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Finite time stabilization on a toy model The different kinds of problems

Control Theory

General control system: {
Ẋ (t) = F (X (t),U(t)),
X (0) = X0,

(1)

state of the system: X ∈ X , control: U ∈ U . Two classical problems (among
others):

Exact controllability: for T > 0, X0,X1 ∈ X being given, find
U : [0,T ] 7→ U , such that:

X solution of (1)⇒ X (T ) = X1.

Asymptotic stabilization: let (Xe ,Ue) ∈ X × U be an equilibrium, find
U : X 7→ U , such that Xe is asymptotically stable for:

Ẋ (t) = F (X (t),U(X (t))).
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Finite time stabilization on a toy model The different kinds of problems

Why feedback stabilization?

Robustness with respect to 4 kinds of errors
Actuators.
Observation.
Delay.
Modeling.

(Even more so when we have a Lyapunov function)
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Finite time stabilization on a toy model The different kinds of problems

Finite time Stabilization (or the best of both)

Let (Xe ,Ue) ∈ X × U be an equilibrium.
Find U : X 7→ U , such that U(Xe) = Ue and for any X0 any solutions

Ẋ (t) = F (X (t),U(X (t))).

satisfy
∃T > 0, X (T ) = Xe .

Remarks/Questions :
No backward uniqueness.
Feedback not smooth.
T depends on X0?
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Finite time stabilization on a toy model Spectral Analysis

An abstract result

Theorem (Xu)
Let H be a separate Hilbert space. Let B be the infinitesimal generator of S(t) a
C0 semigroup. If R(λ,B) (:= (λId − B)−1) is an entire function of finite
exponential type i.e.

∃γ,C > 0, s.t. ∀λ ∈ C, |||R(λ,B)||| ≤ Ceγ|λ|,

then we have :
∀t > γ, S(t) = 0.
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Finite time stabilization on a toy model Spectral Analysis

Case of transport equation

∂ty + c∂x y = 0, x ∈ (0, L), y(t, 0) = 0,

then (λId − B)u = f becomes

λu − cu̇ = f , u(0) = 0,

and so
u(x) = −

∫ x

0
e
λ(x−r)

c
f (r)

c dr ,

from which we get :

||u||2L2 ≤
L2

c2 e2 L|λ|
c ||f ||2L2 .
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Finite time stabilization on a toy model Lyapunov Functionals

The case of the transport equation

∂ty + c∂x y = 0, (t, x) ∈ (0,T )× (0, L)
y(t, 0) = 0, t ∈ (0,T ).

Using the method of characteristics :

y(t, x) =
{

y0(x − ct) if x > ct,
0 otherwise.

For t ≥ L
c , y(t, .) = 0.
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Finite time stabilization on a toy model Lyapunov Functionals

A Family of Lyapunov Functionals

For ν > 0 :

Jν(t) :=
∫ L

0
y 2(t, x)e−νx dx .

Formally at least :

J̇ν(t) =
∫ L

0
2yt(t, x)y(t, x)e−νx dx

=

∫ L

0
−2cyx (t, x)y(t, x)e−νx dx

= [−cy 2(t, x)e−νx ]L0 − cνJν(t)
≤ −cνJν(t).

Using Gronwall :
Jν(t) ≤ e−cνtJν(0).
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Finite time stabilization on a toy model Lyapunov Functionals

Return to the L2 norm

Norm equivalence

∀t ≥ 0, e−νL||y(t, .)||2L2(0,L) ≤ Jν(t) ≤ ||y(t, .)||2L2(0,L).

Inequality on L2

||y(t, .)||2L2(0,L) ≤ e−νc(t− L
c )||y0||2L2(0,L),

For t ≥ L
c , letting ν → +∞ we get y(t, .) = 0.
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Finite time stabilization on a toy model Lyapunov Functionals

Remarks

Can be adapted to general ”transport” type equations.
Good for robustness estimate and perturbation :

yt + cyx = εg(y),

yt + cyx = εyxx .

In certain cases, useful for exact controllability to trajectory.
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Quasilinear Hyperbolic systems Network of Canals

Flow control in networks of canals

Consider first one canal. Canal: rectangular cross section, with slope and
friction. An appropriate fluid model is given by the shallow water system

Ht + (HV )x = 0,

Vt + (
V 2

2 + g cos(θ)H)x = g sin(θ)− cf
V 2

2H

H: water depth, V : water velocity, and g the gravitation constant.
θ slope angle, cf friction term.
Physically, input controlled: flow rate

Q(t, x) = H(t, x)V (t, x).

