Schrödinger equation: from harmonic analysis to IBVP

> Chuang Zheng Beijing Normal University

> > Benasque, Aug 2017

C. Zheng

# Outline of the talk



2 Nonlinear Schrödinger equation: IVP v.s. IBVP

- **3** IBVP: Nonlinear Schrödinger equation on  $\Omega = (0, 1)$
- ④ Boundary data → Boundary integral

5 References

# Table of contents



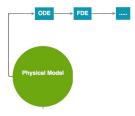
- 2 Nonlinear Schrödinger equation: IVP v.s. IBVP
- $\bigcirc$  IBVP: Nonlinear Schrödinger equation on  $\Omega=(0,1)$
- ④ Boundary data⇒Boundary integral

5 References

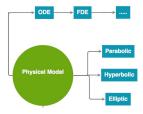
< ₽



< 🗗



< 🗗



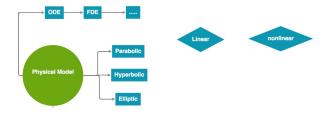
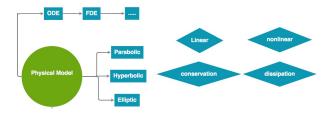
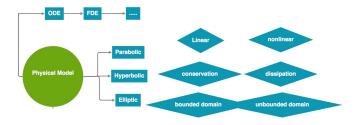


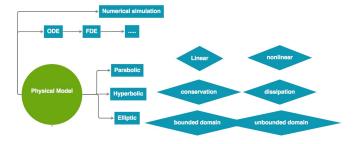
Image: A matrix



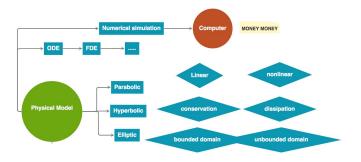
イロト イ団ト イヨト イヨト



<ロト </p>



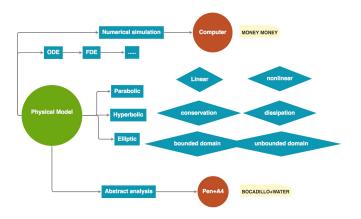
イロト イヨト イヨト イヨ



(日) (同) (三) (三)



(日) (同) (三) (三)



# Table of contents



2 Nonlinear Schrödinger equation: IVP v.s. IBVP

3 IBVP: Nonlinear Schrödinger equation on  $\Omega=(0,1)$ 

④ Boundary data ⇒Boundary integral

5 References

Ref.

The nonlinear Schrödinger equation arises in many scientific fields such as propagation of light in fiber optics cables, shallow and deep surface water waves, quantum mechanics, Bose-Einstein condensate theory, nonlinear optics and plasma physics. (Avron et al. 78, Karpman 96, Sulem& Sulem 99, Karpman&Shagalov 00, Pausader 07, 09, etc.)

# Application on Sci-Fic movie



Mission of Defense Advanced Research Projects Agency (DARPA, 3 bil US dollars/year) in Moldovan

Mathematically, most existing results concern the well-posedness with IVP

• on whole domain  $\mathcal{R}^d$ . Cazenave, Ginibre&Velo, Kato, etc.

Mathematically, most existing results concern the well-posedness with IVP

- on whole domain  $\mathcal{R}^d$ . Cazenave, Ginibre&Velo, Kato, etc.
- $\bullet$  on torus  $\mathbb T.$  Bourgain, Tsutsumi, Pausader, etc.

Monograph book by Cazenave 2003.

Mathematically, most existing results concern the well-posedness with  $\mathsf{IVP}$ 

- on whole domain  $\mathcal{R}^d$ . Cazenave, Ginibre&Velo, Kato, etc.
- $\bullet$  on torus  $\mathbb T.$  Bourgain, Tsutsumi, Pausader, etc.

Monograph book by Cazenave 2003.

With non-homogeneous boundary conditions (IBVP):

Ref.

Mathematically, most existing results concern the well-posedness with  $\mathsf{IVP}$ 

- on whole domain  $\mathcal{R}^d$ . Cazenave, Ginibre&Velo, Kato, etc.
- on torus T. Bourgain, Tsutsumi, Pausader, etc.

Monograph book by Cazenave 2003.

With non-homogeneous boundary conditions (IBVP):

• on half line  $\mathbb{R}^+$ . Bona, Sun, Zhang, etc.

