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Motivation

OUR GOAL is to find a numerical algorithm for problem

(o) inf [ [(T0) + h(u)lex

where
e ) is an open bounded subset of RN,
C={ue WhH(Q),u=uondQ}, (p=12),

e  is a convex, continuous, non differentiable function,

e his a non convex, non differentiable function.



Example:
e Multiphase problem

inf{/ \Vu|dx+)\’{u;£%}‘ cu=0onTy, u:lon@Q\Fo}
Q

0 if t=131
p(z)=lzl,  h(t)=3X if t€[0,3)U(5,1]

+o00  otherwise .

e Free boundary problem
1
inf {2/ |V ul?dx + )\’{u > 0}‘ cue WH(Q), u=1on 89}
Q

| ‘2 0 if t <0
V4
+o0o  otherwise .



Min-max formulation

By duality argument, we obtain

|nf /[go (Vu) + h(u)]dx = inf_sup L(u, p),
UecpeK

with

Lw.p) = [ [V p hu) = " (o)
and K = LP(Q;RV).
Aim: To find a saddle point (&, p) of L(u,p) in C x K.

We recall that a saddle point (4, p) of L(u,p) in C x K is charac-
terized by the inequalities

L(d,p) < L(8,p) < L(u, p), Vue C, Vp € K.



General min-max problem

minmax L(u,p) with  L(u,p) = (Au, p) + F(u) — G(p),
ueC peK

e C and K be closed convex non-empty subsets of Hilbert
spaces V and W, respectively,

e A:V — W a continuous linear operator,

e F, G are convex functions supposed to be differentiable and
their derivatives satisfy the Lipschitz condition with constants
Lg/, Lgr, respectively.



Arrow-Hurwicz Method

inf sup L(u, p)
ueC pek

The simplest algorithm [Arrow-Hurwicz] has the form

. oL
Pn+1 = PrOJK (pn + Tnaip(una pn))

. oL
Upy1 = PrOJC (Un - Tna(”mpn))

which converges under stringent conditions (like strict convexity-
concavity) and special choosing of stepsizes 7, — 0, 1" 7y = 00
(cf. M. Kallio and A. Ruszczynski).



An improved version of Arrow-Hurwicz method
inf L
nf. sup (u, p)

L. D. Popov modified the Arrow-Hurwicz method by introducing
“leading” point (up, p,) with constant stepsize 0<7 <1,

un, pn))

pn+1 = Projx (
up+1 = Proj¢ (Un umPn))

Pny1 = Proji ( Pn+1 + 7’* Un,Pn))

. 8L _
Upt1 = PrOJC (Un+1 - Ta(unvpn))
References
e L. D. Popov, A modification of the Arrow-Hurwicz method for

search of saddle points, , Mathematical notes of the Academy
of Sciences of the USSR, 1980, 28, 5, 845-848.



Chambolle-Pock et al. dealt with a typical Lagrangian which is linear

inf sup (Au, p) + (f, u) — (g, p).
ueC pEK

And it is proved that the iterative process

Pn+1 = Proju(pn + a(Au, — g))
Upy1 = Proj(_-(un - B(A*Pn—s-l + f))

Upy1 = 2Upy1 — Up

converges with «, 3 > 0, af8||A||> < 1. Here, A* denotes the

adjoint of operator A. The steps «, 3 can be varied to accelerate

the convergence (i.e. replaced by ap, 5p).

References

e T. Pock, D. Cremers, H. Bischof, and A. Chambolle, An

algorithm for minimizing the Mumford-Shah functional, 2009
IEEE 12th International Conference on Computer Vision,
1133-1140.



General explicit scheme
inf_sup(Au, p) + F(u) — G(p).

ueC PEK
We propose the following algorithm:

Initialization: «, 8 > 0, (uo, po) € C X K, Ty = up.
Pn+1 = Proji(pn + a(At, — G'(pn)))
(E) Uny1 = Projc(un — B(A*ppi1 + F'(un)))
Upy1 = 2UnJrl — Up

Theorem The iterative process (E) converges to a saddle point of
L(u, p) if parameters a, 3 are chosen such that

0<a<LG,, O<ﬁ<Lp’
a,@(HAHZ — LF’LG’) +alg + BLp < 1.
Comments
e If F = G = 0 then the problem reduces to inf sup(Au, p).

ueC peK
e What happens if F and G are not differentiable ?

