

Forward-backward correlations and decorrelations

Wojciech Broniowski

Collectivity and correlations in high-energy hadron and nuclear collisions, **Benasque**, 5-18 August 2018

research with Piotr Bożek

Outline

- Strings/flux tubes: phenomenological FB picture
- Collectivity: shape-flow transmutation
- FB flow decorrelation (torque effect)
- FB multiplicity correlations

String

Image: A math a math

String models '70

Dual Parton Model (Capella et al.)

Dual parton moael

Fig. 1.2. Dominant two-chain diagram describing multiparticle production in high energy proton-proton collisions. The two quark-diquark chain structure results from an s-

Lund model (Anderson et al.)

One quark in a proton is hit by a virtual photon (or a W or another hadron), and a colour flux tube is stretched

Basis of many successful codes (Pythia, HIJING, AMPT, EPOS, ...)

229

[CGC+Pythia, Schenke, Schlichting, Tribedy, Venugopalan 2016]

Strings are spatial objects

String end-points fluctuate in η , uniform production of particles from the string, rescattering (!)

(日) (同) (三) (三)

Shape-flow transmutation

Shape-flow transmutation

many particles, final/intermediate-state interactions, generation of flow

FB shape similarity \rightarrow flow similarity \rightarrow ridges

The FB similarity is a result of early dynamics and is not obtained from hydro or transport; these use it to generate the ridge correlations via the shape-flow transmutation

Surfers

・ロト ・回ト ・ヨト ・

FB correlations

- One expects strong FB correlations, e.g., for FB event plane angles (direction of flow), harmonic flow magnitude, or $\langle p_T \rangle$ [Piotr Bożek's talk last week]
- Focus on departures from perfect correlations
- Need to use measures that cancel trivial decorrelations, e.g. from statistical hadronization (standard)

Torque

W. Broniowski

Image: A image: A

2

The torque effect

Twisted event-plane angles

[Bożek, WB, Moreira 2010]

F and B initial transverse distributions are not exactly the same

Average emission profiles

Simpler than fluctuating strings (only in the few following slides)

FLUCTURTING LENGTH

Phenomenological average emission profiles

Torque angle distribution from Glauber

width of the torque angle distribution

(日) (同) (三) (三)

2-bin measure

$$\cos(2\Delta_{FB})\{2\} = \frac{\langle \langle \cos[2(\phi_i(F) - \phi_j(B))] \rangle \rangle}{\sqrt{\langle v_2^2(F) \rangle} \sqrt{\langle v_2^2(B) \rangle}}$$

[Glauber w/binary + 3D viscous hydro + THERMINATOR]

W. Broniowski

3-bin measure (CMS)

$$r_2(\eta_a, \eta_b) = \frac{\langle \langle \cos[n(\phi_i(-\eta_a) - \phi_j(\eta_b))] \rangle \rangle}{\langle \langle \cos[n(\phi_i(\eta_a) - \phi_j(\eta_b))] \rangle \rangle} \simeq \frac{\cos[n(\Psi(-\eta_a) - \Psi(\eta_b)]}{\cos[n(\Psi(\eta_a) - \Psi(\eta_b)]}$$

only pairs with large rapidity gap $\eta_a - \eta_b
ightarrow$ nonflow under control

- effect seen in the CMS data!
- semiquantitative agreement, need for more fluctuations
- other calculation (AMPT) also reproduce the data

 $r_n(\eta_a,\eta_b)$ for Au-Au@200GeV

predictions [PB, WB, Olszewski 2015]

larger torque at RHIC than at the LHC energies

 $r_n(\eta_a,\eta_b)$ for Au-Au@200GeV

Moawu for STAR@QM18

larger torque at RHIC than at the LHC energies

Fluctuations in energy deposition from each string

[PB, WB 2015, 2017] [Brodsky, Gunion, Kuhn, PRL 39 (1977) 1120]

- the position (in rapidity) of string end-points is random
- Iong range fluctuations
- ullet each string fluctuates differently \longrightarrow event-plane decorrelation in p-Pb
- average emission profile the same as in the previous model

