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m Flatness approach (consider x as a time variable): Martin, Rosier &
Rouchon (14).



Null-controllability for the heat equation

Known methods:

m Fundamental solutions: Jones (77), Littman (78)

m Carleman estimates: Fursikov & Imanuvikov (96), Lebeau & Robbiano
(95).

m Transmutation method (null-controllability of the heat equation vs the
exact controllability of the wave equation): Miller (06).

m Flatness approach (consider x as a time variable): Martin, Rosier &
Rouchon (14).

With Jean-Michel Coron, we propose the backstepping method !
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Partial differential equations:
m Initiated by Coron & Andréa-Novel (98), Liu & Krstic (00).
m Heat equations: Liu (03), Smyshlyaev & Krstic (04).

m Other equations: wave equations (Krstic et al. 08), hyperbolic equations
(Krstic & Smyshlyaev 08, Coron et al. 13, Hu & Meglio 15, Auriol & Di
Meglio 16, Coron, Hu & Olive 17), KdV equations (Cerpa & Coron 13) ...

m Coincise introduction: Krstic & Smyshlyaev's book, 08.
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Null-controllability: U is chosen such that u(T,-) =0.
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U(t) defined by

then

u(t,-) = 0in12(0,1) ast — T_,
U(t) - 0ast— T_.

L2(0,1)* is the set of continuous linear maps from 12(0, 1) into R.
The feedback system is non-local.

The feedback system is well-posed locally. The proof is based on the
maximum principle and the multiplier technique.
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Estimate k,, and 1, as a function of A, (k, and £, do not explode too
much), the key of the analysis.

m Estimate u after choosing appropriately A, t,.
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Construction of kn,

Recall u; — (au,) =0, u(t,0) =0, and w(t,x) == u(t, x) —J k(x, y)u(t,y) dy.
0
We have

X
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Key points: Well-posedness and good estimates for k,,!



The inverse tranformation

One next wants to know how to compute u from w. Define

X

v(t,x) =w(t, x) +J L (x,y)w(t,y) dy for t, <t < tni1,
0

and search 1, s.t. if we — (aw,) +A,w =0 and w(t,0) =0, for t, <t < tny1,
then v, — (Cle)X =0.



The inverse tranformation

One next wants to know how to compute u from w. Define

X

v(t, x) =w(t, x) +J L (x,y)w(t,y) dy for t, <t < tni1,
0

and search 1, s.t. if we — (aw,) +A,w =0 and w(t,0) =0, for t, <t < tny1,
then v, — (avy) = 0. Recall that

Wi — (aw,()X +Aw = (2a(x)(kx(x, x) 4+ ky(x, x)) + ax(x) + A)u(t, x)

+ [ (@000 y) = (alyly (e, = Aktx, ) ult y) dy +



The inverse tranformation

One next wants to know how to compute u from w. Define

X

v(t, x) =w(t, x) +J L (x,y)w(t,y) dy for t, <t < tni1,
0

and search 1, s.t. if we — (aw,) +A,w =0 and w(t,0) =0, for t, <t < tny1,
then v, — (avy) = 0. Recall that

wi— (awy)  +Aw = (2a(x) (K (%, %) + Ky (%, X)) + @y (%) + A)u(t, X)
+ [ (@000 y) = (alyly (e, = Aktx, ) ult y) dy +
Similarly, we have

ve = (av), == (200 (L%, X) + Ly (6,9) + a5 (}IUx, X) + A )w(t,x)

- (et = (@t w710 vty dy -



The inverse tranformation-contd 1

We then require

2(1(7()i

dxln(x, x) 4+ ax(X)la (%, X) + A =0 for x € [0, 1],
1.(x,0)=0 for x € [0, 1],

(a(¥)lux(x,9)), — (a(y)ln,y(x,y))er?\nln(x,y) =0 inD.



The inverse tranformation-contd 1

We then require

2a(x)di;<ln(x, x) + ay(x)la(x,x) + A, =0 for x € [0, 1],
1.(x,0)=0 for x € [0, 1],

(a(¥)lux(x,9)), — (a(y)ln,y(x,y))er?\nln(x,y) =0 inD.

Solving the first equation with 1,(0,0) = 0, this system can be rewritten as
Ln(x, %) = gn(x) for x € [0, 1],
1.(x,0)=0 for x € [0, 1],
((1(>c)lmx(x,y))X — (ay)lay (x,y))y+7\nkn(x,y) =0 inD.

Key points: Well-posedness and good estimates for 1,!



The inverse tranformation-contd 2

In fact, we can prove

We have, for t, <t <tni1,

X

u(t, x) = v(t, x) ==w(t, x) + Jo L. (x, y)w(t,y) dy. 3)



The inverse tranformation-contd 2

In fact, we can prove

We have, for t, <t <tni1,

X

u(t, x) = v(t, x) ==w(t, x) + Jo L. (x, y)w(t,y) dy. 3)

Recall that w(t, x) :==u(t,x) — [§ kn(x,y)w(t,y) dy.



