On the proper formulation of the high-energy $Q C D$

 evolution beyond leading order
Edmond Iancu

IPhT, Université Paris-Saclay
w/ B. Ducloué, A.H. Mueller, G.Soyez, and D.N. Triantafyllopoulos

Introduction

- The CGC formalism is now being promoted to NLO
- NLO versions for the BK and B-JIMWLK equations
(Balitsky and Chirilli, 2008, 2013; Kovner, Lublinsky, and Mulian, 2013)
- NLO impact factor for particle production in $p A$ collisions
(Chirilli, Xiao, and Yuan, 2012; Mueller and Munier, 2012)
- The strict NLO approximations turned out to be problematic

Lappi, Mäntysaari, arXiv:1502.02400

Stasto, Xiao, and Zaslavsky, arXiv:1307.4057

Introduction

- The CGC formalism is now being promoted to NLO
- NLO versions for the BK and B-JIMWLK equations (Balitsky and Chirilli, 2008, 2013; Kovner, Lublinsky, and Mulian, 2013)
- NLO impact factor for particle production in $p A$ collisions (Chirilli, Xiao, and Yuan, 2012; Mueller and Munier, 2012)
- Main problems were solved via appropriate resummations in pQCD

Lappi, Mäntysaari, arXiv:1601.06598

Ducloué, Lappi, and Zhu, arXiv:1703.04962

- The CGC formalism is now being promoted to NLO
- NLO versions for the BK and B-JIMWLK equations (Balitsky and Chirilli, 2008, 2013; Kovner, Lublinsky, and Mulian, 2013)
- NLO impact factor for particle production in $p A$ collisions (Chirilli, Xiao, and Yuan, 2012; Mueller and Munier, 2012)
- Main problems were solved via appropriate resummations in pQCD
- Collinear resummation for NLO BK ("time-ordering") (G. Beuf, '14; E.I., J. Madrigal, A. Mueller, G. Soyez, D. Triantafyllo..., '15)
- All-order resummed kernel, full NLO accuracy, stable evolution ©

Introduction

- The CGC formalism is now being promoted to NLO
- NLO versions for the BK and B-JIMWLK equations (Balitsky and Chirilli, 2008, 2013; Kovner, Lublinsky, and Mulian, 2013)
- NLO impact factor for particle production in $p A$ collisions (Chirilli, Xiao, and Yuan, 2012; Mueller and Munier, 2012)
- Main problems were solved via appropriate resummations in pQCD
- Collinear resummation for NLO BK ("time-ordering") (G. Beuf, '14; E.I., J. Madrigal, A. Mueller, G. Soyez, D. Triantafyllo..., '15)
- All-order resummed kernel, full NLO accuracy, stable evolution ©
- Incomplete resummation of the initial condition: no full access to physics ©
- A new approach which avoids the need for resumming the initial condition
- non-local evolution in the target rapidity variable
- Recovering full NLO accuracy looks (still) problematic ©

Motivation: Dilute-Dense Scattering

- Deep inelastic scattering in the dipole picture

- Forward particle production in proton-nucleus collisions at the LHC

Dipole-hadron scattering

- A single scattering (leading-twist) \Longrightarrow a measure of the gluon density

$$
T(r, x) \simeq \alpha_{s} C_{F} r^{2} \frac{x G\left(x, 1 / r^{2}\right)}{\pi R^{2}} \simeq r^{2} Q_{s}^{2}(x)
$$

- correct so long as $T(r, x) \leq 1$: unitarity constraint
- for large dipoles, $r \gtrsim 1 / Q_{s}(x)$, multiple scattering becomes important
- 'Duality': gluon saturation $n \sim 1 / \alpha_{s} \longleftrightarrow$ unitarization $T \sim 1$

Multiple scattering (all-twist)

- Transverse coordinate is a "good quantum number": $v_{\perp}=k_{\perp} / q^{+} \ll 1$

- The only effect of the scattering: a color rotation (Wilson line)

$$
V_{\boldsymbol{x}}=\mathrm{T} \exp \left\{\mathrm{i} g \int \mathrm{~d} x^{+} A_{a}^{-}\left(x^{+}, \boldsymbol{x}\right) t^{a}\right\} \quad S_{x y}(Y) \equiv \frac{1}{N_{c}}\left\langle\operatorname{tr}\left(V_{\boldsymbol{x}} V_{y}^{\dagger}\right)\right\rangle_{Y}
$$

