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Null-controllability for the heat equation

Known methods:

Fundamental solutions: Jones (77), Littman (78)

Carleman estimates: Fursikov & Imanuvikov (96), Lebeau & Robbiano
(95).

Transmutation method (null-controllability of the heat equation vs the
exact controllability of the wave equation): Miller (06).

Flatness approach (consider x as a time variable): Martin, Rosier &
Rouchon (14).

With Jean-Michel Coron, we propose the backstepping method !
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Backstepping approach

Backstepping: is a technique to stabilise the system.

Finite dimensional system: see e.g., Coron’s book 07.

Partial differential equations:

Initiated by Coron & Andréa-Novel (98), Liu & Krstic (00).

Heat equations: Liu (03), Smyshlyaev & Krstic (04).

Other equations: wave equations (Krstic et al. 08), hyperbolic equations
(Krstic & Smyshlyaev 08, Coron et al. 13, Hu & Meglio 15, Auriol & Di
Meglio 16, Coron, Hu & Olive 17), KdV equations (Cerpa & Coron 13) . . .

Coincise introduction: Krstic & Smyshlyaev’s book, 08.
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Initiated by Coron & Andréa-Novel (98), Liu & Krstic (00).

Heat equations: Liu (03), Smyshlyaev & Krstic (04).

Other equations: wave equations (Krstic et al. 08), hyperbolic equations
(Krstic & Smyshlyaev 08, Coron et al. 13, Hu & Meglio 15, Auriol & Di
Meglio 16, Coron, Hu & Olive 17), KdV equations (Cerpa & Coron 13) . . .

Coincise introduction: Krstic & Smyshlyaev’s book, 08.



Backstepping approach

Backstepping: is a technique to stabilise the system.

Finite dimensional system: see e.g., Coron’s book 07.

Partial differential equations:
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Setting

Consider the following control system, for T > 0 given:
ut(t, x) =

(
a(x)ux(t, x)

)
x

in (0, T)× [0, 1],

u(t, 0) = 0, u(t, 1) = U(t) for t ∈ (0, T),

u(t = 0, ·) = u0 for x ∈ [0, 1].

(1)

Here the state is u(t, ·) ∈ L2(0, 1) and the control is U(t) ∈ R. We assume that
a ∈ H2(0, 1) and a is uniformly elliptic, i.e., for some Λ > 1,

1/Λ 6 a 6 Λ in [0, 1]. (2)

Null-controllability: U is chosen such that u(T , ·) = 0.
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Result

Theorem (Coron & Ng., ARMA 17)

Let T > 0. There exists a piecewise constant functional K : [0, T)→ L2(0, 1)∗

s.t., for every u0 ∈ L2(0, 1), if u ∈ C0
(
[0, T);L2(0, 1)

)
is the solution of (1) with

U(t) defined by
U(t) := K(t)u(t, ·),

then

u(t, ·)→ 0 in L2(0, 1) as t→ T−,

U(t)→ 0 as t→ T−.

L2(0, 1)∗ is the set of continuous linear maps from L2(0, 1) into R.

1 The feedback system is non-local.

2 The feedback system is well-posed locally. The proof is based on the
maximum principle and the multiplier technique.
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Idea of the proof

K is constructed via backstepping technique where the kernel depends on time.
Let (λn)↗∞, (tn)↗ T with t0 = 0 (which will be precise later!). The form of
K, for tn 6 t < tn+1,

K(t)v :=

∫1

0

kn(1,y)v(y)dy for v ∈ L2(0, 1),

where kn is designed by backstepping as follows. Set, for tn 6 t < tn+1,

w(t, x) = u(t, x) −

∫x
0

kn(x,y)u(t,y)dy.