The inverse tranformation-contd 2

In fact, we can prove

We have, for t, <t <tni1,

X

u(t, x) = v(t, x) ==w(t, x) + Jo L. (x, y)w(t,y) dy. 3)

Recall that w(t, x) :== u(t,x) — [ kn w(t,y) dy.

Sketch of the proof. We claim that



The inverse tranformation-contd 2

In fact, we can prove

We have, for t, <t <tni1,

X

u(t, x) = v(t, x) == w(t, x) + Jo L. (x, y)w(t,y) dy. 3)

Recall that w(t, x) :== u(t,x) — [ kn w(t,y) dy.

Sketch of the proof. We claim that

Admitting this claim, we have (ignore the t variable)

X

v(x) =u(x) — L kn (x, yJuly) + Jo

Y

bl [uy) - |

0

Ky, £)(E) dE] dy

:u(x)+L { ]u(y)dy =u(x): (3)
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We now prove the claim. Define

1,0 y) = knlx,y) +Jx Lo E)kn (£, y) A& in D
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The idea is to show that 1, and 1, satisfy the same system. Recall
(a()lx (6 Y)), = (@Ylay(xy)), = —Ala(x,y)  in D.
We have
LX) =kn(x, %) = La(x,x) and  Tu(x,0) =kn(x,0) =0 =1,(x,0).
A (quite lengthy but not difficult) computation yields

(a(x)fnvx(x,y))X — (a(y)fn,y (x,y))y =—-A1lx,y) inD.

Hence 1,, =1, by the well-posedness of the system of 1,,!. O
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mn.
We will prove

[ult, )2 < CesnA/AHE D jyq o,

and



Proof

We have
[w(t, )22 < CeSVA ult, )22, tn <t <ty (4)
ult, 72 < CAZ[Iw(t, )2, tn << tnsa, (5)

[|lw(&a, ')H%z < wléq, - HL2672A" -8t <8 < &y <t (6)



Proof

We have
wit, )72 < Ce“ M ult,)[If2,  ta <t < tny1, (4)
fult, )72 < CAZLIw(t, [f2,  ta St <tny, (5)
[W(&a, )IF2 < [W(Er, ) [Fe™ 8278t <& < & < tn (6)

This implies [Ju(tn1, )% < CAZ e n (1=t )+ VAR |y (¢, |2,



Proof

We have
Wit )72 < CeAult, )72, ta <t<tai, (4)
ult, )17 < CAZw(t, )[F20 ta << tnga, (5)
[wi(Ea, IZe < [w(Es, )[Fe P E8) 4y <& < Ep <twar.  (6)
This implies [ty 1, )|, < CAZe 2 nltnsa=tn) T CEVAN ||yt )12, Since

(the1 — tn)An/VAni1 — +oo, it follows that

(7)



Proof

We have
Wit )72 < CeAult, )72, ta <t<tai, (4)
ult, )17 < CAZw(t, )[F20 ta << tnga, (5)
[wi(Ea, IZe < [w(Es, )[Fe P E8) 4y <& < Ep <twar.  (6)
This implies [ty 1, )|, < CAZe 2 nltnsa=tn) T CEVAN ||yt )12, Since

(the1 — tn)An/VAni1 — +oo, it follows that
(7)
Recall that s, = ZL‘;& Ak (trer — tx). We derive that

[w(tnis, )22 < e st u(0, )12 (8)



Proof

We have
wit, )72 < Ce“ M ult,)[If2,  ta <t < tny1, (4)
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(the1 — tn)An/VAni1 — +oo, it follows that

Recall that s, = ZL‘;& Ak (trer — tx). We derive that
[w(tnis, )22 < e st u(0, )12 (8)

We have, for t, <t < tny1,

[[ult, HLzN nlwit, HL2~7\2 S (a7

(4)
<}\ie*27\n“*ln]+c\/)\n ||u(tn, ]||2Lz ef}‘nfl(lnflnfl)/zuu(tnil’ )”iz
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On the properties of k,, and 1,

We used the fact that k,, and 1,, are well-defined and the following estimates
hold
Hk“HUx“(L%] < Ce™ M and HlnHL;C(L%) < CAn.
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(a(x)knvx(x,y))X — (a[y)kn,y(x,y))y—)\nkn(x,y) =0in D,
(a(x)ln,x(x,y))X — (a(y)ln,y (x,y))yjt?\“ln(x,y) =0inD.
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We used the fact that k,, and 1,, are well-defined and the following estimates
hold

HanL;C(L{,] < Ce“and HlnHL;c(L%J) < Chn.
Here are the systems of k,, and 1,;:
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Some comments:

m Well-posedness: known methods are based on special functions or a fixed
point arguments. Both methods are based on the case a is constant (then
E=x+y n=x—y, adi kn +Ayky =0, Krstic & Smyshlyaev’s book 08).

m Estimates: Known for the case a is constant. When a is not constant,

known with the power A, instead of \/A,, in the estimate of k,,: not good
enough for our approach!