- $\langle\ldots\rangle_{Y}$: average over the target gluon distribution evolved to $Y=\ln (1 / x)$
- Dipole scattering amplitude: $T(r, x)=1-S_{x y}(Y)$ with $r=|\boldsymbol{x}-\boldsymbol{y}|$

High energy evolution at LO

- The evolution can be associated with either the wavefunction of the dilute projectile ("BK"), or the dense gluon distribution of the target ("JIMWLK")
- The analysis is conceptually simpler for the dilute projectile

- Leading logarithmic approximation: powers of $\left(\alpha_{s} N_{c} / \pi\right) \ln \left(s / Q_{0}^{2}\right)$

One step in the high energy evolution

- 'Real corrections' : the soft gluon crosses the shockwave

- 'Virtual corrections' : evolution in the initial/final state

- Large N_{c} : the original dipole splits into two new dipoles

$$
\frac{\partial S_{\boldsymbol{x} \boldsymbol{y}}}{\partial Y}=\frac{\bar{\alpha}_{s}}{2 \pi} \int \mathrm{~d}^{2} \boldsymbol{z} \mathcal{M}_{\boldsymbol{x} \boldsymbol{y} \boldsymbol{z}}\left[S_{\boldsymbol{x} \boldsymbol{z}} S_{\boldsymbol{z} \boldsymbol{y}}-S_{\boldsymbol{x} \boldsymbol{y}}\right]
$$

- Dipole kernel: BFKL kernel in the dipole picture (Al Mueller, '90)

$$
\mathcal{M}_{\boldsymbol{x} \boldsymbol{y} \boldsymbol{z}}=\frac{(\boldsymbol{x}-\boldsymbol{y})^{2}}{(\boldsymbol{x}-\boldsymbol{z})^{2}(\boldsymbol{y}-\boldsymbol{z})^{2}}=\left[\frac{z^{i}-x^{i}}{(\boldsymbol{z}-\boldsymbol{x})^{2}}-\frac{z^{i}-y^{i}}{(\boldsymbol{z}-\boldsymbol{y})^{2}}\right]^{2}
$$

- Color transparency: $\mathcal{M}_{\boldsymbol{x y z}} \propto r^{2}$, hence $S_{x y} \rightarrow 1$ when $r \rightarrow 0$
- Ultraviolet-safe: one very small daughter dipole
- the singularities in the kernel cancel between 'real' and 'virtual'

$$
S_{x z} S_{z y} \rightarrow S_{x y} \quad \text { when }|\boldsymbol{z}-\boldsymbol{x}| \rightarrow 0 \text { or }|\boldsymbol{z}-\boldsymbol{y}| \rightarrow 0
$$

- Unitarity bound: non-linear equation for $T_{x y} \equiv 1-S_{x y}$
- fixed point $T=1$, saturation scale: $T(Y, r) \rightarrow 1$ when $r \gtrsim 1 / Q_{s}(Y)$

Double logarithmic approximation

- Infrared behavior: very large daughter dipoles ("hard-to-soft")

$$
\mathcal{M}_{\boldsymbol{x} \boldsymbol{y} \boldsymbol{z}} \simeq \frac{r^{2}}{(\boldsymbol{z}-\boldsymbol{x})^{4}} \quad \text { when }|\boldsymbol{z}-\boldsymbol{x}| \simeq|\boldsymbol{z}-\boldsymbol{y}| \gg r
$$

- the kernel is rapidly decreasing: good convergence ?
- Not necessarily ! For weak scattering $(T \ll 1)$, this can be compensated by the rapid growth of the amplitude with the dipole size: $T(Y, r) \propto r^{2}$

$$
T_{\boldsymbol{x} \boldsymbol{z}}+T_{\boldsymbol{z} \boldsymbol{y}}-T_{\boldsymbol{x} \boldsymbol{y}} \simeq 2 T_{\boldsymbol{x} \boldsymbol{z}} \equiv 2(\boldsymbol{z}-\boldsymbol{x})^{2} Q_{0}^{2} \mathcal{A}_{\boldsymbol{x} \boldsymbol{z}}
$$

- Logarithmic phase-space for z_{\perp}, at $r^{2} \ll(\boldsymbol{z}-\boldsymbol{x})^{2} \ll 1 / Q_{0}^{2}$

$$
\frac{\partial \mathcal{A}\left(Y, r^{2}\right)}{\partial Y}=\bar{\alpha}_{s} \int_{r^{2}}^{1 / Q_{0}^{2}} \frac{\mathrm{~d} z^{2}}{z^{2}} \mathcal{A}\left(Y, z^{2}\right)
$$

