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Motivation

OUR GOAL is to find a numerical algorithm for problem

(Ph) inf
u∈C

∫
Ω

[ϕ(∇u) + h(u)]dx

where

• Ω is an open bounded subset of RN ,

• C =
{
u ∈W 1,p(Ω), u = u0 on ∂Ω

}
, (p = 1, 2),

• ϕ is a convex, continuous, non differentiable function,

• h is a non convex, non differentiable function.
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Example:

• Multiphase problem

inf

{∫
Ω
|∇u|dx + λ

∣∣∣{u 6= 1

2
}
∣∣∣ : u = 0 on Γ0, u = 1 on ∂Ω \ Γ0

}

ϕ(z) = |z |, h(t) =


0 if t = 1

2

λ if t ∈ [0, 1
2 ) ∪ ( 1

2 , 1]

+∞ otherwise .

• Free boundary problem

inf

{
1

2

∫
Ω
|∇u|2dx + λ

∣∣∣{u > 0}
∣∣∣ : u ∈W 1,2(Ω), u = 1 on ∂Ω

}

ϕ(z) =
|z |2

2
, h(t) =


0 if t ≤ 0

λ if 0 < t ≤ 1

+∞ otherwise .
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Min-max formulation

By duality argument, we obtain

inf
u∈C

∫
Ω

[ϕ(∇u) + h(u)]dx = inf
u∈C

sup
p∈K

L(u, p),

with

L(u, p) =

∫
Ω

[∇u · p + h(u)− ϕ∗(p)]dx

and K = Lp
′
(Ω;RN).

Aim: To find a saddle point (û, p̂) of L(u, p) in C × K .

We recall that a saddle point (û, p̂) of L(u, p) in C × K is charac-
terized by the inequalities

L(û, p) ≤ L(û, p̂) ≤ L(u, p̂), ∀u ∈ C , ∀p ∈ K .
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General min-max problem

min
u∈C

max
p∈K

L(u, p) with L(u, p) = 〈Au, p〉+ F (u)− G (p),

• C and K be closed convex non-empty subsets of Hilbert
spaces V and W , respectively,

• A : V →W a continuous linear operator,

• F , G are convex functions supposed to be differentiable and
their derivatives satisfy the Lipschitz condition with constants
LF ′ , LG ′ , respectively.
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Arrow-Hurwicz Method

inf
u∈C

sup
p∈K

L(u, p)

The simplest algorithm [Arrow-Hurwicz] has the form

pn+1 = ProjK

(
pn + τn

∂L

∂p
(un, pn)

)
un+1 = ProjC

(
un − τn

∂L

∂u
(un, pn)

)
which converges under stringent conditions (like strict convexity-
concavity) and special choosing of stepsizes τn → 0,

∑∞
n=0 τn = ∞

(cf. M. Kallio and A. Ruszczynski).
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An improved version of Arrow-Hurwicz method

inf
u∈C

sup
p∈K

L(u, p)

L. D. Popov modified the Arrow-Hurwicz method by introducing
“leading” point (un, pn) with constant stepsize 0 < τ < τ0,

pn+1 = ProjK

(
pn + τ

∂L

∂p
(un, pn)

)
un+1 = ProjC

(
un − τ

∂L

∂u
(un, pn)

)
pn+1 = ProjK

(
pn+1 + τ

∂L

∂p
(un, pn)

)
un+1 = ProjC

(
un+1 − τ

∂L

∂u
(un, pn)

)
.

References

• L. D. Popov, A modification of the Arrow-Hurwicz method for
search of saddle points, , Mathematical notes of the Academy
of Sciences of the USSR, 1980, 28, 5, 845–848.
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Chambolle-Pock et al. dealt with a typical Lagrangian which is linear

inf
u∈C

sup
p∈K
〈Au, p〉+ 〈f , u〉 − 〈g , p〉.

And it is proved that the iterative process
pn+1 = ProjK (pn + α(Aun − g))

un+1 = ProjC (un − β(A∗pn+1 + f ))

un+1 = 2un+1 − un

converges with α, β > 0, αβ‖A‖2 < 1. Here, A∗ denotes the
adjoint of operator A. The steps α, β can be varied to accelerate
the convergence (i.e. replaced by αn, βn).
References

• T. Pock, D. Cremers, H. Bischof, and A. Chambolle, An
algorithm for minimizing the Mumford-Shah functional, 2009
IEEE 12th International Conference on Computer Vision,
1133-1140.
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General explicit scheme

inf
u∈C

sup
p∈K
〈Au, p〉+ F (u)− G (p).

