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1D Elliptic

We consider the following one dimensional steady-state convection
diffusion problem as

Lu(x) = −ǫu′′(x)− a(x)u′(x) + b(x)u(x) = f ∈ (0, 1)

with B.C. u(0) = α, u(1) = β, ǫ is a small positive parameter and x ∈

[0, 1]. Without loss of generality, we consider b(x) ≥ 0 and a(x) can

change the sign (as in the case of turning point problem) in the given

domain [0, 1]. For a(x) ≥ γ > 0, the above problem has unique solution

and exhibit a boundary layer of O(ǫ) at x = 0.
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Entropy production

2u× Lu = 2u× f ;

Let we define

S = u2(Entropy)

S′ = 2uu′ ;S′′ = 2(uu′′ + (u′)2)

⇒ 2uu′′ = S′′ − 2(u′)2

⇒ −ǫ2uu′′ − 2auu′ + 2bu2 = 2uf

⇒ −ǫ(S′′ − 2(u′)2)− aS′(x) + 2bS = 2uf

⇒ P = −ǫS′′ − aS′(x)− 2uf = −2ǫ(u′)2 − 2bS ≤ 0

We label the linear operator on the left hand side (LHS) in the above equation, as the entropy production operator with analogy to similar

operators in hyperbolic conservation laws. The continuous operator should obviously be negative for all x ∈ [0, 1] (as right hand side (RHS)

is always negative for all x ∈ [0, 1]).
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Example

We consider 1D linear convection-diffusion problem as

−ǫu′′ − 2u′ = 0; x ∈ (0, 1), 0 < ǫ << 1,

with boundary conditions

u(0) = 1 and u(1) = 0;

The exact solution is

u =
exp(−2x/ǫ)− exp(−2/ǫ)

1− exp(−2/ǫ)
.

This problem has regular boundary layers of width O(ǫ) at x = 0. When we apply central
difference scheme on uniform mesh for this problem, we get

(
−ǫ

h2
+

1

h
)ui−1 +

2ǫ

h2
ui + (

−ǫ

h2
−

1

h
)ui+1 = 0.
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Results using Central difference operator

0 0.2 0.4 0.6 0.8 1
0

0.5

1

x

u

Compu. Sol. for epsilon = 0.1

0 0.2 0.4 0.6 0.8 1
−200

−100

0

P

u

Entropy Production

Vivek Kumar, Aug. 2017 – p.5/47



Results

0 0.2 0.4 0.6 0.8 1
−1

0

1

x

u

Compu. Sol. for epsilon = 0.01

0 0.2 0.4 0.6 0.8 1
0

20

40

P

u

Entropy Production

Vivek Kumar, Aug. 2017 – p.6/47



Results
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Results
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Figure 1: For uniform mesh with N = 500 mesh points for ǫ = 10−5
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Turning point problem

We consider another 1D linear convection-diffusion problem as

−ǫu′′ − xu′ = 0;x ∈ (−1, 1), 0 < ǫ << 1,

with boundary conditions

u(−1) = 1 and u(1) = 2;

This equation has a interior layer at x = 0.
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Results
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Results

−1 −0.5 0 0.5 1
−5

0

5

x

u

Compu. Sol. for epsilon = 0.001

−1 −0.5 0 0.5 1
0

1

2

P

u

Entropy Production

Vivek Kumar, Aug. 2017 – p.11/47



Main Idea

The central idea is:
(1) Just as the second law of thermodynamics separates unphysical
solutions from the physical ones by finding the sign of an entropy
variable, it is possible to identify unphysical portions of a numerical
solution by finding the sign of an appropriately defined discrete entropy
production.
(2) Discretization of entropy inequality is done by exactly repeated the
discretization of the original equation operator by operator.
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Main Idea

If we calculate the discrete analogue of the left hand side equation in
using the same central difference operator by taking Si = u2

i , where ui

is the central difference computed solution for equation, we observe
that LHS is negative wherever the solution is smooth enough and
positive where we have boundary layers (or oscillation in the computed
solution of equation. After investigation, we have found that if we write
the RHS term −2bu2 − 2ǫ(u′)2 of equation in difference operator at the
ith mesh point, we get

−2bi(uiui−1)− 2ǫ(
ui − ui−1

xi − xi−1
)(
ui+1 − ui

xi+1 − xi
)
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Adaptive mesh Generation Algorithm

