00)

N
u= Zg,-(t)w,-(x) on Zgo, u(0) = u® in Q505

i=1
psOun — BAsN + (—As)%am =p+ H(u,n) on X2,
(W(O)ant(o)) = (77?7773) in rs,
gt_Ag+Wg:K(uox_lvnlanbg)Ta g(O):O



Stabilization result:

Theorem

For all w > 0, there exists 0 < po < 1 a for all u € (0, o) and all initial
data (ug, n?,79) € HL(Qr(0)) x H3,(s) x HL(Ts), satisfying

divu® =0 in Qr(0), u’(x,1+7%(x)) =n3(x)ex forx € (0,L)
1+ n0(x) >0and u® =0 onTy.

and
||U0HH;#(QF(0)) + ||77?||7-@(rs) + H773||H;#(rs) <K,

there exists a control g = (g1,82, -+ ,&n.) € H3(0, 00; RNe), such that
the solution to (1.1) satisfies

le*u(t,-) o XMl ) + 1€ n(t, Ylaez (ry) + € Oen(t, Mlaas sy S 1

Moreover, 1 +n > 0 for all t € [0,0),x € (0, L).



Future Direction of Work
e 3D/3D coupling

o Koiter shell equation on Is.

o Existence of weak solutions - Lengeler et.al, Buka? et. al,
Muha-Canié, .....

e (with A. Roy and J.-P Raymond in preparation) : Local in time
strong solution with inflow/outflow boundary conditions.

e Stabilization results....

e Existence of strong solution without damping.



Thank you.
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