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DeustoTech, University of Deusto

work in progress with:

Martin Lazar (University of Dubrovnik)

Enrique Zuazua (University of Deusto, UAM)

August 29th, 2017



Parameter dependent problems

Real life applications (may) depend on a large number of

parameters

examples: thickness, conductivity, density, length,

humidity, pressure, curvature,. . .
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Parameter dependent problems (Cont.)

# When dealing with applications and simulations, we would like

to explore within different parameter configurations.

# From the control point of view, this implies solving a different

problem for each configuration.

# Computationally expensive.

Our goal

Apply greedy theory to have a robust and fast numerical solvers.
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Parameter dependent control problem

Ω ⊂ RN , ω ⊂ Ω.

Consider the system{
−div(a(x , ν)∇y) + c y = χωu in Ω,

y = 0 on ∂Ω,
(1)

◦ ν is a parameter ◦ u ∈ L2(ω) is a control ◦ c = c(x) ∈ L∞(Ω)

Optimal control problem (OCPν)

min
u∈L2(ω)

Jν(u) =
1

2
|u|2L2(ω) +

β

2
‖y − yd‖2

L2(Ω),
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Parameter dependent control problem (cont.)

Optimal control problem (OCPν)

min
u∈L2(ω)

Jν(u) =
1

2
|u|2L2(ω) +

β

2
‖y − yd‖2

L2(Ω),

∃! optimal solution is well-known (Lions, Tröltzsch,. . . )

Characterization: optimal pair (ū, ȳ)

ū = −χωq̄
−div(a(x , ν)∇ȳ) + c ȳ = −χωq̄, in Ω,

−div(a(x , ν)∇q̄) + c q̄ = β (ȳ − yd), in Ω,

ȳ = q̄ = 0, on ∂Ω.

(2)

As the state y depends on ν, also the control u depends on ν.
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Parameter dependent control problem (cont.)

{
−div(a(x , ν)∇y) + c y = χωu in Ω,

y = 0 on ∂Ω,

From the practical point of view,

# Measure parameter ν and determine uν

min
u∈L2(ω)

Jν(u) =
1

2
|u|2L2(ω) +

β

2
‖y − yd‖2

L2(Ω),

using classical methods (iterative methods, . . . )

# Repeat the process for each new value of ν.

Can we do it better?
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Greedy control

Assume that ν ranges within a compact set K ⊂ Rd and aν = a(x , ν) are

bounded functions satysfing

0 < a1 ≤ aν ≤ a2, ν ∈ K .

In this way, we ensure that each control can be uniquely determined by

ūν = −χωq̄

where (ȳ , q̄) solve the optimality system (8). Consider the set of controls

ūν for each possible value ν ∈ K. That is,

Ū = {ūν : ν ∈ K}

The idea

To determine a finite number of values of ν that yield the best possible

approximation of the control manifold Ū
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Description of the method

We look for a small number of parameters ν ∈ K approximating the

manifold Ū in the sense of the Kolmogorov width. Roughly, the

Kolmogorov width measures how well we can approximate Ū by a finite

dimensional space.

With greedy algorithms (Cohen & DeVore, Volkwein, Buffa et. al, . . . ),

we search for the most representative values of ūν .

That is, given a tolerance ε, the goal is to find

ν1, . . . , νn(ε)

such that, for any other ν ∈ K, the corresponding control ūν can be

approximated by u?ν ∈ span{ūν1 , . . . , ūνn(ε)
} and

‖u?ν − ūν‖L2(ω) ≤ ε.

We also want to minimize n.
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The surrogate

In practical implementations, the set Ū is unknown.

Given two parameters ν1 and ν2, how can we measure the distance

between ūν1 and ūν2 ?

Recall that we want to avoid to compute ūν .

Standard residual: Suppose that we have computed uν1

|uν1 − uν2 | ∼ ∇Jν2 (uν1 )−∇Jν2 (uν2 ) = ∇Jν2 (uν1 )

Compute ∇Jν2 (uν1 ) = uν1 + βS∗ν2
(Sν2uν1 − yd), where Sν is to

control-to-state operator. This means
−div(aν2∇y) + c y = χωuν1 , in Ω,

−div(aν2∇q) + c q = β (y − yd), in Ω,

y = q = 0, on ∂Ω.

⇒ −χωqν2 = S∗ν2
(Sν2uν1−yd)

Solving a cascade system.

8



The surrogate

In practical implementations, the set Ū is unknown.
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Cheaper surrogates

A cheap surrogate: Instead of using ūν and approximate the manifold Ū ,

use the optimal variables (q̄ν , ȳν) and approximate the manifold Q̄ × Ȳ.

Denoting Lνz := −div(aν∇z) + c z , we define

Rν(q, y) :=

(
Lνy + χωq

Lνq − β (y − yd)

)
.

With this definition, we are able to compute the following estimates:

c1

(
‖y − ȳν‖H1

0 Ω + ‖q − q̄ν‖H1
0 (Ω)

)
≤ ‖Rν(q, y)‖H−1(Ω),

‖Rν(p, y)‖H−1Ω ≤ (1 + α2)(‖y − ȳν‖H1
0 (Ω) + ‖q − q̄ν‖H1

0 (Ω)).

where c1 and α2 only depending on a1, a2 and ‖c‖∞.