Ref.

Mathematically, most existing results concern the well-posedness with  $\mathsf{IVP}$ 

- on whole domain  $\mathcal{R}^d$ . Cazenave, Ginibre&Velo, Kato, etc.
- on torus  $\mathbb{T}$ . Bourgain, Tsutsumi, Pausader, etc.

Monograph book by Cazenave 2003.

With non-homogeneous boundary conditions (IBVP):

- on half line  $\mathbb{R}^+$ . Bona, Sun, Zhang, etc.
- on bounded domain (0,1). Bona, Zhang, Zheng, etc.

# Whole domain V.S. with boundary data

Keywords in common:

- Mixture of the properties: parabolic and hyperbolic.
- Local existence of the solutions, uniqueness, regularity, smoothing effect.
- Global nature: finite time blow-up, global existence, asymptotic behavior of solutions.
- Control theory.

# Whole domain V.S. with boundary data

Keywords with differences:

- $\bullet$  On  $\mathcal{R}^d$  and  $\mathbb{T}.$  Strichartz estimate, harmonic analysis, etc.
- On (0,1). PDE techniques: Multipliers, a priori estimate, etc.

# Our main target

We consider the well-posedness of the nonlinear Initial Boundary Value Problems (IBVP) of the Nonlinear Schödinger equation on a finite interval (0, 1).

# Our main target

We consider the well-posedness of the nonlinear Initial Boundary Value Problems (IBVP) of the Nonlinear Schödinger equation on a finite interval (0, 1).

Key ingredient: find a way to describe the boundary condition of the IBVPs on (0, 1) as the boundary integral of the solution of the corresponding operator in the periodic domain  $\mathbb{T} = \mathcal{R} \setminus \mathbb{Z}$ . Some works have been done on the Schrödinger equation (Bona, Sun, Zhang), KdV equation (Capistrano-Filho, Sun, Zhang), Ginzburg-Landau equation (Li ) and Kuramoto-Sivashinsky equation (Zhang) recently.

# Table of contents



2 Nonlinear Schrödinger equation: IVP v.s. IBVP

- 3 IBVP: Nonlinear Schrödinger equation on  $\Omega = (0, 1)$ 
  - ④ Boundary data⇒Boundary integral

5 References

# Second order NLS

Consider  $\Omega = (0, 1)$  with Dirichlet BC:

$$(*) \begin{cases} iu_t + u_{xx} + \lambda u |u|^{p-2} = 0, & (t,x) \in (0,T) \times \Omega \\ u(t,0) = h_1(t), \ u(t,1) = h_2(t), & t \in (0,T) \\ u(0,x) = \phi(x), & x \in \Omega. \end{cases}$$

## Fourth order NLS: Navier BC

Consider  $\Omega = (0, 1)$  with Navier BC:

$$(**) \begin{cases} iu_t + u_{xxxx} + \lambda u |u|^{p-2} = 0, & (t, x) \in (0, T) \times \Omega \\ u(t, 0) = h_1(t), & u(t, 1) = h_2(t), & t \in (0, T) \\ u_{xx}(t, 0) = h_5(t), & u_{xx}(t, 1) = h_6(t), & t \in (0, T) \\ u(0, x) = \phi(x), & x \in \Omega. \end{cases}$$

## Fourth order NLS: Dirichlet BC

Consider  $\Omega = (0, 1)$  with Dirichlet BC:

$$(***) \begin{cases} iu_t + u_{xxxx} + \lambda u |u|^{p-2} = 0, & (t,x) \in (0,T) \times \Omega \\ u(t,0) = h_1(t), & u(t,1) = h_2(t), & t \in (0,T) \\ u_x(t,0) = h_3(t), & u_x(t,1) = h_4(t), & t \in (0,T) \\ u(0,x) = \phi(x), & x \in \Omega. \end{cases}$$

#### Theorem

Define the solutions of NLS on  $\Omega$ . Under some assumptions

 (\*) is well-posed for appropriate regularity of initial and boundary data. (Bona et al. preprint) Define the solutions of NLS on  $\Omega$ . Under some assumptions

- (\*) is well-posed for appropriate regularity of initial and boundary data. (Bona et al. preprint)
- (\*\*) is locally well-posed for appropriate regularity of initial and boundary data. (Zheng)