9/32



Useful trick for non differentiability

By exploiting the notion of epigraph, we can establish

inf. sup<Au p)+F(u)=G(p)= inf  sup (Au,p)+a—¢
pek FlZa oy

= inf sup((AU, p)),
UGCPGK

with following notations in the spaces V x R?, W x R?:

§:= (u,(3,b)), 5= (. ((,)), Al = (Au, (~b,a)), (A) 5= (A*p, (€, ).
((AD. B)) = (Au, p) — b + at,

C:={(v.(a1) : ue C,F(u)<a}, K:=={(p.(¢.1)) : p€K,G(p) <}
The corresponding algorithm is given by

(Pnt1,Cnt1) = Proj;?((Pny Cn) + a(At,, —1))
(Un+1,ant1) = Projz((un, an) — B(A"pnt1,1))

Upy1 = 2Upy1 — Up
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Application to 1st example

(Py) inf m/ﬂnwy + h(u)]dx

u=ug on
Theorem [BP] Assume that up ¢ Z := {h** < h}. Then:
[ ] |nf(7)h) — |nf(73h**),
e usolves (Pp) iff u solves (Pp++) and u(x) ¢ Z for a.e. x € Q.

We apply to the 3-phase free boundary problem
inf { [ [Vuldx+ A|[{u#3}| : u=0o0nTo, u=1onTy}

where Q = (0,1)2, Ty = [0,1] x {0}U{1} x [0, 3] and [y = O\ T'1.

0 if t=13 ) ‘
M =Sx el oG [N Q

400 otherwise .

67 !
0 1 1t
2

Then, the primal solution T does not take values in Z i.e. T(x) €
{0, 5,1} (3 phases).
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Strategy: We treat the convex problem (Pp.) by using the
previous min-max algorithm.

Difficulty:
» h** is piecewise affine, not differentiable (need the projection
on epigraph of h**),
» To recovery 3-phase solution to (Pj), we need the uniqueness
of solution for (P;*)(no strict convexity)
(We assume it).
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Optimal partitions

The optimal solutions are computed for Q = (0, 1)? by using a min-
max algorithm for Pp«+ with A = %
(h** is not differentiable at {0, 5,1})

Peudocoior

Var P
-

~0.7500
05000
— 02500

0000
Max 1000
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Optimal partitions

The optimal solutions are computed for Q = (0, 1)? by using a min-
max algorithm for Pp«+ with A = %
(h** is not differentiable at {0, ,1})

R

Peudocoior

i
[}

07500
B-os000
02500

0000
Max 1000
Min: 0,000

-
=
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Optimal partitions

The optimal solutions are computed for Q = (0, 1)? by using a min-
max algorithm for Pp«+ with A = %
(h** is not differentiable at {0, ,1})

-
m-

| .

15/32



Optimal partitions
The optimal solutions are computed for Q = (0, 1)? by using a min-

max algorithm for Pp«+ with A = %
(h** is not differentiable at {0, ,1})

Peudocoior
1000

~0.7500
05000

02500

Mo
Min: 0,000
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Optimal partitions

The optimal solutions are computed for Q = (0, 1)? by using a min-
max algorithm for Pp«+ with A = %
(h** is not differentiable at {0, ,1})

Peudocoior
ar
1000

—0.7500
05000

02500

0000
Max 1000
Min: 0,000
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Application to 2nd example

Free boundary problem
1
inf {2/ Vul|?dx + A\{u > 0}} ue WH(Q), u=1on 39}
Q

Remark

» We cannot use the previous convexification since Theorem
[BP] only works in case ¢ = | - |.
» We need another convexification recipe which uses a

representation in higher dimension [G. Bouchitte, |. Fragala
2016].
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Primal-dual formulation

Convex representation in higher dimension
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Primal-dual formulation

Convex representation in higher dimension

Subgraph functions

0 |
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1 ift<u(x 1 ift<o0
1o(x,t) =
0 ift> u(x 0 ift>0




Primal-dual formulation

Convex representation in higher dimension

Theorem inf Py = supP; = inf My,

(Ps)inf. [ [o(T) + ()l

(Pi) sup{ /G ]

(M) inf{E(v) Ve 6}

U-VuOdHN:aelC,divazoian]R}

where E C are defined later and:
K= {0’ = (0%,0") € X1(Q x R) : o%(x,t) + h(t) > 0,Vt € D, a.e. x;

ot(x, t) + h(t) = (0% (x, t)) for a.e. (x, t)},
D = {t € R : h(t) is discontinuous at t}.
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Convexified problem on BV, (Q x R; [0, 1])

e The constraint is:
C={veBVL(QxR):v—1eLHQxR),v=1,o0ndQ xR},

e The convex energy is given by

E(v):sup{/ U-DV:UEIC}:/ h(t, Dv),
QxR QxR

7 —2(ZE) + h(t)]  if 2t <0,
with h(t,zX,zt) _ { z'[p( Z )+ h(t)] ifz |
+00 otherwise.