We propose the following algorithm:
Initialization: α, β > 0, (u0, p0) ∈ C × K , u0 = u0.

(E )


pn+1 = ProjK (pn + α(Aun − G ′(pn)))

un+1 = ProjC (un − β(A∗pn+1 + F ′(un)))

un+1 = 2un+1 − un

Theorem The iterative process (E ) converges to a saddle point of
L(u, p) if parameters α, β are chosen such that

0 < α <
1

LG ′
, 0 < β <

1

LF ′
,

αβ(‖A‖2 − LF ′LG ′) + αLG ′ + βLF ′ < 1.

Comments

• If F = G = 0 then the problem reduces to inf
u∈C

sup
p∈K
〈Au, p〉.

• What happens if F and G are not differentiable ?
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Useful trick for non differentiability

By exploiting the notion of epigraph, we can establish

inf
u∈C

sup
p∈K
〈Au, p〉+ F (u)− G (p) = inf

u∈C
F (u)≤a

sup
p∈K

G(p)≤ζ

〈Au, p〉+ a− ζ

= inf
ũ∈C̃

sup
p̃∈K̃
〈〈Ãũ, p̃〉〉,

with following notations in the spaces V × R2, W × R2:

ũ := (u, (a, b)), p̃ := (p, (ζ, ξ)), Ãũ := (Au, (−b, a)),
(
Ã
)∗

p̃ = (A∗p, (ξ,−ζ)),

〈〈Ãũ, p̃〉〉 := 〈Au, p〉 − bζ + aξ,

C̃ := {(u, (a, 1)) : u ∈ C ,F (u) ≤ a}, K̃ := {(p, (ζ, 1)) : p ∈ K ,G (p) ≤ ζ}.
The corresponding algorithm is given by

(pn+1, ζn+1) = Proj
K̃

((pn, ζn) + α(Aun,−1))

(un+1, an+1) = Proj
C̃

((un, an)− β(A∗pn+1, 1))

un+1 = 2un+1 − un.
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Application to 1st example

(Ph) inf
u=u0 on ∂Ω

∫
Ω

[|∇u|+ h(u)]dx

Theorem [BP] Assume that u0 /∈ Z := {h∗∗ < h}. Then:

• inf(Ph) = inf(Ph∗∗),

• u solves (Ph) iff u solves (Ph∗∗) and u(x) /∈ Z for a.e. x ∈ Ω.

We apply to the 3-phase free boundary problem

inf
{∫

Ω |∇u|dx + λ
∣∣{u 6= 1

2}
∣∣ : u = 0 on Γ0, u = 1 on Γ1

}
where Ω = (0, 1)2, Γ1 = [0, 1]×{0}∪{1}× [0, 1

2 ] and Γ0 = ∂Ω\Γ1.

h(t) =


0 if t = 1

2

λ if t ∈ [0, 1
2 ) ∪ ( 1

2 , 1]

+∞ otherwise .
t0 1

2
1

λ

Ω

Then, the primal solution u does not take values in Z i.e. u(x) ∈
{0, 1

2 , 1} (3 phases).
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Strategy: We treat the convex problem (Ph∗∗) by using the
previous min-max algorithm.

Difficulty:

I h∗∗ is piecewise affine, not differentiable (need the projection
on epigraph of h∗∗),

I To recovery 3-phase solution to (Ph), we need the uniqueness
of solution for (P∗∗h )(no strict convexity)
(We assume it).
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Optimal partitions

The optimal solutions are computed for Ω = (0, 1)2 by using a min-
max algorithm for Ph∗∗ with λ = 3

4
(h∗∗ is not differentiable at {0, 1

2 , 1})
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Application to 2nd example

Free boundary problem

inf

{
1

2

∫
Ω
|∇u|2dx + λ

∣∣∣{u > 0}
∣∣∣ : u ∈W 1,2(Ω), u = 1 on ∂Ω

}
Remark

I We cannot use the previous convexification since Theorem
[BP] only works in case ϕ = | · |.