- Large transverse separation: $Q^{2}=1 / r^{2} \gg Q_{0}^{2}$, or $\rho \equiv \ln \left(Q^{2} / Q_{0}^{2}\right)>1$

Double logarithmic approximation

- Infrared behavior: very large daughter dipoles ("hard-to-soft")

$$
\mathcal{M}_{\boldsymbol{x} \boldsymbol{y} \boldsymbol{z}} \simeq \frac{r^{2}}{(\boldsymbol{z}-\boldsymbol{x})^{4}} \quad \text { when }|\boldsymbol{z}-\boldsymbol{x}| \simeq|\boldsymbol{z}-\boldsymbol{y}| \gg r
$$

- the kernel is rapidly decreasing: good convergence ?
- Not necessarily! For weak scattering ($T \ll 1$), this can be compensated by the rapid growth of the amplitude with the dipole size: $T(Y, r) \propto r^{2}$

$$
T_{x z}+T_{z y}-T_{x y} \simeq 2 T_{x z} \equiv 2(z-x)^{2} Q_{0}^{2} \mathcal{A}_{x z}
$$

- Logarithmic phase-space for z_{\perp}, at $r^{2} \ll(\boldsymbol{z}-\boldsymbol{x})^{2} \ll 1 / Q_{0}^{2}$

$$
\frac{\partial \mathcal{A}\left(Y, r^{2}\right)}{\partial Y}=\bar{\alpha}_{s} \int_{r^{2}}^{1 / Q_{0}^{2}} \frac{\mathrm{~d} z^{2}}{z^{2}} \mathcal{A}\left(Y, z^{2}\right)
$$

- Double-logarithmic correction $\sim \mathcal{O}\left(\bar{\alpha}_{s} Y \rho\right)$: energy log \times collinear log

The saturation front

- $T(Y, r)$ as a function of $\rho \equiv \ln \left(1 / r^{2} Q_{0}^{2}\right)$ with increasing Y

$T(Y, r)=\left\{\begin{array}{ll}1 & \text { for } r Q_{s} \gtrsim 1 \\ \left(r^{2} Q_{s}^{2}(Y)\right)^{\gamma_{s}} & \text { for } r Q_{s} \ll 1\end{array}\right.$,

$$
Q_{s}^{2}(Y) \simeq Q_{0}^{2} \mathrm{e}^{\lambda_{s} Y}
$$

$$
\lambda_{s} \simeq 4.88 \bar{\alpha}_{s}
$$

$$
\gamma_{s} \simeq 0.63
$$

- DLA regime unimportant, due to "anomalous dimension" $1-\gamma_{s} \simeq 0.37$

Adding running coupling: rcBK

- Saturation exponent: $\lambda_{s} \simeq 4.88 \bar{\alpha}_{s} \simeq 1$ for $Y \gtrsim 5$: much too large
- phenomenology requires a much smaller valuer $\lambda_{s} \simeq 0.2 \div 0.3$
- Including running coupling dramatically slows down the evolution

- Rather successful phenomenology based on rcBK
- ... but what about the other NLO corrections ?

Next-to-leading order

- Any effect of $\mathcal{O}\left(\bar{\alpha}_{s}^{2} Y\right) \Longrightarrow \mathcal{O}\left(\bar{\alpha}_{s}\right)$ correction to the r.h.s. of BK eq.

- The prototype: two successive, soft, emissions, with similar longitudinal momentum fractions: $p^{+} \sim k^{+} \ll q^{+}$
- Exact kinematics (full QCD vertices, as opposed to eikonal)
- Typically: two transverse momentum convolutions: $\boldsymbol{u}_{\perp}, z_{\perp}$
- New color structures, up to 3 dipoles at large N_{c}
- NLO BFKL: Fadin, Lipatov, Camici, Ciafaloni ... 95-98

