An adaptive spectral graph wavelet method for PDEs on network II

Outline

Continuous model

Adaptive spectral graph wavelet method (ASGWM)

Problem 1

Problem 2

Problem 3

Conclusion and future work

Adaptive spectral graph wavelet method for PDEs on network

by

Ankita Shukla (IIT Delhi)

under the supervision of

Mani Mehra and Günter Leugering

Benasque, 29 August, 2017

An adaptive spectral graph wavelet method for PDEs on network II

Outline

Problem 1

Problem 3

- The continuous model
- Adaptive spectral graph wavelet method
- Problem 1
- Problem 2
- Problem 3
- Conclusion

臣

An adaptive spectral graph wavelet method for PDEs on network II

Continuous model

- method
- Problem 1
- Problem 3

- A weighted graph $G = \{E, V, \omega\}$ consists of
 - a set of edges *E*,
 - a set of vertices (or nodes) V,
 - a weighted function $\omega: E \to \mathbb{R}^+$ which assigns a positive weight to each edge.
- The graph is finite ,i.e., dim $(V) = N < \infty$.

An adaptive spectral graph wavelet method for PDEs on network II

Outline

Continuous model

Adaptive spectral graph wavelet method (ASGWM)

Problem 1

Problem 2

Problem 3

Conclusion and future work • The adjacency matrix $A = \{a_{m,n}\}$ for the weighted graph G is the $N \times N$ matrix where

 $a_{m,n} = \left\{ egin{array}{cc} \omega(e) & ext{if } e \in E ext{ connects vertices } m ext{ and } n, \\ 0 & ext{otherwise.} \end{array}
ight.$

- The matrix A is a symmetric matrix.
- Vertices $V = \{v_1, v_2, \cdots, v_N\}$ are divided into two disjoint sets V^B and V^C

$$V^{B} = \{v_{i} | v_{i} \in V; i = 1, \cdots, N; \sum_{k=1}^{s} |a_{i,k}| = 1\},\$$
$$V^{C} = \{v_{i} | v_{i} \in V; i = 1, \cdots, N; \sum_{k=1}^{s} |a_{i,k}| > 1\}.$$

• $I(v) = \{k \in \{1, \dots, s\} | e_k \in E; v \in e_k; v \in V\}.$ I(v):Set contains all indices of edges connected to the node v.

An adaptive spectral graph wavelet method for PDEs on network II

Continuous model

Problem 1

The spaces for the network domain are

$$\mathcal{H} = \prod_{k=1}^{s} \mathcal{L}_{2}(\Omega_{k}), \quad \Omega_{k} = (0, 1)$$

 $V = \{ w \in \prod_{k=1}^{s} \mathcal{H}_{1}(\Omega_{k}) | w_{k}(v) = w_{l}(v); \forall v \in V^{C}; k, l \in I(v) \}.$

with the corresponding norms

$$\|w\|_{\mathcal{H}} = \left(\sum_{k=1}^{s} \|w_k\|_{\mathcal{L}_2(\Omega_k)}^2\right)^{\frac{1}{2}} \text{ and } \|w\|_V = \left(\sum_{k=1}^{s} \|w_k\|_{\mathcal{H}_1(\Omega_k)}^2\right)^{\frac{1}{2}},$$

where $\mathcal{L}_2(\Omega_k)$ and $\mathcal{H}_1(\Omega_k)$ are standard spaces.

