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The nonlinear Schrödinger equation arises in many scientific fields

such as propagation of light in fiber optics cables, shallow and

deep surface water waves, quantum mechanics, Bose-Einstein

condensate theory, nonlinear optics and plasma physics. (Avron et

al. 78, Karpman 96, Sulem& Sulem 99, Karpman&Shagalov 00,

Pausader 07, 09, etc.)
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Application on Sci-Fic movie

Mission of Defense Advanced Research Projects Agency (DARPA,

3 bil US dollars/year) in Moldovan
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Mathematically, most existing results concern the well-posedness

with IVP

on whole domain Rd . Cazenave, Ginibre&Velo, Kato, etc.

on torus T. Bourgain, Tsutsumi, Pausader, etc.

Monograph book by Cazenave 2003.

With non-homogeneous boundary conditions (IBVP):

on half line R+. Bona, Sun, Zhang, etc.

on bounded domain (0, 1). Bona, Zhang, Zheng, etc.
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Whole domain V.S. with boundary data

Keywords in common:

Mixture of the properties: parabolic and hyperbolic.

Local existence of the solutions, uniqueness, regularity,

smoothing effect.

Global nature: finite time blow-up, global existence,

asymptotic behavior of solutions.

Control theory.
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Whole domain V.S. with boundary data

Keywords with differences:

On Rd and T. Strichartz estimate, harmonic analysis, etc.

On (0, 1). PDE techniques: Multipliers, a priori estimate, etc.
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Our main target

We consider the well-posedness of the nonlinear Initial Boundary

Value Problems (IBVP) of the Nonlinear Schödinger equation on a

finite interval (0, 1).

Key ingredient: find a way to describe the boundary condition of

the IBVPs on (0, 1) as the boundary integral of the solution of the

corresponding operator in the periodic domain T = R \ Z.
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Some works have been done on the Schrödinger equation (Bona,

Sun, Zhang), KdV equation (Capistrano-Filho, Sun, Zhang),

Ginzburg-Landau equation (Li ) and Kuramoto-Sivashinsky

equation (Zhang) recently.
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Second order NLS

Consider Ω = (0, 1) with Dirichlet BC:

(∗)


iut + uxx + λu|u|p−2 = 0, (t, x) ∈ (0,T )× Ω

u(t, 0) = h1(t), u(t, 1) = h2(t), t ∈ (0,T )

u(0, x) = φ(x), x ∈ Ω.
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Fourth order NLS: Navier BC

Consider Ω = (0, 1) with Navier BC:

(∗∗)



iut + uxxxx + λu|u|p−2 = 0, (t, x) ∈ (0,T )× Ω

u(t, 0) = h1(t), u(t, 1) = h2(t), t ∈ (0,T )

uxx(t, 0) = h5(t), uxx(t, 1) = h6(t), t ∈ (0,T )

u(0, x) = φ(x), x ∈ Ω.
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Fourth order NLS: Dirichlet BC

Consider Ω = (0, 1) with Dirichlet BC:

(∗ ∗ ∗)



iut + uxxxx + λu|u|p−2 = 0, (t, x) ∈ (0,T )× Ω

u(t, 0) = h1(t), u(t, 1) = h2(t), t ∈ (0,T )

ux(t, 0) = h3(t), ux(t, 1) = h4(t), t ∈ (0,T )

u(0, x) = φ(x), x ∈ Ω.
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Theorem

Define the solutions of NLS on Ω. Under some assumptions

(*) is well-posed for appropriate regularity of initial and

boundary data. (Bona et al. preprint)

(**) is locally well-posed for appropriate regularity of initial

and boundary data. (Zheng)

(***) is locally well-posed for appropriate regularity of initial

and boundary data. (Zheng)
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Key of the proof: L4 estimate of the Linear system

Solution will be separated by three parts:

1 Nonlinear term: focusing or defocusing;

2 Initial data: BD = 0 and ID = φ;

3 BD 6= 0 and ID = 0. NEW.
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Example

Consider

(∗∗∗)



iut + uxxxx = 0, (t, x) ∈ (0,T )× Ω

u(t, 0) = h1(t), u(t, 1) = h2(t), t ∈ (0,T )

uxx(t, 0) = h5(t), uxx(t, 1) = h6(t), t ∈ (0,T )

u(0, x) = 0, x ∈ Ω.
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Boundary integrals

Lemma

u can be expressed as the form

u(x , t) = W0,hh1 + (W0,hh2)‖x→1−x + W2,hh5 + (W2,hh6)‖x→1−x .

with

W0,hh =
∞∑
k=1

(−2i(kπ)3)

∫ t

0
e i(kπ)4(t−τ)h(τ)dτsin(kπx),

W2,hh =
∞∑
k=1

(−2

3
ikπ)

∫ t

0
e i(kπ)4(t−τ)h(τ)dτsin(kπx)
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L4 estimate of W0,h(·)h

Lemma

Let h ∈ H
3
4 (0,T ). We have

W0,h(·)h ∈ L4(ΩT ) ∩ C ([0,T ]; L2(0, 1)),

which means

‖u0,h‖L4(ΩT ) ≤ CT ‖h‖
H

3
4 (0,T )

and

sup
0≤t≤T

‖u0,h(·, t)‖L2(0,1) ≤ CT ‖h‖
H

3
4 (0,T )

.
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Some remarks:

1 Estimations hold for other boundary integrals

W0,h(·)h, i = 1, 2, · · ·

2 The regularities of the boundary data are sharp.

3 To obtain global existence of the solution, some extra a-priori

estimations are needed (under the framework of PDEs). It’s

done for the second order equation and still open for KdV and

4th order equations.
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THANK YOU!
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