$$
\begin{aligned}
\frac{\partial S_{\boldsymbol{x} \boldsymbol{y}}}{\partial Y}= & \frac{\bar{\alpha}_{s}}{2 \pi} \int \mathrm{~d}^{2} \boldsymbol{z} \frac{(\boldsymbol{x}-\boldsymbol{y})^{2}}{(\boldsymbol{x}-\boldsymbol{z})^{2}(\boldsymbol{y}-\boldsymbol{z})^{2}}\left(S_{\boldsymbol{x} \boldsymbol{z}} S_{\boldsymbol{z} y}-S_{\boldsymbol{x} y}\right)\{1+ \\
& +\bar{\alpha}_{s}\left[\bar{b} \ln (\boldsymbol{x}-\boldsymbol{y})^{2} \mu^{2}-\bar{b} \frac{(\boldsymbol{x}-\boldsymbol{z})^{2}-(\boldsymbol{y}-\boldsymbol{z})^{2}}{(\boldsymbol{x}-\boldsymbol{y})^{2}} \ln \frac{(\boldsymbol{x}-\boldsymbol{z})^{2}}{(\boldsymbol{y}-\boldsymbol{z})^{2}}\right. \\
& \left.\left.+\frac{67}{36}-\frac{\pi^{2}}{12}-\frac{1}{2} \ln \frac{(\boldsymbol{x}-\boldsymbol{z})^{2}}{(\boldsymbol{x}-\boldsymbol{y})^{2}} \ln \frac{(\boldsymbol{y}-\boldsymbol{z})^{2}}{(\boldsymbol{x}-\boldsymbol{y})^{2}}\right]\right\} \\
+ & \frac{\bar{\alpha}_{s}^{2}}{8 \pi^{2}} \int \frac{\mathrm{~d}^{2} \boldsymbol{u} \mathrm{~d}^{2} \boldsymbol{z}}{(\boldsymbol{u}-\boldsymbol{z})^{4}}\left(S_{\boldsymbol{x} \boldsymbol{u}} S_{\boldsymbol{u} \boldsymbol{z}} S_{\boldsymbol{z} \boldsymbol{y}}-S_{\boldsymbol{x} \boldsymbol{u}} S_{\boldsymbol{u} \boldsymbol{y}}\right) \\
& \left\{-2+\frac{(\boldsymbol{x}-\boldsymbol{u})^{2}(\boldsymbol{y}-\boldsymbol{z})^{2}+(\boldsymbol{x}-\boldsymbol{z})^{2}(\boldsymbol{y}-\boldsymbol{u})^{2}-4(\boldsymbol{x}-\boldsymbol{y})^{2}(\boldsymbol{u}-\boldsymbol{z})^{2}}{(\boldsymbol{x}-\boldsymbol{u})^{2}(\boldsymbol{y}-\boldsymbol{z})^{2}-(\boldsymbol{x}-\boldsymbol{z})^{2}(\boldsymbol{y}-\boldsymbol{u})^{2}} \ln \frac{(\boldsymbol{x}-\boldsymbol{u})^{2}(\boldsymbol{y}-\boldsymbol{z})^{2}}{(\boldsymbol{x}-\boldsymbol{z})^{2}(\boldsymbol{y}-\boldsymbol{u})^{2}}\right. \\
& \left.+\frac{(\boldsymbol{x}-\boldsymbol{y})^{2}(\boldsymbol{u}-\boldsymbol{z})^{2}}{(\boldsymbol{x}-\boldsymbol{u})^{2}(\boldsymbol{y}-\boldsymbol{z})^{2}}\left[1+\frac{(\boldsymbol{x}-\boldsymbol{y})^{2}(\boldsymbol{u}-\boldsymbol{z})^{2}}{(\boldsymbol{x}-\boldsymbol{u})^{2}(\boldsymbol{y}-\boldsymbol{z})^{2}-(\boldsymbol{x}-\boldsymbol{z})^{2}(\boldsymbol{y}-\boldsymbol{u})^{2}}\right] \ln \frac{(\boldsymbol{x}-\boldsymbol{u})^{2}(\boldsymbol{y}-\boldsymbol{z})^{2}}{(\boldsymbol{x}-\boldsymbol{z})^{2}(\boldsymbol{y}-\boldsymbol{u})^{2}}\right\}
\end{aligned}
$$

- green: leading-order (LO) terms
- violet : running coupling corrections
- blue: single collinear logarithm (DGLAP)
- red : double collinear logarithm : troublesome!