э

An adaptive spectral graph wavelet method for PDEs on network II

Continuous model

Problem 1

• Consider the following network with linear and parabolic PDE on each edge:

$$\begin{aligned} \frac{\partial u_k(x,t)}{\partial t} + \mathcal{M}(u_k(x,t)) &= f_k(x,t), \quad x \in \Omega_k, t > 0, k = 1, \cdots, s, \\ u_k(v_i,t) &= g_i, \quad v_i \in V^B, k \in I(v_i), t > 0, \\ u_k(x,0) &= u_k^0(x), \quad x \in \Omega_k, k = 1, \cdots, s, \\ u_k(v_i,t) &= u_l(v_i,t), \quad v_i \in V^C, k \neq l \in I(v_i), t > 0, \\ \end{aligned}$$
(Continuity condition)

크

An adaptive spectral graph wavelet method for PDEs on network II

Continuous model

Problem 1

$$\sum_{k\in I(v_i)}\nu B_{i,k}\frac{\partial u_k(v_i,t)}{\partial x}=0, \quad v_i\in V^{\mathsf{C}}, t>0.$$

(Kirchoff condition)

크

B:Incidence matrix

$$B_{i,k} = \begin{cases} 1 & \text{if } v_i = v_k^{\text{start}} \\ -1 & \text{if } v_i = v_k^{\text{end}} \\ 0 & \text{else} \end{cases}$$

$$\mathcal{M}(u_k(x,t)) = c \frac{\partial u_k(x,t)}{\partial x} - \nu \frac{\partial^2 u_k(x,t)}{\partial x^2},$$

• ν and c are the constant coefficient of the differential operators.

An adaptive spectral graph wavelet method for PDEs on network II

Outline

Continuous model

Adaptive spectral graph wavelet method (ASGWM)

Problem 1

Problem 2

Problem 3

Conclusion and future work • Consider the graph arising from a star shaped simple network

Figure: The star shaped simple network.

An adaptive spectral graph wavelet method for PDEs on network II

Outline

Continuous model

Adaptive spectral graph wavelet method (ASGWM)

Problem 1

Problem 2

Problem 3

Conclusion and future work • To solve differential equations on this network, discretization of the graph is needed.

Figure: Discretization of star shaped simple network.

An adaptive spectral graph wavelet method for PDEs on network II

Outline

Continuous model

Adaptive spectral grapl wavelet method (ASGWM) Problem 1

Problem 3

Conclusion and future work The adjacency matrix A and the matrix D corresponds to above graph are

$$A = \begin{bmatrix} 0 & \frac{1}{\delta x^2} & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{\delta x^2} & 0 & \frac{1}{\delta x^2} & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{\delta x^2} & 0 & \frac{1}{\delta x^2} & 0 & \frac{1}{\delta x^2} & 0 \\ 0 & 0 & \frac{1}{\delta x^2} & 0 & \frac{1}{\delta x^2} & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{\delta x^2} & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{\delta x^2} & 0 & 0 & 0 & \frac{1}{\delta x^2} \\ 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{\delta x^2} & 0 \end{bmatrix} ,$$

$$D = \begin{bmatrix} \frac{1}{\delta x^2} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{\delta x^2} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{\delta x^2} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{\delta x^2} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{\delta x^2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{\delta x^2} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{\delta x^2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{\delta x^2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{\delta x^2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{\delta x^2} \end{bmatrix} .$$

An adaptive spectral graph wavelet method for PDEs on netwo

臣

An adaptive spectral graph wavelet method for PDEs on network II

Continuous model

Problem 1

The approximation of graph Laplacian \mathcal{L} for the whole graph using $L_{\delta x} = D - A$ is given by

$$L_{\delta x} = \frac{1}{\delta x^2} \begin{bmatrix} 1 & -1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 3 & -1 & 0 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 2 & -1 \\ 0 & 0 & 0 & 0 & 0 & -1 & 1 \end{bmatrix}$$

.