Our approach is variational and quite robust!
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Extend k and f by 0 in [0,1]2\ D and denote the extensions by K and f. We
have

K(x,0) = K(x,1) =0 for x € [0, 1] (boundary condition),

{ (a(x)K,((x,y))X — (a(y)Ky(x,y))y —AK(x,y) = f(x,y) in [0, 1],
(
K(0,y) = Ky(0,y) =0 for y € [0, 1] (initial condition).

Goal: 1) To establish a finite speed propagation property for X :if suppf C D
then K =0 in [0,1]?\ D. 2) To obtain a good estimate for K.
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Lemma
Let A >1, f € [?((0,1)?), and let a1, ax be elliptic and Lipschitz. There exists
a unique solution K € L2((0,1); H3(0,1)) N H((0, 1)) of
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such that K(x,0) = K(x,1) =0, X(0,y) =K,(0,y) =0 in (0,1). Moreover,
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J IVK(x,y)P? dy < CeCﬁJ J [f(x,y)?dydx forx e [0, 1]. (9)
0 0Jo

Assume in addition that a;(x,x) > ax(x,x) in (0,1) and suppf C D. We have

K(x,y) =0 in [0,1]?\ D : finite speed propagation.

m The standard energy method gives (9) with the power A; this is not good
enough for our approach.

m The method works well for equations with lower oder terms.



Proof.

Multiplying the equation of K by K(x,y), integrating with respect to y from 0
to 1, and using an integration by parts, we have

T1rd ) ) d )
L 5 {a(al(x,y)Kx(x,y)) +ap(x y)Ki(x,y) + a(az(x,y)Ky x,v))

a 1
— azvx(x,y]Ki (x,y) — AaKz(x,yJ] dy = Jo f(x, y)Kx(x,y) dy.
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Multiplying the equation of K by K(x,y), integrating with respect to y from 0
to 1, and using an integration by parts, we have

d (a2(x, y)K3 (x, 1))

1rd
L [ (@R, y) + @ K y) + o

2 Ldx
2 d 2 !
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Proof.

Multiplying the equation of K by K(x,y), integrating with respect to y from 0
to 1, and using an integration by parts, we have

d (a2(x, y)K3 (x, 1))

1rd
L [ (@R, y) + @ K y) + o

2 Ldx
2 d 2 !
— a2 YK (6 ) — A KP DY) dy = JO fx,y)Ke (. y) dy.
This implies

d

1
EL [‘11(X YK (x,y) + az(x, YK (x,y) f?\KZ(x,y)} dy

1 1
= ZL f(x, y)Ky(x,y) dy — L [alvx(x)Ki(x,y) — azx(x,y)K] (x,y)] dy. (10)
Integrating (10) from O to x, using the properties of a; and ay, we obtain

1
L [K2(x,y) + K3 (x,y)] dy

1 x rl
gcj 7\K2(x,y)dy+CJ J [Ki(s,y) + K (s,y)] dyds + [[f[[32 0,0 (11)
0 0 Jo
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Proof contd 1.

Set
K(x,y) = KA"Y2x,y) for (x,y) € [0,AY2] x [0,1].

We derive from (11) that, for x € [0, AY/?],

1
L [f(i(x,y) +A*1f<§(x.yﬂ dy

1 x rl
< CJ K2(x,y)dy+CJ J [Ki(s,y)—f—?\’lKi(s,y)] dyds + [[f[[?..  (12)
0 0 Jo
Define

1 1
Vi(x) = L {f(i[x,y) +)\*1IA(fJ [x,y)} dy and Vy(x)= L l@(x,y) dy.

We have )

Vj(x) = 2L Ry, y)R(x,y) dy < 2V;2(x)Vy"2(x), (13)

and from (12) we obtain

X

Vil < C(Val + |

Vals) ds + ]2, ). (14)
0



Proof contd 2.

A combination of (13) and (14) yields
Vi(x) + Vi(x) < C(vg( )+L Va(s) ds+Hf||2L2>. (15)

We derive that

X

J Vi(s) ds + Va(x) < CJ|f|2e
0

which, together with (12), implies that
1
J, [R2ixw) + A R2 )] ay < ClrfRae,

Estimate (9) now follows by a change of variables and the definition of K. We
next establish that K(x,y) =0 in [0, 112\ D. Define

1
B0 =5 [ (aaluulkeny) + aslx )i (x,y) ) dy.

x

We can show that, using the fact a;(x,x) > ax(x, x),
E'(x) < C(AE(xX).
Since E(0) =0, it follows that E =0. The proof is complete. O



Conclusion

We propose a new method to obtain the null controllability of the heat
equation in one dimension via back stepping approach:

m We choose the kernels depending on time.

m New methods are implemented to obtain the well-posedness of the kernels
and reach their optimal estimates w.r.t. damping coefficients.

m Using this new approach, we can also semi-globally stabilize the heat
equations in arbitrary time.

Thank you for your attention!