To generate the adaptive mesh for the convection dominant SPP, we
follow the following algorithm:
Step 1: Calculate the entropy with a minimum number of initial uniform
mesh points (minimum 3 points in our case).
Step 2: Locate the mesh points where entropy S is positive and then
choose the mesh point with the maximum entropy.
Step 3: Add one mesh point on the left and the right side of the
location found in step 2.
Step 4: go to Step 1 till all the entropy becomes non positive over the
complete mesh.
The resulting mesh is our adapted mesh which is represented by Na.
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Entropy production at the boundaries points

we introduce a ghost point say x0 at the left of the node xL and xn+1

on the right of the node xR, then we calculate

−ǫδ2u1 − a1D
0u1 + b1u1 = f1

−ǫδ2un − anD
0un + bnun = fn

As we already know the computed values of u1, u2 and then we cal-

culate u0 at the ghost point x0 . Then we can find the entropy at the

node xL as usual. Similarly we can calculate the entropy at the right

boundary node xR.
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Results for B.L. on the left
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Results with interior layer
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Turning point problem with B.L. at both ends

We consider 1D linear convection-diffusion problem with turning point
as

−ǫu′′ + 2(2x− 1)u′ + 4u = 0;x ∈ (0, 1), 0 < ǫ << 1,

with boundary conditions

u(0) = 1 and u(1) = 1;

The exact solution is

u = exp(
−2x(1− x)

ǫ
).
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Results
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Figure 2: For ǫ = 10−2 with Na = 35 adaptive mesh points
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Figure 3: For ǫ = 10−5 with Na = 55 adaptive mesh points
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System of coupled equations

We consider system of coupled convection-diffusion problem as

−ǫ1u
′′

1 − u′

1 + 2u1 − u2 = ex, u1(0) = 0, u1(1) = 0

−ǫ2u
′′

2 − 2u′

2 + 4u2 − u1 = cos(x), u2(0) = 0, u2(1) = 0

which shows two overlapping layers near x = 0. The exact solution of

this equation is not known. The results for various values of ǫ1 and ǫ2 for

adaptive meshes have been shown. In the figure, we have generated

the adaptive mesh by taking maximum of the entropies S1, S2.
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Results of coupled equations
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Results of coupled equations
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Figure 4: Results for coupled case with starting unifrom mesh for N=8, using

minimum entropy condition.
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Non Linear Case

We also consider the nonlinear singularly perturbed boundary value problem

−ǫu′′(x)− u(x)(u′(x)− 1) = 0 ∈ (0, 1), u(a) = α, u(b) = β; a ≤ x ≤ b

The resulting finite difference equations give a system of non-linear equations. We use
Newton-Raphson iterations to determine the solution of the non-linear system. The initial
guess for the solution is the approximate solution given by

u(x) = x− x̄+ w0 tanh(w0(x− x̄)/(2ǫ))

where

x̄ = 0.5(a+ b− α− β), w0 = 0.5(a− b+ β − α).

This problem shows an interior layer at x = 0.25 for a = 0, b = 1, α = −1 and β = 1.5.
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Non Linear Case

Its conservative form can be written as

−ǫu′′(x)− (
u2(x)

2
)′ + u(x) = 0 ∈ (0, 1), u(a) = α, u(b) = β; a ≤ x ≤ b

There are several choices for the entropy production equation. Again,
in analogy to the entropy equation in hyperbolic conservation laws, we
use the conservative of the entropy equation which can be obtained as

−ǫS′′(x)− (
2u3(x)

3
)′ + 2S(x) = −2ǫ(u′(x))2
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Non Linear Case
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Figure 5: Results for nonlinear case with starting uniform mesh with
N=10.
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Non Linear Case
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2D elliptic Problems

−ǫ∆u(x, y) + a(x, y)ux + b(x, y)uy + c(x, y)u = f(x, y),

S = u2 ;Sx = 2uux ;Sy = 2uuy

P = −ǫ∆S + aSx + bSy − 2uf = −2ǫ(u2
x + u2

x)− 2cS ≤ 0 ( for c ≥ 0).

Let us take example

−ǫ∆u− (x−
1

2
)ux = 0; (x, y) ∈ ((0, 1)× (0, 1)), 0 < ǫ << 1,

with boundary conditions

u(0, y) = 1; u(1, y) = 2; and u(x, 0) = u(x, 1) = 0.
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2D Results
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Parabolic Problems

ut(x, t) + a(x)ux(x, t) + b(x)u(x, t)− f(x, t) = ǫuxx(x, t),

S = u2 ;St = 2uut ;Sx = 2uux

2uut = 2u(ǫuxx − aux − bu) + 2uf,

which, on expanding, can be written as

2uut = ǫ2uuxx − a2uux − b2uu+ 2uf.

St = ǫ(Sxx − 2u2
x)− aSx − 2bS + 2uf.