Then kn defined in D :=
{
(x,y) ∈ (0, 1)2; x > y

}
is chosen s.t., if

ut −
(
aux

)
x
= 0 for x ∈ (0, 1) and u(t, 0) = 0, for tn 6 t < tn+1, then

wt −
(
awx

)
x
+ λnw = 0 for x ∈ (0, 1), t ∈ [tn, tn+1).
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The control U is s.t. w(t, 1) = 0 = w(t, 0) for tn 6 t < tn+1. This choice yields

wt −
(
awx

)
x
+ λnw = 0 for x ∈ (0, 1), t ∈ [tn, tn+1)

w(t, 0) = w(t, 1) = 0 for t ∈ [tn, tn+1).

Hence
‖w(t, ·)‖ 6 e−λn(t−tn)‖w(tn, ·)‖L2 for t ∈ [tn, tn+1).

Next goals:

Find kn.

Find ln such that

u(t, x) = w(t, x) +

∫x
0

ln(x,y)w(t,y)dy for t ∈ [tn, tn+1).

Estimate kn and ln as a function of λn (kn and `n do not explode too
much), the key of the analysis.

Estimate u after choosing appropriately λn, tn.
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Construction of kn

Recall ut −
(
aux

)
x
= 0, u(t, 0) = 0, and w(t, x) := u(t, x) −

∫x
0

k(x,y)u(t,y)dy.

We have

wt(t, x) = ut(t, x) −

∫x
0

k(x,y)ut(t,y)dy = ut(t, x) −

∫x
0

k(x,y)
(
a(y)uy(t,y)

)
y
dy

=ut(t, x) − a(x)k(x, x)ux(t, x) + a(0)k(x, 0)ux(t, 0) +

∫x
0

ky(x,y)a(y)uy(t,y)dy

=ut(t, x) − a(x)k(x, x)ux(t, x) + a(0)k(x, 0)ux(t, 0)

+ a(x)ky(x, x)u(t, x) −

∫x
0

(
a(y)ky(x,y)

)
y
u(t,y)dy,

(
a(x)wx(t, x)

)
x
=
(
a(x)ux(t, x)

)
x
−

∫x
0

(
a(x)kx(x,y)

)
x
u(t,y)dy

−
(
a(x)k(x, x)u(t, x)

)
x
− a(x)kx(x, x)u(t, x).

It follows that

wt −
(
awx

)
x
+ λw =

(
2a(x)

(
kx(x, x) + ky(x, x)

)
+ ax(x)k(x, x) + λ

)
u(t, x)

+

∫x
0

((
a(x)kx(x,y) −

(
a(y)ky(x,y)

)
y
− λk(x,y)

)
u(t,y)dy+ a(0)k(x, 0)ux(t, 0).
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Construction of kn-contd - 1

Take the subindex back. Here is the system of kn, with the notation
d

dx
kn(x, x) = ∂xkn(x, x) + ∂ykn(x, x),


2a(x)

d

dx
kn(x, x) + ax(x)kn(x, x) + λn = 0 for x ∈ [0, 1],

kn(x, 0) = 0 for x ∈ [0, 1],(
a(x)kn,x(x,y)

)
x
−
(
a(y)kn,y(x,y)

)
y
−λnkn(x,y) = 0 in D.

Recall D :=
{
(x,y) ∈ (0, 1)2; x > y

}
. Solving the first equation with

kn(0, 0) = 0, the system of kn can be rewritten under the form
kn(x, x) = gn(x) for x ∈ [0, 1],

kn(x, 0) = 0 for x ∈ [0, 1],(
a(x)kn,x(x,y)

)
x
−
(
a(y)kn,y(x,y)

)
y
−λnkn(x,y) = 0 in D.

The system is non-standard !

Key points: Well-posedness and good estimates for kn!
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The inverse tranformation

One next wants to know how to compute u from w. Define

v(t, x) = w(t, x) +

∫x
0

ln(x,y)w(t,y)dy for tn 6 t < tn+1,

and search ln s.t. if wt −
(
awx

)
x
+ λnw = 0 and w(t, 0) = 0, for tn 6 t < tn+1,

then vt −
(
avx

)
x
= 0. Recall that

wt −
(
awx

)
x
+ λw =

(
2a(x)

(
kx(x, x) + ky(x, x)

)
+ ax(x) + λ

)
u(t, x)

+

∫x
0

((
a(x)kx(x,y) −

(
a(y)ky(x,y)

)
y
− λk(x,y)

)
u(t,y)dy+ a(0)k(x, 0)ux(t, 0).