$r_n(\eta_a, \eta_b)$ w/fluctuating strings (initial state only)

fluctuations improve description except for the most central collisions

FB correlations

Fluctuating strings in p-Pb

end-point fluctuations crucial to describe the event-plane decorrelation in p-Pb

W. Broniowski	FB correlations	Benasque 2018

21 / 30

The slope F_n^{η}

- fair description of mid-central collisions
- overestimates decorrelation for central collisions
- $F_4 \simeq 4F_2$

FB multiplicity fluctuations

Definitions

$$C(\eta_1, \eta_2) = \frac{\langle \rho(\eta_1, \eta_2) \rangle}{\langle \rho(\eta_1) \rangle \langle \rho(\eta_2) \rangle}$$

ATLAS:

$$C_N(\eta_1, \eta_2) = \frac{C(\eta_1, \eta_2)}{\int_{-Y}^{Y} d\eta_2 C(\eta_1, \eta_2) \int_{-Y}^{Y} d\eta_1 C(\eta_1, \eta_2)}$$

[Bzdak, Teaney 2013, Jia 2015]

$$a_{nm} = \int_{-Y}^{Y} \frac{d\eta_1}{Y} \int_{-Y}^{Y} \frac{d\eta_2}{Y} C(\eta_1, \eta_2) T_n\left(\frac{\eta_1}{Y}\right) T_m\left(\frac{\eta_1}{Y}\right)$$
$$T_n(x) = \sqrt{2 + 1/2} P_n(x)$$

 \boldsymbol{Y} - pseudorapidity acceptance

47 ▶

э

FB multiplicity correlations w/fluctuating strings

Average number of particles: $\langle N(\eta) \rangle = \langle N_A \rangle \langle f_A(\eta) \rangle + \langle N_B \rangle \langle f_B(\eta) \rangle$ with symmetric and antisymmetric parts $\langle f_{A,B}(\eta) \rangle = f_s(\eta) \pm f_a(\eta)$

With $N_{+} = N_{A} + N_{B}$, $N_{-} = N_{A} - N_{B}$, we have (for symmetric collisions)

$$C(\eta_{1},\eta_{2}) = 1 + \frac{1}{N_{+}^{2}} \Big\{ \langle N_{+} \rangle \operatorname{cov}_{A,B}(\eta_{1},\eta_{2}) \\ + \operatorname{var}(N_{+}) + \operatorname{var}(N_{-}) \frac{f_{a}(\eta_{1})f_{a}(\eta_{2})}{f_{s}(\eta_{1})f_{s}(\eta_{2})} \Big\} \sim \frac{1}{N_{+}}$$

Correlations in elem. production + fluctuation of the number of sources [Bzdak & Teaney 2013]

$$\mathrm{cov}_{A,B}(\eta_1,\eta_2) = rac{y_b^2 - \eta_1 \eta_2 - y_b |\eta_1 - \eta_2|}{4y_b^2}$$

Results for C_N

Generation of the saddle in the ridge (seen in experiment) Fluctuating string length yields a large contribution

Results for C_N

Generation of the saddle in the ridge (seen in experiment) Fluctuating string length yields a large contribution

Results for C_N

Generation of the saddle in the ridge (seen in experiment) Fluctuating string length yields a large contribution

a_{nm} coefficients

Pb-Pb@2.76TeV,
$$c = 35 - 40\%$$
 ($N_{\rm ch} = 110$)

(filled – ATLAS, open – model)

ATLAS values of a_{11} were used to determine the proportionality coefficient between $N_{\rm ch}$ and the average number of sources for each reaction

Semiquantitative agreement also in [Monnai, Schenke 2015] and in AMPT

Scaling with the number of sources

Scaling with the number of sources

From multiplicity data $dN_{\rm ch}/d\eta \simeq (3-4) \times N_W$ and $dN_{\rm ch}/d\eta \simeq 1.3 \times Q_W$ \rightarrow wounded constituents)

Scaling with the number of sources

 $N_{\rm ch} = 5.1 N_A$ for p-Pb@5.02TeV $N_{\rm ch} = 8.1 N_+$ for p-p@13TeV – requires sources at partonic level

Conclusions

э

Image: A matrix

Conclusions

Uniform description of (very rich) data demanded:

- spectra in p_T and y, v_n , HBT radii
- 2 $\langle p_T \rangle$ (de)correlation measures [PB's talk last week]
- Ilow (de)correlation measures
- a_{nm} coefficients
- 5 ...

Rapidity modeling of the initial state "external" to collectivity