Collinear logarithms

- Important in the "hard-to-soft" evolution (large daughter dipoles, $T \ll 1$)

$$
-\frac{1}{2} \ln \frac{(\boldsymbol{x}-\boldsymbol{z})^{2}}{(\boldsymbol{x}-\boldsymbol{y})^{2}} \ln \frac{(\boldsymbol{y}-\boldsymbol{z})^{2}}{(\boldsymbol{x}-\boldsymbol{y})^{2}} \simeq-\frac{1}{2} \ln ^{2} \frac{(\boldsymbol{x}-\boldsymbol{z})^{2}}{r^{2}} \quad \text { if } \quad|\boldsymbol{z}-\boldsymbol{x}| \simeq|\boldsymbol{z}-\boldsymbol{y}| \gg r
$$

- The single logs are still hidden: needs to perform the integral over \boldsymbol{u}

$$
1 / Q_{s} \gg|\boldsymbol{z}-\boldsymbol{x}| \simeq|\boldsymbol{z}-\boldsymbol{y}| \simeq|\boldsymbol{z}-\boldsymbol{u}| \gg|\boldsymbol{u}-\boldsymbol{x}| \simeq|\boldsymbol{u}-\boldsymbol{y}| \gg r
$$

Collinear logarithms

- Important in the "hard-to-soft" evolution (large daughter dipoles, $T \ll 1$)

$$
-\frac{1}{2} \ln \frac{(\boldsymbol{x}-\boldsymbol{z})^{2}}{(\boldsymbol{x}-\boldsymbol{y})^{2}} \ln \frac{(\boldsymbol{y}-\boldsymbol{z})^{2}}{(\boldsymbol{x}-\boldsymbol{y})^{2}} \simeq-\frac{1}{2} \ln ^{2} \frac{(\boldsymbol{x}-\boldsymbol{z})^{2}}{r^{2}} \quad \text { if } \quad|\boldsymbol{z}-\boldsymbol{x}| \simeq|\boldsymbol{z}-\boldsymbol{y}| \gg r
$$

- Keeping just the collinear logarithms $(|\boldsymbol{z}-\boldsymbol{x}| \rightarrow z)$:

$$
\frac{\partial T(Y, r)}{\partial Y}=\bar{\alpha}_{s} \int_{r^{2}}^{1 / Q_{0}^{2}} \mathrm{~d} z^{2} \frac{r^{2}}{z^{4}}\left\{1-\bar{\alpha}_{s}\left(\frac{1}{2} \ln ^{2} \frac{z^{2}}{r^{2}}+\frac{11}{12} \ln \frac{z^{2}}{r^{2}}\right)\right\} T(Y, z)
$$

- Write $T(Y, z) \equiv z^{2} Q_{0}^{2} \mathcal{A}\left(Y, z^{2}\right)$ and chose $\mathcal{A}\left(Y=0, z^{2}\right) \rightarrow 1$ (GBW)

$$
\Delta \mathcal{A}\left(Y, r^{2}\right)=\bar{\alpha}_{s} Y \rho\left(1-\frac{\bar{\alpha}_{s}}{6} \rho^{2}\right)
$$

- This can be negative if $\rho=\ln \left(Q^{2} / Q_{0}^{2}\right)$ is large enough.

Unstable numerical solution

- Left: LO BK + the double collinear logarithm
- Right: full NLO BK (Lappi, Mäntysaari, arXiv:1502.02400)
- The main source of instability: the double collinear logarithm

Time ordering \& Double collinear logs

- Successive emissions must be ordered in lifetimes
- This condition can be violated by the LO evolution "hard-to-soft"

- lifetime \approx energy denominator

$$
\Delta t \simeq \frac{1}{\Delta E} \simeq \frac{1}{p^{-}+k^{-}}
$$

- light-cone energies

$$
p^{-}=\frac{p_{\perp}^{2}}{2 p^{+}} \simeq \frac{1}{p^{+} u_{\perp}^{2}}
$$

- Integrate out the harder gluon $\left(p^{+}, u_{\perp}\right)$ to double-log accuracy:

$$
\bar{\alpha}_{s} \int_{r^{2}}^{z^{2}} \frac{\mathrm{~d} u^{2}}{u^{2}} \int_{k^{+}}^{q^{+}} \frac{\mathrm{d} p^{+}}{p^{+}} \frac{p^{+} u^{2}}{p^{+} u^{2}+k^{+} z^{2}}
$$

Time ordering \& Double collinear logs

- Successive emissions must be ordered in lifetimes
- This condition can be violated by the LO evolution "hard-to-soft"

- lifetime \approx energy denominator

$$
\Delta t \simeq \frac{1}{\Delta E} \simeq \frac{1}{p^{-}+k^{-}}
$$

- to have double logs, one needs

$$
\tau_{p} \simeq p^{+} u_{\perp}^{2} \gg \tau_{k} \simeq k^{+} z_{\perp}^{2}
$$