Similarly, we have

vt −
(
avx

)
x
= −

(
2a(x)

(
lx(x, x) + ly(x, x)

)
+ ax(x)l(x, x) + λ

)
w(t, x)

−

∫x
0

((
a(x)lx(x,y) −

(
a(y)ly(x,y)

)
y
+λl(x,y)

)
w(t,y)dy− a(0)k(x, 0)wx(t, 0).
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The inverse tranformation-contd 1

We then require
2a(x)

d

dx
ln(x, x) + ax(x)ln(x, x) + λn = 0 for x ∈ [0, 1],

ln(x, 0) = 0 for x ∈ [0, 1],(
a(x)ln,x(x,y)

)
x
−
(
a(y)ln,y(x,y)

)
y
+λnln(x,y) = 0 in D.

Solving the first equation with ln(0, 0) = 0, this system can be rewritten as
ln(x, x) = gn(x) for x ∈ [0, 1],

ln(x, 0) = 0 for x ∈ [0, 1],(
a(x)ln,x(x,y)

)
x
−
(
a(y)ln,y(x,y)

)
y
+λnkn(x,y) = 0 in D.

Key points: Well-posedness and good estimates for ln!
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The inverse tranformation-contd 2

In fact, we can prove

Lemma

We have, for tn 6 t < tn+1,

u(t, x) = v(t, x) := w(t, x) +

∫x
0

ln(x,y)w(t,y)dy. (3)

Recall that w(t, x) := u(t, x) −
∫x

0 kn(x,y)w(t,y)dy.

Sketch of the proof. We claim that

ln(x,y) = kn(x,y) +

∫x
y

ln(x, ξ)kn(ξ,y)dξ.

Admitting this claim, we have (ignore the t variable)

v(x) = u(x) −

∫x
0

kn(x,y)u(y) +

∫x
0

ln(x,y)
[
u(y) −

∫y
0

kn(y, ξ)u(ξ)dξ
]
dy

= u(x) +

∫x
0

[
ln(x,y) − kn(x,y) −

∫x
y

ln(x, ξ)kn(ξ,y)dξ
]
u(y)dy = u(x) : (3)
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Sketch of the Proof-contd

We now prove the claim. Define

l̂n(x,y) = kn(x,y) +

∫x
y

ln(x, ξ)kn(ξ,y)dξ in D.

The idea is to show that l̂n and ln satisfy the same system. Recall(
a(x)ln,x(x,y)

)
x
−
(
a(y)ln,y(x,y)

)
y
= −λln(x,y) in D.

We have

l̂n(x, x) = kn(x, x) = ln(x, x) and l̂n(x, 0) = kn(x, 0) = 0 = ln(x, 0).

A (quite lengthy but not difficult) computation yields(
a(x)̂ln,x(x,y)

)
x
−
(
a(y)̂ln,y(x,y)

)
y
= −λnl(x,y) in D.

Hence l̂n = ln by the well-posedness of the system of ln!. �
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A summary on the backstepping approach

We have, for tn 6 t < tn+1,

w(t, x) = u(t, x) −

∫x
0

kn(x,y)u(t,y)dy, u(t, x) = w(t, x) +

∫x
0

ln(x,y)u(t,y)dy,

Here are the systems of kn and ln:

kn(x, x) = gn(x) = ln(x, x)
(
2a(x)g ′n(x) + ax(x)gn(x) + λn = 0, gn(0) = 0

)
,

kn(x, 0) = 0 = ln(x, x),(
a(x)kn,x(x,y)

)
x
−
(
a(y)kn,y(x,y)

)
y
−λnkn(x,y) = 0 in D,(

a(x)ln,x(x,y)
)
x
−
(
a(y)ln,y(x,y)

)
y
+λnln(x,y) = 0 in D.