I We need another convexification recipe which uses a
representation in higher dimension [G. Bouchitte, I. Fragala
2016].
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Primal-dual formulation
Convex representation in higher dimension

References

[1] G. Alberti, G. Bouchitté, and G. Dal Maso, The calibration
method for the Mumford-Shah functional and
free-discontinuity problems, Calc. Var. Partial Differential
Equations 16 (2003), 299-333.

[2] G. Bouchitté, I. Fragalà, Duality for non-convex variational
problems, C. R. Math. Acad. Sci. Paris 353 (2015), no. 4,
375-379.

[3] G. Bouchitté, I. Fragalà, A duality theory for non-convex
variational problems, submitted (arxiv 2016).
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Primal-dual formulation
Convex representation in higher dimension

Subgraph functions

x

t

x

u(x)

0

Ω × R

Gu

1u(x, t) = 1

1u(x, t) = 0

x

t

0

Ω × R

10(x, t) = 1

10(x, t) = 0

1u(x , t) =

{
1 if t ≤ u(x)

0 if t > u(x)
10(x , t) =

{
1 if t ≤ 0

0 if t > 0

20 / 32



Primal-dual formulation
Convex representation in higher dimension

Theorem inf Ph = supP∗h = infMh

(Ph) inf
u∈C

∫
Ω

[ϕ(∇u) + h(u)]dx

(P∗h) sup

{∫
Gu0

σ · νu0 dHN : σ ∈ K, div σ = 0 in Ω× R

}
(Mh) inf

{
Ê (v) : v ∈ Ĉ

}
where Ê , Ĉ are defined later and:

K =
{
σ = (σx , σt) ∈ X1(Ω× R) : σt(x , t) + h(t) ≥ 0,∀t ∈ D, a.e. x ;

σt(x , t) + h(t) ≥ ϕ∗(σx(x , t)) for a.e. (x , t)
}
,

D = {t ∈ R : h(t) is discontinuous at t}.
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Convexified problem on BV∞(Ω× R; [0, 1])

• The constraint is:

Ĉ =
{
v ∈ BV∞(Ω× R) : v − 10 ∈ L1(Ω× R), v = 1u0 on ∂Ω× R

}
,

• The convex energy is given by

Ê (v) = sup

{∫
Ω×R

σ · Dv : σ ∈ K
}

=

∫
Ω×R

h̃(t,Dv),

with h̃(t, zx , z t) =

{
−z t [ϕ(−z

x

z t ) + h(t)] if z t < 0,

+∞ otherwise.

It satisfies :

Ê (1u) =

∫
Ω

[ϕ(∇u) + h(u)]dx

so that we can rewrite (Ph) as

inf{Ê (1u) : 1u ∈ Ĉ} ( thus inf Ph ≥ infMh)
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Link with the initial problem in RN

Theorem It holds:

• if u minimizes (Ph) then 1u minimize (Mh).

• if v solves (Mh) then us(x) := inf{t ∈ R : v(x , t) ≤ s} solves
(Ph) for a.e. s ∈ (0, 1).

• If (Ph) admits a finite number of solutions {u1, ..., uk} then

argmin
Ĉ

(Ê ) =
k∑

i=1

θi1ui , θi ∈ [0, 1],
k∑

i=1

θi = 1.

x

t

0

Ω × R

us(x)

v(x, t) > s

v(x, t) ≤ s

23 / 32



Primal-dual formulation
Convex representation in higher dimension

In summary, the convex representation in higher dimension

(Ph) inf
u∈C

∫
Ω

[ϕ(∇u) + h(u)]dx = inf
{
Ê (v) : v ∈ Ĉ

}
(Mh)

= inf
v∈Ĉ

sup
σ∈K

∫
Ω×R

σ · Dv

allows to recover solutions of the primal problem (Ph) by a closed
chain relation

v minimizes (Mh) =⇒ us minimizes (Ph) =⇒ 1us minimizes (Mh).