P = St − ǫSxx + aSx − 2uf = −2ǫu2
x − 2bS ≤ 0 ( for b ≥ 0).
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Parabolic Example

ut + (1+ x(1− x))ux − f(x, t) = ǫuxx; (x, t) ∈ (0, 1)× (0, 1], 0 < ǫ << 1,

with boundary conditions are given as

u(0, t) = 0 and u(1, t) = 0;

The exact solution is

u(x, t) = e−t[e−1/ǫ + (1− e−1/ǫ)x− e−(1−x)/ǫ].
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Parabolic Results
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Parabolic Results
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Parabolic Results
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Figure 10: Results for ǫ = 10−1.
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Parabolic Results
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Figure 11: Results for ǫ = 10−4
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Parabolic Results
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Figure 12: Results for ǫ = 10−6
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Error estimation

Let Na be the proposed adaptive mesh which is completely arbitrary in
nature. Let us assume that xi is the ith mesh point and

hf = xi+1 − xi, hb = xi − xi−1

be the right hand and left hand side mesh points with distances hf and

hb. Since we are working with the Crank Nicholson (CN) scheme, which

is second order in time and space for a uniform mesh, we can claim that

the proposed method is of O(hf − hb,△t2).
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Crank Nicolson

We use fully implicit Crank Nicolson (CN) scheme because it is unconditionally stable
and also ensures that the time step remains fixed. Let we represent u(xi, tj) = uj

i , the
CN scheme can be written as

un+1
i − un

i

△t/2
= ǫ(δ2un

i + δ2un+1
i )− (ani D

n
0 u

n
i + an+1

i Dn+1
0 un+1

i )

− (bni u
n
i + bn+1

i un+1
i ) + fn

i + fn+1
i ; 1 ≤ i ≤ Na − 1.

rj+1
i−1u

j+1
i−1 + rj+1

i uj+1
i + rj+1

i+1 u
j+1
i+1 = rji−1u

j
i−1 + rjiu

j
i + rji+1u

j
i+1 +

(f
j+1
i

+f
j
i
)

2
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Crank Nicolson

rj+1
i−1 =

−ǫ

(xi − xi−1)(xi+1 − xi−1)
−

ai

2(xi+1 − xi−1)

rj+1
i =

1

△t
+

ǫ

(xi − xi−1)(xi+1 − xi)
+

bi

2

rj+1
i+1 =

−ǫ

(xi+1 − xi)(xi+1 − xi−1)
+

ai

2(xi+1 − xi−1)

rji−1 = −rj+1
i−1

rji =
1

△t
−

ǫ

(xi − xi−1)(xi+1 − xi)
−

bi

2

rji+1 = −rj+1
i+1 .

The above equations can be written as a system

AUj+1 = BUj + F
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Stability

Now we show the stability in the norm ‖x‖2,∆x = (
∑N−1

i=1 x2
i∆x)1/2. Here we take

∆x = maximum step size in our adaptive mesh Na. Rewritten as (considering
f(x, t) = 0)

rj+1
i uj+1

i − rji u
j
i = rji−1u

j
i−1 − rj+1

i−1u
j+1
i−1 + rji+1u

j
i+1 − rj+1

i+1u
j+1
i+1 ,

1

△t
(uj+1

i − uj
i ) = rji−1(u

j
i−1 + uj+1

i−1 ) + rji+1(u
j
i+1 + uj+1

i+1 )

− (
ǫ

(xi − xi−1)(xi+1 − xi)
+

bi

2
)(uj+1

i + uj
i ) for 1 ≤ x ≤ Na − 1

un+1
0 = un

0 = 0, un+1
Na

= un
Na

= 0 (B.C) .

Vivek Kumar, Aug. 2017 – p.40/47



Stability

‖U j+1‖22,∆x − ‖U j‖22,∆x ≤ △t∆xT [−ΣNa−1
i=1 (Bi −Bi+1)

2 −B2
1 ] ≤ 0,

provided T > 0. Finally we get

‖U j+1‖22,∆x ≤ ‖U j‖22,∆x

which shows that the scheme is stable under the norm ‖x‖2,∆x =

(
∑N−1

i=1 x2
i∆x)1/2.
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Graph Topology
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SPP on graph

We consider linear convection-diffusion problem as

−ǫiu
′′

i + u′

i = 1; k = 1, 2, 3

with boundary conditions as uk(0) = 0. We have continuity condition

u1(1) = u2(1) = u3(1) = z(say)

and Kirchhoff’s law at the coupling node

3∑

k=1

ǫku
′

k(1) = 0
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SPP on graph

We solve it with central finite difference scheme. We introduce ghost
points near the boundary x = 1. Using Kirchhoff’s condition at x = 1

3∑

k=1

ǫk(uk,nk+1
− uk,nk−1

)/2hk = 0

and the differential operator at x = 1,

−ǫkδ
2uk +D0uk = 1

we are able to find the value of z and the solution at the ghost points.
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Adaptive mesh on Graph
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Solution on Graph
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