U is chosen s.t. wt −
(
a(x)wx

)
x
+ λnw = 0, w(t, 0) = w(t, 1) = 0. We have

‖w(t, ·)‖ 6 e−λn(t−tn)‖w(tn, ·)‖L2 , tn 6 t < tn+1.

We now claim the key estimates for kn and ln (proved later):

‖kn‖L∞x (L2
y) 6 Ce

C
√
λn and ‖ln‖L∞x (L2

y) 6 Cλn.

As a consequence, we have

‖w(t, ·)‖2
L2 6 CeC

√
λn‖u(t, ·)‖2

L2 and ‖u(t, ·)‖2
L2 6 Cλ2

n‖w(t, ·)‖2
L2 , tn 6 t < tn+1.
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We are ready to prove

Theorem (Coron & Ng., ARMA 17)

Let T > 0, (λn)↗∞, (tn)↗ T with t0 = 0. Set

s0 = 0 and sn =

n−1∑
k=0

λk(tk+1 − tk) for n > 1.

If limn→+∞(tn+1 − tn)λn/
√
λn+1 = +∞ and limn→+∞ sn/n = +∞, then

lim
t→T−

‖u(t, ·)‖L2 = 0 and lim
t→T−

U(t) = 0.

Here is a possible choice of (tn) and (λn): tn = T − T/n2 and λn = n8 for large
n.
We will prove

‖u(t, ·)‖L2 6 Ce−sn−1/4+C(n−1)‖u0‖L2 ,

and
|U(t)| 6 Ce−sn−1/4+C(n−1)+C

√
λn‖u0‖L2 .
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Proof

We have

‖w(t, ·)‖2
L2 6 CeC

√
λn‖u(t, ·)‖2

L2 , tn < t < tn+1, (4)

‖u(t, ·)‖2
L2 6 Cλ2

n‖w(t, ·)‖2
L2 , tn 6 t < tn+1, (5)

‖w(ξ2, ·)‖2
L2 6 ‖w(ξ1, ·)‖2

L2e
−2λn(ξ2−ξ1), tn 6 ξ1 < ξ2 < tn+1. (6)

This implies ‖u(tn+1, ·)‖2
L2 6 Cλ2

ne
−2λn(tn+1−tn)+C

√
λn‖u(tn, ·)‖2

L2 . Since
(tn+1 − tn)λn/

√
λn+1 → +∞, it follows that

‖u(tn+1, ·)‖2
L2 6 Ce−λn(tn+1−tn)‖u(tn, ·)‖2

L2 . (7)

Recall that sn =
∑n−1
k=0 λk(tk+1 − tk). We derive that

‖u(tn+1, ·)‖2
L2 6 e−sn+1+Cn‖u(0, ·)‖2

L2 . (8)

We have, for tn 6 t < tn+1,

‖u(t, ·)‖2
L2

(5)

.λ2
n‖w(t, ·)‖2

L2

(6)

.λ2
ne

−2λn(t−tn)‖w(tn+, ·)‖2
L2

(4)

.λ2
ne

−2λn(t−tn)+C
√
λn‖u(tn, ·)‖2

L2

(7)

.e−λn−1(tn−tn−1)/2‖u(tn−1, ·)‖2
L2

(8)

6 e−sn−1/2+C(n−2)‖u(0, ·)‖2
L2 : =⇒ the conclusion by the choice of (tn, λn). �
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This implies ‖u(tn+1, ·)‖2
L2 6 Cλ2

ne
−2λn(tn+1−tn)+C

√
λn‖u(tn, ·)‖2

L2 . Since
(tn+1 − tn)λn/

√
λn+1 → +∞, it follows that

‖u(tn+1, ·)‖2
L2 6 Ce−λn(tn+1−tn)‖u(tn, ·)‖2

L2 . (7)

Recall that sn =
∑n−1
k=0 λk(tk+1 − tk). We derive that

‖u(tn+1, ·)‖2
L2 6 e−sn+1+Cn‖u(0, ·)‖2

L2 . (8)