Upper and lower bounds for Rν(q, y) are essential for the proof of greedy

algorithms in terms of the Kolmogorov width.
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Main results

Rν(q, y) :=

(
Lνy + χωq

Lνq − β (y − yd)

)
. (3)

Theorem 1 (in progress H-S, Lazar, Zuazua, ’17)

The residual (3) provides the approximation estimates for optimal

controls and states

• ‖u?ν − ūν‖L2(Ω) ≤
1

c1
‖Rν(q, y)‖[H−1(Ω)]2 ,

• ‖y?ν − ȳν‖H1
0 (Ω) ≤

(
1

α1c1

)
‖Rν(q, y)‖[H−1(Ω)]2 ,

where c1 and α1 only depend on a1, a2 and ‖c‖∞.
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Offline algorithm

Step 1: Initialization. Fix ε > 0. Choose any ν ∈ K, ν = ν1 and

compute the minimizer of Jν1 . This leads to

(
q̄ν1

ȳν1

)
.

Step 2: recursive choice of ν.

Assuming we have chosen ν1, . . . , νp, we choose νp+1 as the maximizer of

max
ν∈K

dist

((
0

yd

)
,Rν(Q̄p, Ȳp)

)
, Rν(q, y) =

(
Lνy + χωq

Lνq − β (y − yd)

)

Step 3: Stopping criterion. Stop if the max ≤ ε.

Theorem 1 (in progress H-S, Lazar, Zuazua, ’17)

The offline algorithm stops after n0(ε) iterations, and fullfills the require-

ments of the greedy theory.
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Online algorithm

After choosing the most representative values of ν, we can

construct an approximated optimal control u?ν for any arbitrary

given value ν ∈ K by taking

u?ν =
k∑

i=1

λi q̄νi |ω

where λi are determined by the projection of the vector

(
0

yd

)
to

the space

span{Rν(q̄ν1 , ȳν1), . . . ,Rν(q̄νk , ȳνk )}
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Numerical results



Numerical examples

# Ω = (0, 1)2 in 2-D or Ω = (0, 1) in 1-D.

# Uniform meshes, i.e., meshes with constant discretization

steps in each direction, N = 400.

# We will approximate the operator A = −div(a(x , ν)∇ ·) by

using the standard 5-point discretization.

# Discretize-then-optimize.

# ν ∈ K = [1, 10].

# K sampled in 100 equidistant points.
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Greedy test # 1

◦ a(x , ν) = 1 + ν(x2
1 + x2

2 ), ◦ c(x) = sin(2πx1) sin(2πx2),

◦ yd = sin(πx1), ◦β = 104, ◦ ε = 0.005

◦ tcheap = 304s, ◦ tstd = 384s
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(b) Approximation error
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Approximation for ν = π/2
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◦ |u?π/2 − ūπ/2|L2(ω) ≈ 1.45× 10−5, tonline = 0.45s, titerative = 6.01s.
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Approximation for ν = π/2 (cont.)
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(f) The state y?π/2 and the target

function yd (dashed)

◦ |y?π/2 − ȳπ/2|L2(Ω) ≈ 1.15× 10−7
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Greedy test # 2

◦ a(x , ν) = 1 + νx2(1− x)2, ◦ c(x) = −15 sin(πx), ◦ yd = χ(0.5,0.8),

β = 104, ◦ω = (0.3, 0.9), ◦ ε = 0.005

◦ tcheap = 0.68s, ◦ tstd = 0.809s
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Greedy test # 2
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(j) The state y?π/2 (blue) and the

target yd (red)

◦ |u?π/2 − ūπ/2|L2(ω) ≈ 1.17× 10−5, ◦ ‖y?π/2 − ȳπ/2‖L2(Ω) ≈ 5.09× 10−7,
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Connection with the
turnpike problems



Time dependent control problem

Consider
∂ty − div(a(x , ν)∇y) + c y = χωu in Q = Ω× (0,T ),

y = 0 on Σ = ∂Ω× (0,T ),

y(x , 0) = y0(x) in Ω.

(4)

and the control problem

min
u

Jν
T (u) =

1

2

∫ T

0

|u(t)|2L2(ω)dt +
β

2

∫ T

0

‖y(t)− yd‖2
L2(Ω)dt.

The optimal solution (uT , yT ) satisfies

‖yT (t)−ȳ‖L2(Ω)+‖uT (t)−ū‖L2(Ω) ≤ K
(
e−µt + e−µ(T−t)

)
, ∀t ∈ [0,T ]

# Exponential convergence of the finite-time horizon control problem

to the steady one as T →∞.
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The case c(x) ≥ 0 (greedy test #1)

u(x , t) = u?π/2(x), y0(x) = sin(3πx1) sin(2πx2)
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The case c(x) ≤ −λ1 (greedy test #2)

u(x , t) = u?π/2(x), y0(x) = χ(0.4,0.9)
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The case c(x) ≤ −λ1 (greedy test #2)

u = uT
π/2(x , t), y0(x) = χ(0.4,0.9)
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Thank you!
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