It satisfies :
E(1,) = /Q [p(V1) + h(u)]dx

so that we can rewrite (Py) as

inf{E(1,):1, € C} (thus infPp > inf M)
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Link with the initial problem in R"

Theorem It holds:
e if u minimizes (Pp) then 1, minimize (My).
e if v solves (M) then us(x) := inf{t € R: v(x,t) < s} solves
(Pp) for a.e. s € (0,1).
e If (Ph) admits a finite number of solutions {uy, ..., ux} then

k k
argmin = E) = 0i1,, 06;€][0,1], 0; =1.
C i
i=1 i=1

t
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Primal-dual formulation

Convex representation in higher dimension

In summary, the convex representation in higher dimension

(Pn) JQE/Q[QD(VU) + h(u)]dx = inf{E(v) ivE 6} (Mp)

= inf sup/ o - Dv
veCoek JOXR
allows to recover solutions of the primal problem (Pp) by a closed
chain relation

v minimizes (Mp,) = us minimizes (Py) = 1,, minimizes (Mp).

Hence, we are interested in the following model for numerical com-
putation:

inf sup(Au,
uecp€£< p)

where A stands for gradient operator V.
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Semi-implicit scheme

Assume that A*A is positive definite. We propose a semi-implicit
scheme as following

pnt1 = Projk(pn + a(Au,))
(1) Uni1 = Projc(un — B(A*A) (A" pni1))
Upt1 = 2Upy1 — Up
Remark
» We just replaced upi1 = Projc(un — B(A*pnt1)) in explicit
scheme by tp+1 = Projc(un — B(A*A) ™ (A*pat1))
» When A stands for V, A*A = —A and the replacement is
equivalent to solve
—Aw =g, w=0o0n0d0.
Theorem The algorithm (/) converges to a saddle point of L(u, p)
if the positive stepsizes «, 8 are chosen such that
af < 1.
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2nd Example
inf {;/ IVulPdx + A[{u>0}|:ue W'(Q), u=1on 89} .
Q

~> Free boundary Pb in term of D = {u > 0},

u solves
ty
—Aup=0inD u=1
up =1on0Q 1
up = 0in Q\D. 0
_-u=
~> Shape functional _’// X2
1
J:D—>>\|D|+/ Vup|?. X
2 Ja

e In 2-dimension, we take Q = (0, 1)?
for example.



The convex representation in higher dimension gives

/ |Vul?dx + A[{u > 0}| = inf sup / o-Dv
Qx[0,1]

u= lon o 2 velC oek

~

C:{v(x,t)EBVOO(QX]R):v:lfort<0,
v=0fort>1, v:1onan[o,1]}
K= {a:(ax,at) e X1(Q % (0,1)) :

1
ot +2 = S[o*2ae on Qx(0,1), 0f(x,0) = 0 ae. on Q}

t v(z,t) =0

Qx[0,1] ~ S
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Discrete settings in explicit and implicit schemes

28/32

f 2d f -Dv .
. ].IrclnBQ 2/|Vu| x + A{u > 0}| = chfg,‘é /Qx[Ol]U v

af,’ﬂ = Projf(ch + aV"vh)
Explicit: Vi =i+ Bdivh(agﬂ)

VZH = 2V:+1 -,
where «, 3 is chosen such that afc? < 1 with ¢, := [|VI]| =
2v/N +1/h and h being the mesh size.

oh. 1 = Proji(ch + aVvh)
Semi-implicit: v = vh - g(ah)~(divi(ah, )
Vﬁ-s—l = 2Vri17+1 — v,
where «, (5 is chosen such that a8 < 1. The implicitness is realized

by solving equation

—Aw =gq, w=0on0df.



Numerical simulation

/ IVul?dx + X|{u > 0}| = inf sup / o-Dv.
Qx[0,1]

u= 1on o 2 veC sekC

us(x) == inf{t e R: v(x,t) < s}
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Explicit-implicit computational comparison

h _ h h h—h h _ h h h—h
opi1 = Projg (o, +aVTvy) opi1 = Proji (o, +aVTvy)
h _,h she _h h _ ,h h\—1(A:,h(~h
(E) Vn+1 =V + ﬁdlv (0n+1) (I) Vn+1 =Vy — B(A ) (dIV (On+1))
—h _ h h —h _ h h
Vo1 = 2Vn-i—l ~ Vn Vit1 = 2Vn—',—l — Vs
-10° 104
1 T T T
—o— Explicit —e— Explicit
—m— Implicit 4H —m— Implicit N
2] 0
205 g
= 0.0 b 3
5] S 9l B
g 3
0 7\ - | " | " | =\7 07\ | | | i
50 100 150 200 250 50 100 150 200 250
VN VN

e The solver used for the inverse Laplacian operator is AGMGPAR

(A parallel version of Algebraic Multigrid method).
e Ours algorithms are implemented with MPI (Massage Passing In-

terface) providing an effective environment for parallel computation.
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THANK YOU FOR YOUR ATTENTION !
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