We have, for tn 6 t < tn+1,

‖u(t, ·)‖2
L2

(5)

.λ2
n‖w(t, ·)‖2

L2

(6)

.λ2
ne

−2λn(t−tn)‖w(tn+, ·)‖2
L2

(4)

.λ2
ne

−2λn(t−tn)+C
√
λn‖u(tn, ·)‖2

L2

(7)

.e−λn−1(tn−tn−1)/2‖u(tn−1, ·)‖2
L2

(8)

6 e−sn−1/2+C(n−2)‖u(0, ·)‖2
L2 : =⇒ the conclusion by the choice of (tn, λn). �



On the properties of kn and ln

We used the fact that kn and ln are well-defined and the following estimates
hold

‖kn‖L∞x (L2
y) 6 Ce

C
√
λn and ‖ln‖L∞x (L2

y) 6 Cλn.

Here are the systems of kn and ln:

kn(x, x) = gn(x) = ln(x, x)
(
2a(x)g ′n(x) + ax(x)gn(x) + λn = 0, gn(0) = 0

)
,

kn(x, 0) = 0 = ln(x, x),(
a(x)kn,x(x,y)

)
x
−
(
a(y)kn,y(x,y)

)
y
−λnkn(x,y) = 0 in D,(

a(x)ln,x(x,y)
)
x
−
(
a(y)ln,y(x,y)

)
y
+λnln(x,y) = 0 in D.

Some comments:

Well-posedness: known methods are based on special functions or a fixed
point arguments. Both methods are based on the case a is constant (then
ξ = x+ y,η = x− y, a∂2

ξηkn + λnkn = 0, Krstic & Smyshlyaev’s book 08).

Estimates: Known for the case a is constant. When a is not constant,
known with the power λn instead of

√
λn in the estimate of kn: not good

enough for our approach!

Our approach is variational and quite robust!
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Motivation of our approach

Recall (ignore the subindex n)
k(x, x) = g(x) for x ∈ [0, 1],
k(x, 0) = 0 for x ∈ [0, 1],(
a(x)kx(x,y)

)
x
−
(
a(y)ky(x,y)

)
y
− λk(x,y) = 0 in D.

It suffices to study the system
k̂(x, x) = 0 for x ∈ [0, 1],

k̂(x, 0) = 0 for x ∈ [0, 1],(
a(x)k̂x(x,y)

)
x
−
(
a(y)k̂y(x,y)

)
y
− λk̂(x,y) = f̂(x,y) in D.

Extend k̂ and f̂ by 0 in [0, 1]2 \D and denote the extensions by K and f. We
have 

(
a(x)Kx(x,y)

)
x
−
(
a(y)Ky(x,y)

)
y
− λK(x,y) = f(x,y) in [0, 1]2,

K(x, 0) = K(x, 1) = 0 for x ∈ [0, 1] (boundary condition),
K(0,y) = Ky(0,y) = 0 for y ∈ [0, 1] (initial condition).

Goal: 1) To establish a finite speed propagation property for K :if supp f ⊂ D
then K = 0 in [0, 1]2 \D. 2) To obtain a good estimate for K.
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A key lemma

Lemma

Let λ > 1, f ∈ L2
(
(0, 1)2

)
, and let a1, a2 be elliptic and Lipschitz. There exists

a unique solution K ∈ L2
(
(0, 1);H1

0(0, 1)
)
∩H1

(
(0, 1)2

)
of(

a1(x,y)Kx(x,y)
)
x
−
(
a2(x,y)Ky(x,y)

)
y
− λK(x,y) = f(x,y) in [0, 1]2,

such that K(x, 0) = K(x, 1) = 0, K(0,y) = Kx(0,y) = 0 in (0, 1). Moreover,∫1

0

|∇K(x,y)|2 dy 6 CeC
√
λ

∫1

0

∫1

0

|f(x,y)|2 dydx for x ∈ [0, 1]. (9)

Assume in addition that a1(x, x) > a2(x, x) in (0, 1) and supp f ⊂ D. We have

K(x,y) = 0 in [0, 1]2 \D : finite speed propagation.