Adaptive spectral graph wavelet method

An adaptive spectral graph wavelet method for PDEs on network II

Outline

Continuous model

Adaptive spectral graph wavelet method (ASGWM)

Problem 1

Problem 2

Problem 3

Conclusion and future work • Non uniform grid on general network

• Second order accurate central difference approximation for first and second derivative is

$$\frac{\partial u_k}{\partial x}\Big|_{x=x_i^k} = \frac{u_{k,i+1} - u_{k,i-1}}{x_{i+1}^k - x_{i-1}^k} + \frac{1}{2} \frac{\partial^2 u_k}{\partial x^2}\Big|_{x=x_i^k} (\delta_{x_i^k} - \delta_{x_{i-1}^k}) + O(\delta x^k)^2,$$

An adaptive spectral graph wavelet method for PDEs on netwo

Adaptive spectral graph wavelet method

An adaptive spectral graph wavelet method for PDEs on network II

Outline

Continuous model

Adaptive spectral graph wavelet method (ASGWM)

Problem 1

Problem 2

Problem 3

Conclusion and future work

$$\begin{aligned} \frac{\partial^2 u_k}{\partial x^2} \bigg|_{x=x_i^k} &= \frac{2u_{k,i+1}}{\delta_{x_i^k} (\delta_{x_i^k} + \delta_{x_{i-1}^k})} - \frac{2u_{k,i}}{\delta_{x_i^k} \delta_{x_{i-1}^k}} + \frac{2u_{k,i-1}}{\delta_{x_{i-1}^k} (\delta_{x_{i-1}^k} + \delta_{x_i^k})} \\ &+ \frac{1}{3} \frac{\partial^3 u_k}{\partial x^3} \bigg|_{x=x_i^k} (\delta_{x_i^k} - \delta_{x_{i-1}^k}) + O(\delta x^k)^2, \end{aligned}$$

Using above two equations and Crank nicolson scheme for time discretization, we get following first order accurate difference scheme at (x_i^k, t_n) for i = 1, ..., N^k - 1, k = 1, 2, ..., s.

$$\frac{U_{k,i}^{n+1} - U_{k,i}^{n}}{\delta t} = \alpha_i^k (U_{k,i+1}^n + U_{k,i+1}^{n+1}) + \beta_i^k (U_{k,i}^n + U_{k,i}^{n+1})$$

$$+\gamma_i^k(U_{k,i-1}^n+U_{k,i-1}^{n+1}),$$

Adaptive spectral graph wavelet method

An adaptive spectral graph wavelet method for PDEs on network II

Adaptive spectral graph wavelet method (ASGWM)

Problem 3

1

• where
$$U_{k,i}^{n} \approx u_{k}(x_{i}^{k}, t_{n}),$$

 $\alpha_{i}^{k} = \frac{2\nu}{\delta_{x_{i}^{k}}(\delta_{x_{i}^{k}} + \delta_{x_{i-1}^{k}})} + \frac{c}{x_{i+1}^{k} - x_{i-1}^{k}}, \ \beta_{i}^{k} = -\frac{2\nu}{\delta_{x_{i}^{k}}\delta_{x_{i-1}^{k}}} \text{ and }$
 $\gamma_{i}^{k} = \frac{2\nu}{\delta_{x_{i-1}^{k}}(\delta_{x_{i}^{k}} + \delta_{x_{i-1}^{k}})} - \frac{c}{x_{i+1}^{k} - x_{i-1}^{k}}.$

• At coupling node (x_0, t_n) , we get following first order accurate difference scheme

$$\frac{U_{\nu_2}^{n+1}-U_{\nu_2}^n}{\delta t}=-\beta_{\nu_2}\frac{U_{\nu_2}^n+U_{\nu_2}^{n+1}}{2}+\sum_{l=0}^{d_{\nu_2}}\alpha_1^l\frac{(U_{l,1}^n+U_{l,1}^{n+1})}{2}.$$

• where
$$\beta_{v_2} = -\frac{2a}{\sum_{l=0}^{d_{v_2}} \delta_{x_0}^{-2}a_l}$$
 and $\alpha_1^l = \frac{2a_l}{\sum_{l=0}^{d_{v_2}} \delta_{x_0}^{-2}a_l}$.