Hypothesis : slope and friction (almost) negligible...
Objective : stabilize the system around (an almost) constant equilibrium
state (H∗,V ∗). Set Q∗ = H∗V ∗.
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Quasilinear Hyperbolic systems Network of Canals

Literature about the control of Saint-Venant equations

Stabilization: Greenberg-Li ’84, Coron-d’Andréa Novel-Bastin ’99, Xu-Sallet
’02, Leugering-Schmidt’ 02, de Halleux-Prieur-Coron-d’Andréa Novel-Bastin
’03,..., Bastin-Coron ’11,...
Controllability: Gugat-Leugering ’03,..., Gugat-Leugering ’09, Li ’10,
Li-Rao-Wang ’10...
Actually applied on Sambre and Meuse rivers.
For an actual up to date litterature see the book by Bastin Coron.
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Quasilinear Hyperbolic systems Network of Canals

Characteristic velocities

Characteristic velocities:

µ = V −
√

g cos(θ)H

λ = V +
√

g cos(θ)H

subcritical (or fluvial) flow:
µ < 0 < λ

Equivalent to 0 < V ∗ <
√

g cos(θ)H∗ and V ∼ V ∗, H ∼ H∗.
Pick c > 0 s.t. √

gH∗ − V ∗ > 2c.
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Quasilinear Hyperbolic systems Network of Canals

Riemann invariants
Defined as:

u = V + 2
√

g cos(θ)H

v = V − 2
√

g cos(θ)H

Inverted as

H =

(
u − v

4
√

g cos(θ)

)2

V =
u + v

2

µ and λ expressed in terms of u, v :

µ =
1
4 (u + 3v)

λ =
1
4 (3u + v)
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Quasilinear Hyperbolic systems Abstract Problem
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Quasilinear Hyperbolic systems Abstract Problem

Diagonal form

Shallow water transformed into the diagonal system

ut + λ(u, v)ux = εf (u, v)
vt − µ(u, v)vx = εg(u, v)

where
0 < c < λ(u, v), µ(u, v)

ε > 0⇒ there exist equilibrium state (u∗ε , v∗ε ) close to (u∗, v∗) in C∞.
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Quasilinear Hyperbolic systems Abstract Problem

Boundary conditions

At x = 0
u(t, 0) = yg (t)

with yg an integrator s.t.

dyg
dt = −K (yg − u∗)

|yg − u∗|γ (2)

K > 0 to be chosen later on and γ ∈ (0, 1).
At x = 1

v(t, 0) = yd(t)

yd an integrator s.t.
dyd
dt = −K (yd − v∗)

|yd − v∗|γ (3)

The system on (u, v , yg , yd) is autonomous.
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Quasilinear Hyperbolic systems Abstract Problem

Result

Theorem (Gugat, Rosier, P.)
There exist ε0 > 0 and δ > 0 such that for any ε ∈ [0, ε0], any γ ∈]0, 1[, and any
initial data (u0, v0) which are Lipschitz if we suppose

||u0 − u∗||W 1,∞ ≤ δ, ||v0 − v∗||W 1,∞ ≤ δ,
yg (0) = u0(0), yd(0) = v0(L).

then the full system has a unique solution (uε, vε) ∈ Lip([0,+∞)× [0, L])
satifying the original system almost everywhere and for positive time t

||(uε − u∗ε , vε − v∗ε )(t)||L∞(0,L) ≤ M inf(1, e−
Cεt

3

ε
1+κ

3
)||(u0 − u∗ε , v0 − v∗ε )||

2
3
L∞(0,L),

where M = M(δ), κ = cδγ
KLγ and Cε ∼

ε→0+
− c

L ln(ε).
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Quasilinear Hyperbolic systems Abstract Problem

Existence through global in time Schauder fixed point in Frechet space.
Stabilization through Lyapunov functionnal. (cf transport case)

Lθ(u, v , yg , yd) =

∫ L

0
u2(x)e−θx + v 2(x)e−θ(L−x)dx

+
C̃ |yg |γ+2

K (γ + 2)eθ
c

Kγ |yg |γ +
C̃ |yd |γ+2

K (γ + 2)eθ
c

Kγ |yd |γ

Cut of on θ depending on ε.
When ε→ 0 : finite time stabilization.
Results actually hold for tree shaped graph. (coupling much ”easier” than for
wave equation)
Question : robustness with respect to observation/actuation error + sampled
control
⇒ Entropy solutions
⇒ no linearization, boundary layers, few a posteriori technique, some
generalizations are false (cf Bressan Coclite).
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Quasilinear Hyperbolic systems Abstract Problem

THANK YOU FOR YOUR ATTENTION
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