The standard energy method gives (9) with the power λ; this is not good
enough for our approach.

The method works well for equations with lower oder terms.
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Proof.

Multiplying the equation of K by Kx(x,y), integrating with respect to y from 0
to 1, and using an integration by parts, we have∫1

0

1

2

[ d
dx

(
a1(x,y)K2

x(x,y)
)
+ a1,x(x,y)K2

x(x,y) +
d

dx

(
a2(x,y)K2

y(x,y)
)

− a2,x(x,y)K2
y(x,y) − λ

d

dx
K2(x,y)

]
dy =

∫1

0

f(x,y)Kx(x,y)dy.

This implies

d

dx

∫1

0

[
a1(x,y)K2

x(x,y) + a2(x,y)K2
y(x,y) − λK2(x,y)

]
dy

= 2

∫1

0

f(x,y)Kx(x,y)dy−

∫1

0

[
a1,x(x)K

2
x(x,y) − a2,x(x,y)K2

y(x,y)
]
dy. (10)

Integrating (10) from 0 to x, using the properties of a1 and a2, we obtain∫1

0

[
K2
x(x,y) + K2

y(x,y)
]
dy

6 C
∫1

0

λK2(x,y)dy+ C

∫x
0

∫1

0

[
K2
x(s,y) + K

2
y(s,y)

]
dyds+ ‖f‖2

L2(0,1)2 (11)
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Proof contd 1.

Set
K̂(x,y) = K(λ−1/2x,y) for (x,y) ∈ [0, λ1/2]× [0, 1].

We derive from (11) that, for x ∈ [0, λ1/2],∫1

0

[
K̂2
x(x,y) + λ−1K̂2

y(x,y)
]
dy

6 C
∫1

0

K̂2(x,y)dy+ C

∫x
0

∫1

0

[K̂2
x(s,y) + λ

−1K̂2
y(s,y)

]
dyds+ ‖f‖2

L2 . (12)

Define

V1(x) =

∫1

0

[
K̂2
x(x,y) + λ−1K̂2

y(x,y)
]
dy and V2(x) =

∫1

0

K̂2(x,y)dy.

We have

V ′2(x) = 2

∫1

0

K̂x(x,y)K̂(x,y)dy 6 2V1/2
1 (x)V

1/2
2 (x), (13)

and from (12) we obtain

V1(x) 6 C
(
V2(x) +

∫x
0

V1(s)ds+ ‖f‖2
L2

)
. (14)
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Proof contd 2.

A combination of (13) and (14) yields

V1(x) + V
′
2(x) 6 C

(
V2(x) +

∫x
0

V1(s)ds+ ‖f‖2
L2

)
. (15)

We derive that ∫x
0

V1(s)ds+ V2(x) 6 C‖f‖2
L2e

Cx;

which, together with (12), implies that∫1

0

[
K̂2
x(x,y) + λ−1K̂2

y(x,y)
]
dy 6 C‖f‖2

L2e
Cx.

Estimate (9) now follows by a change of variables and the definition of K̂. We
next establish that K(x,y) = 0 in [0, 1]2 \D. Define

E(x) =
1

2

∫1

x

(
a1(x,y)K2

x(x,y) + a2(x,y)K2
y(x,y)

)
dy.

We can show that, using the fact a1(x, x) > a2(x, x),

E ′(x) 6 C(λ)E(x).

Since E(0) = 0, it follows that E = 0. The proof is complete. �



Conclusion

We propose a new method to obtain the null controllability of the heat
equation in one dimension via back stepping approach:

We choose the kernels depending on time.

New methods are implemented to obtain the well-posedness of the kernels
and reach their optimal estimates w.r.t. damping coefficients.

Using this new approach, we can also semi-globally stabilize the heat
equations in arbitrary time.

Thank you for your attention!