Test function 1

An adaptive spectral graph wavelet method for PDEs on network II

Outline

Continuous model

Adaptive spectral graph wavelet method (ASGWM)

Problem 1

Problem 2

Problem 3

Conclusion and future work • Consider the test function

 $f = \begin{cases} e^{\frac{-(x-b)^2}{c^2}} & \text{on edge } e_1, \\ 0 & \text{on edge } e_2 \text{ or } e_3. \end{cases}$ with $b = \frac{1}{3}$ and $c = \frac{1}{64}$

 Observe the behavior of wavelet coefficients and adaptive node arrangement.

An adaptive spectral graph wavelet method for PDEs on netwo

Wavelet coefficients

An adaptive spectral graph wavelet method for PDEs on network II

Adaptive spectral graph wavelet method (ASGWM)

Problem 1

Problem 3

- Important property of wavelet: wavelet coefficients d_{L}^{j} decreases rapidly for smooth functions.
- This property makes it suitable to detect where the shocks are located in the numerical solution of a PDE.
- Hence an adaptive node arrangement can be generated.

3

Wavelet coefficients

An adaptive spectral graph wavelet method for PDEs on network II

Outline

Continuous model

Adaptive spectral graph wavelet method (ASGWM)

Problem 1

Problem 2

Problem 3

Conclusion and future work d^j_k are following the region of sharp transition/localized pattern with respect to increasing j.

Figure: Wavelet coefficients

Adaptive node arrangement

An adaptive spectral graph wavelet method for PDEs on network II

Adaptive spectral graph wavelet method (ASGWM)

Problem 1

Problem 3

 $x^{new} =$ AdaptiveNodeArrangement(f, x^{old})

• Choose a threshold parameter ϵ and positive adjacent zone constants R and M $(||(x-x_k)||_{\mathcal{H}} < R)$.

•
$$m = 0, x^m = x^{old}, f^m = f.$$

• do while
$$m = 0$$
 or $x^m \neq x^{m-1}$

• Perform SGWT on f^m to get $\{d_k^J\}_{k=1}^{|x^m|}$

•
$$x^{m+1} = x^m$$
.

- Analyse wavelet coefficients $\{d_k^J\}_{k=1}^{|x^m|}$ and collect all the active node points.
- Corresponding to each active node point, add an adjacent zone in x^{m+1}
- Interpolate f^m onto new grid x^{m+1} and call it f^{m+1} .

•
$$m = m + 1$$

•
$$x^{new} = x^m$$

э

Adaptive node arrangement

An adaptive spectral graph wavelet method for PDEs on network II

Adaptive spectral graph wavelet method (ASGWM)

Problem 1

• If $|d_k^j| \ge \epsilon$, x_k is called an active node point.

イロト イヨト イヨト イヨト An adaptive spectral graph wavelet method for PDEs on netwo

э

Test function 1

An adaptive spectral graph wavelet method for PDEs on network II

Outline

Continuous model

Adaptive spectral graph wavelet method (ASGWM)

- Problem 1
- Problem 2

Problem 3

Conclusion and future work • The adaptive node arrangement at $\epsilon = 10^{-4}$ for test function is

 $N(\epsilon)$: The number of the node points required for $f_{>\epsilon}$

• The convergence of graph laplacian on an adaptive grid is $\|\mathcal{L}f - \mathcal{L}_{\delta_X}f\|_2 = O(10^{-4})$ at $\epsilon = 10^{-4}$.