Define the solutions of NLS on  $\Omega$ . Under some assumptions

- (\*) is well-posed for appropriate regularity of initial and boundary data. (Bona et al. preprint)
- (\*\*) is locally well-posed for appropriate regularity of initial and boundary data. (Zheng)
- (\*\*\*) is locally well-posed for appropriate regularity of initial and boundary data. (Zheng)

# Key of the proof: $L^4$ estimate of the Linear system

Solution will be separated by three parts:

Nonlinear term: focusing or defocusing;

# Key of the proof: $L^4$ estimate of the Linear system

Solution will be separated by three parts:

- Nonlinear term: focusing or defocusing;
- 2 Initial data: BD = 0 and  $ID = \phi$ ;

# Key of the proof: $L^4$ estimate of the Linear system

Solution will be separated by three parts:

- Nonlinear term: focusing or defocusing;
- 2 Initial data: BD = 0 and  $ID = \phi$ ;
- **3**  $BD \neq 0$  and ID = 0. NEW.

# Table of contents



2 Nonlinear Schrödinger equation: IVP v.s. IBVP

- 3 IBVP: Nonlinear Schrödinger equation on  $\Omega=(0,1)$
- ④ Boundary data → Boundary integral

## 5 References

Image: A matrix

# Example

## Consider

$$(***) \begin{cases} iu_t + u_{xxxx} = \mathbf{0}, & (t, x) \in (0, T) \times \Omega \\ u(t, 0) = h_1(t), & u(t, 1) = h_2(t), & t \in (0, T) \\ u_{xx}(t, 0) = h_5(t), & u_{xx}(t, 1) = h_6(t), & t \in (0, T) \\ u(0, x) = \mathbf{0}, & x \in \Omega. \end{cases}$$

# Boundary integrals

#### Lemma

u can be expressed as the form

$$u(x,t) = W_{0,h}h_1 + (W_{0,h}h_2)||_{x \to 1-x} + W_{2,h}h_5 + (W_{2,h}h_6)||_{x \to 1-x}.$$

#### with

$$W_{0,h}h = \sum_{k=1}^{\infty} (-2i(k\pi)^3) \int_0^t e^{i(k\pi)^4(t-\tau)} h(\tau) d\tau \sin(k\pi x),$$
  
$$W_{2,h}h = \sum_{k=1}^{\infty} (-\frac{2}{3}ik\pi) \int_0^t e^{i(k\pi)^4(t-\tau)} h(\tau) d\tau \sin(k\pi x)$$

# $L^4$ estimate of $W_{0,h}(\cdot)h$

#### Lemm<u>a</u>

Let  $h \in H^{\frac{3}{4}}(0, T)$ . We have

 $W_{0,h}(\cdot)h \in L^4(\Omega_T) \cap C([0, T]; L^2(0, 1)),$ 

### which means

$$\|u_{0,h}\|_{L^{4}(\Omega_{T})} \leq C_{T} \|h\|_{H^{\frac{3}{4}}(0,T)}$$

#### and

$$\sup_{0\leq t\leq T} \|u_{0,h}(\cdot,t)\|_{L^2(0,1)} \leq C_T \|h\|_{H^{\frac{3}{4}}(0,T)}.$$

| Introduction | Intro. of NLS | NLS on (0, 1) | Harmonic Analysis | Ref. |
|--------------|---------------|---------------|-------------------|------|
|              |               |               |                   |      |

Some remarks:

Estimations hold for other boundary integrals

 $W_{0,h}(\cdot)h, i=1,2,\cdots$ 

Some remarks:

Estimations hold for other boundary integrals
W<sub>0,h</sub>(·)h, i = 1, 2, ···

**2** The regularities of the boundary data are sharp.

Ref

Some remarks:

Estimations hold for other boundary integrals
W<sub>0,h</sub>(·)h, i = 1, 2, ···

- **2** The regularities of the boundary data are sharp.
- To obtain global existence of the solution, some extra a-priori estimations are needed (under the framework of PDEs). It's done for the second order equation and still open for KdV and 4th order equations.

Ref

References

- J. L. Bona, S.M. Sun and B. Y. Zhang, Nonhomogeneous boundary value problems for one-dimensional nonlinear Schrödinger equations, Preprint.
- J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations, Geom. Funct. Anal. 3 (1993), no. 2, 107-156.
- T. Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, 2003.

< 67 ▶

< ∃ >

# **THANK YOU!**