Hence, we are interested in the following model for numerical com-
putation:

inf
u∈C

sup
p∈K
〈Au, p〉

where A stands for gradient operator ∇.
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Semi-implicit scheme

Assume that A∗A is positive definite. We propose a semi-implicit
scheme as following

(I )


pn+1 = ProjK (pn + α(Aun))

un+1 = ProjC (un − β(A∗A)−1(A∗pn+1))

un+1 = 2un+1 − un

Remark
I We just replaced un+1 = ProjC (un − β(A∗pn+1)) in explicit

scheme by un+1 = ProjC (un − β(A∗A)−1(A∗pn+1))
I When A stands for ∇, A∗A = −∆ and the replacement is

equivalent to solve

−∆w = q, w = 0 on ∂Ω.

Theorem The algorithm (I ) converges to a saddle point of L(u, p)
if the positive stepsizes α, β are chosen such that

αβ < 1.
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2nd Example

inf

{
1

2

∫
Ω
|∇u|2dx + λ

∣∣{u > 0}
∣∣ : u ∈W 1,2(Ω), u = 1 on ∂Ω

}
.

; Free boundary Pb in term of D = {u > 0},

t

x2

x1

1 -
u = 1

D

u = 0

u solves 
−∆uD = 0 in D

uD = 1 on ∂Ω

uD = 0 in Ω\D.

; Shape functional

J : D → λ|D|+ 1

2

∫
Ω
|∇uD |2.

• In 2-dimension, we take Ω = (0, 1)2

for example.
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The convex representation in higher dimension gives

inf
u=1 on ∂Ω

1

2

∫
Ω
|∇u|2dx + λ|{u > 0}| = inf

v∈Ĉ
sup
σ∈K

∫
Ω×[0,1]

σ · Dv

Ĉ =
{
v(x , t) ∈ BV∞(Ω× R) : v = 1 for t < 0,

v = 0 for t > 1, v = 1 on ∂Ω× [0, 1]
}

K =
{
σ = (σx , σt) ∈ X1(Ω× (0, 1)) :

σt + λ ≥ 1

2
|σx |2 a.e. on Ω×(0, 1), σt(x , 0) ≥ 0 a.e. on Ω

}

x

t

0

Ω × [0, 1]  

v(x, t) = 1

v(x, t) = 0
1

v
=

1 v
=

1
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Discrete settings in explicit and implicit schemes

inf
u=1 on ∂Ω

1

2

∫
Ω
|∇u|2dx + λ|{u > 0}| = inf

v∈C
sup
σ∈K

∫
Ω×[0,1]

σ · Dv .

Explicit:


σhn+1 = ProjhK (σhn + α∇hvhn)

vhn+1 = vhn + β divh(σhn+1)

vhn+1 = 2vhn+1 − vhn ,

where α, β is chosen such that αβc2
h < 1 with ch := ||∇h|| =

2
√
N + 1/h and h being the mesh size.

Semi-implicit:


σhn+1 = ProjhK (σhn + α∇hvhn)

vhn+1 = vhn − β(∆h)−1(divh(σhn+1))

vhn+1 = 2vhn+1 − vhn ,

where α, β is chosen such that αβ < 1. The implicitness is realized
by solving equation

−∆w = q, w = 0 on ∂Ω.
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Numerical simulation

inf
u=1 on ∂Ω

1

2

∫
Ω
|∇u|2dx + λ|{u > 0}| = inf

v∈C
sup
σ∈K

∫
Ω×[0,1]

σ · Dv .

us(x) := inf{t ∈ R : v(x , t) ≤ s}
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Explicit-implicit computational comparison

(E )


σhn+1 = ProjhK (σhn + α∇hvhn)

vhn+1 = vhn + β divh(σhn+1)

vhn+1 = 2vhn+1 − vhn ,

(I )


σhn+1 = ProjhK (σhn + α∇hvhn)

vhn+1 = vhn − β(∆h)−1(divh(σhn+1))

vhn+1 = 2vhn+1 − vhn ,

50 100 150 200 250
0

0.5

1
·105

3
√

N

It
er

at
io

ns

Explicit
Implicit

50 100 150 200 250
0

2

4

·104

3
√

N
Se

co
nd

s

Explicit
Implicit

• The solver used for the inverse Laplacian operator is AGMGPAR
(A parallel version of Algebraic Multigrid method).
• Ours algorithms are implemented with MPI (Massage Passing In-
terface) providing an effective environment for parallel computation.
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Thank You for Your Attention !
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