An adaptive spectral graph wavelet method for PDEs on network II

Problem 1

Problem 3

Consider the advection-diffusion equation on each edge of star graph network

$$\begin{aligned} \frac{\partial u_k}{\partial t} &= c \frac{\partial u_k}{\partial x} + \nu \frac{\partial^2 u_k}{\partial x^2}, \quad x \in \Omega_k, t > 0, \\ u_1(v_2, t) &= u_2(v_2, t) = u_3(v_2, t) = 0, \\ u_1(x, 0) &= e^{\frac{-(x-b)^2}{c^2}} \text{ with } b = \frac{1}{3}, c = \frac{1}{64}, \\ u_2(x, 0) &= u_3(x, 0) = 0, \quad x \in \Omega_k, k = 2, 3, \\ u_k(v_i, t) &= u_l(v_i, t), v_i \in V^C, k \neq l \in I(v_i), t > 0, k = 1, 2, 3, \end{aligned}$$

(Continuity condition)

Э

$$\sum_{k \in I(v_i)} \nu B_{i,k} u_k(v_i, t) = 0, v_i \in V^{\mathsf{C}}.$$
 (Kirchoff condition)

イロト イヨト イヨト イヨト An adaptive spectral graph wavelet method for PDEs on netwo

An adaptive spectral graph wavelet method for PDEs on network II

Problem 1

Problem 3

• The solution and corresponding adaptive grid at t = 0.4

イロン イヨン イヨン An adaptive spectral graph wavelet method for PDEs on netwo

An adaptive spectral graph wavelet method for PDEs on network II

Problem 1

Problem 3

• The solution and corresponding adaptive grid at t = 0.75

イロト イヨト イヨト イヨト An adaptive spectral graph wavelet method for PDEs on netwo

э

An adaptive spectral graph wavelet method for PDEs on network II

method

Problem 1

Problem 3

• The solution and corresponding adaptive grid at t = 1.4

 Sufficiently accurate solution capturing the emergence of the localized patterns at all the scales (including the junction of the network).

Problem 2

An adaptive spectral graph wavelet method for PDEs on network II

Outline

Continuous model

Adaptive spectral graph wavelet method (ASGWM)

Problem 1

Problem 2

Problem 3

Conclusion and future work

- For problem 2, we again take advection-diffusion equation for c = 0 which corresponds to heat equation.
- The solution and pointwise error at t = 0.4 is

An adaptive spectral graph wavelet method for PDEs on netwo

Problem 2

An adaptive spectral graph wavelet method for PDEs on network II

Outline

Continuous model

Adaptive spectral graph wavelet method (ASGWM)

Problem 1

Problem 2

Problem 3

Conclusion and future work • The analytic solution of heat equation is given by

$$u_1(x,t) = \sum_n A_n \sin(\lambda x) e^{-\nu^2 \lambda^2 t},$$

$$u_2(x,t) = u_3(x,t) = \sum_n B_n(\cos\lambda - \frac{\cos\lambda}{\sin\lambda})\sin(\lambda x)e^{-\nu^2\lambda^2 t},$$

where $\lambda = (2n+1)\frac{\pi}{2}, n = 0, 1, \cdots$.

• The plot of error versus $N(\epsilon)$

An adaptive spectral graph wavelet method for PDEs on netwo

Optimal value of ϵ

An adaptive spectral graph wavelet method for PDEs on network II

Problem 1

Problem 2

Problem 3

Efficiency constant

$$E = rac{CPU_{(\epsilon=0)}}{CPU_{(\epsilon)}}$$

- F increases with increase in ϵ .
- But for large value of ϵ , the error $||U u||_p$ is also large.
- Choose an optimal value of ϵ which makes a balance between the efficiency and accuracy.

Problem 3

An adaptive spectral graph wavelet method for PDEs on network II

Outline

Continuous model

Adaptive spectral graph wavelet method (ASGWM)

Problem 1

Problem 2

Problem 3

Conclusion and future work • Consider the second topology of the network

• The scaling function and wavelet at scale $t_3 = 0.75$

An adaptive spectral graph wavelet method for PDEs on netwo

Problem 3

An adaptive spectral graph wavelet method for PDEs on network II

Outline

Continuous model

Adaptive spectral graph wavelet method (ASGWM)

Problem 1

Problem 2

Problem 3

Conclusion and future work

• Second test function on the above topology of the network

$$f = \begin{cases} e^{\frac{-(x-b)^2}{c^2}} & \text{on edge } e_1, \\ 0 & \text{on edge } e_k, k = 2, 3, 4, 5. \end{cases}$$
for $b = \frac{1}{3}, c = \frac{1}{64}.$

An adaptive spectral graph wavelet method for PDEs on netwo

臣

Wavelet coefficients

An adaptive spectral graph wavelet method for PDEs on network II

Problem 1

Problem 3

• Any f defined on the vertices of the graph

$$f(n) = \sum_{k=1}^{N} c_k \phi_k(n) + \sum_{j=1}^{J} \sum_{k=1}^{N} d_k^j \psi_k^j(n),$$

• Given threshold ϵ , above equation can be written as $f(n) = f_{>\epsilon}(n) + f_{<\epsilon}(n)$, where

$$f_{\geq\epsilon}(n) = \sum_{k=1}^{N} c_k \phi_k(n) + \sum_{j=1}^{J} \sum_{|d_k^j| \geq \epsilon} d_k^j \psi_k^j(n),$$

$$f_{<\epsilon}(n) = \sum_{j=1}^{J} \sum_{|d_k^j| < \epsilon} d_k^j \psi_k^j(n).$$

Test function 2

An adaptive spectral graph wavelet method for PDEs on network II

Problem 1

Problem 3

• Test function and corresponding reconstructed function.

• $||f - f_{>\epsilon}||_2$: compression error.

3

Test function 2

臣

Problem 3

An adaptive spectral graph wavelet method for PDEs on network II

Problem 1

Problem 3

• Heat equation on topology of the network

$$\begin{aligned} \frac{\partial u_k}{\partial t} &= \nu \frac{\partial^2 u_k}{\partial x^2}, \quad x \in \Omega_k, t > 0, \\ u_1(v_1, t) &= 0, u_3(v_4, t) = 0, u_5(v_6, t) = 0 \\ u_1(x, 0) &= e^{\frac{-(x-b)^2}{c^2}} \text{ with } b = \frac{1}{3}, c = \frac{1}{64}, \\ u_3(x, 0) &= e^{\frac{-(x-b)^2}{c^2}} \text{ with } b = \frac{1}{3}, c = \frac{1}{16}, \\ u_2(x, 0) &= u_4(x, 0) = u_5(x, 0) = u_6(x, 0) = 0, \quad x \in \Omega_k, k = 2, 4, 5, \\ u_k(v_i, t) &= u_l(v_i, t), v_i \in V^C, k \neq l \in l(v_i), t > 0, k = 1, \cdots, 6, \\ \sum_{k \in l(v_i)} \nu B_{i,k} u_k(v_i, t) = 0, v_i \in V^C. \end{aligned}$$

イロン 不同 とくほど 不同 とう An adaptive spectral graph wavelet method for PDEs on netwo

Problem 3

An adaptive spectral graph wavelet method for PDEs on network II

Problem 1

Problem 3

Figure: Initial condition and solution at t = 0.7 and corresponding adaptive grid ($\epsilon = 10^{-4}$).

크

Conclusion and future work

An adaptive spectral graph wavelet method for PDEs on network II

Outline

Continuous model

Adaptive spectral graph wavelet method (ASGWM)

Problem 1

Problem 2

Problem 3

Conclusion and future work

- ASGWM is used to solve PDEs on two different type of network topology.
- The method uses spectral graph wavelet for the adaptation of the node arrangement
- Same operator is used for the approximation of differential operators and for the construction of spectral graph wavelet.
- We will use ASGWM to solve networks of nonlinear PDEs (e.g Burgers equation) to predict shock waves on complex network.
- Problems based on two and three dimensional networks.

An adaptive spectral graph wavelet method for PDEs on network II

Problem 1

Problem 3

Conclusion and future work

Thank You For Your **Attention!**

イロン 不同 とくほど 不同 とう An adaptive spectral graph wavelet method for PDEs on netwo