- Integrate out the harder gluon $\left(p^{+}, u_{\perp}\right)$ to double-log accuracy:

$$
\bar{\alpha}_{s} \int_{r^{2}}^{z^{2}} \frac{\mathrm{~d} u^{2}}{u^{2}} \int_{k^{+}}^{q^{+}} \frac{\mathrm{d} p^{+}}{p^{+}} \Theta\left(p^{+} u^{2}-k^{+} z^{2}\right)=\bar{\alpha}_{s} Y \ln \frac{z^{2}}{r^{2}}-\frac{\bar{\alpha}_{s}}{2} \ln ^{2} \frac{z^{2}}{r^{2}}
$$

Time ordering \& Double collinear logs

- Successive emissions must be ordered in lifetimes
- This condition can be violated by the LO evolution "hard-to-soft"

- lifetime \approx energy denominator

$$
\Delta t \simeq \frac{1}{\Delta E} \simeq \frac{1}{p^{-}+k^{-}}
$$

- to have double logs, one needs

$$
\tau_{p} \simeq p^{+} u_{\perp}^{2} \gg \tau_{k} \simeq k^{+} z_{\perp}^{2}
$$

- Naive LO: one writes $\Theta\left(p^{+} u^{2}-k^{+} z^{2}\right)=1-\Theta\left(k^{+} z^{2}-p^{+} u^{2}\right)$... and one expands $\Theta\left(k^{+} z^{2}-p^{+} u^{2}\right)$ in perturbation theory

Enforcing time-ordering

- A genuine instability: bad organization of the perturbation theory
- Can be cured by enforcing time-ordering in the evolution equation
- systematic resummation of the double-collinear logs to all orders
- straightforward/unique at DLA level, more subtle for BFKL/BK
- This amounts to reducing the phase-space for the projectile evolution
- $Y=\ln \frac{q^{+}}{q_{0}^{+}}$with q_{0}^{+}determined by a lifetime condition ("loffe's time"):
$\Delta x^{+}=\frac{2 k^{+}}{k_{\perp}^{2}} \gtrsim \frac{1}{P^{-}} \& k_{\perp}^{2}>Q_{0}^{2} \Longrightarrow \frac{2 q_{0}^{+}}{Q_{0}^{2}} \sim \frac{1}{P^{-}} \Longrightarrow \quad Y_{\max }=\ln \frac{2 q^{+} P^{-}}{Q_{0}^{2}}$
- But the harder gluons with say $k^{+} \sim q_{0}^{+}$but $k_{\perp}^{2} \gg Q_{0}^{2}$ can violate this condition $\Delta x^{+}>1 / P^{-} \Longrightarrow$ need for explicit time-ordering

Enforcing time-ordering

- A genuine instability: bad organization of the perturbation theory
- Can be cured by enforcing time-ordering in the evolution equation
- systematic resummation of the double-collinear logs to all orders
- straightforward/unique at DLA level, more subtle for BFKL/BK
- This amounts to reducing the phase-space for the projectile evolution
- The correct rapidity phase-space follows from the DIS kinematics
- final quark must be on-shell

$$
0=(p+q)^{2}=2 p \cdot q-Q^{2}
$$

- incoming quark collinear with the proton

$$
\begin{aligned}
& p^{\mu}=\xi P^{-} \delta^{\mu-} \Rightarrow \xi=\frac{Q^{2}}{s} \equiv x_{\mathrm{Bj}} \\
& \eta \equiv \ln \frac{P^{-}}{p^{-}}=\ln \frac{1}{x_{\mathrm{Bj}}}=Y-\ln \frac{Q^{2}}{Q_{0}^{2}}
\end{aligned}
$$

- Time-ordering $\left(x^{-}\right)$is automatic for the soft-to-hard evolution in p^{-}

Resummation of double logs in DLA

- Start with the "naive" DLA equation in integral form

$$
\mathcal{A}\left(q^{+}, Q^{2}\right)=\mathcal{A}_{0}\left(Q^{2}\right)+\bar{\alpha}_{s} \int_{Q_{0}^{2}}^{Q^{2}} \frac{\mathrm{~d} k_{\perp}^{2}}{k_{\perp}^{2}} \int_{q_{0}^{+}}^{q^{+}} \frac{\mathrm{d} k^{+}}{k^{+}} \mathcal{A}\left(k^{+}, k_{\perp}^{2}\right)
$$

- Enforce time-ordering for the intermediate gluon $\left(k^{+}, \boldsymbol{k}\right)$:

$$
\frac{2 q_{0}^{+}}{Q_{0}^{2}} \ll \frac{2 k^{+}}{k_{\perp}^{2}} \ll \frac{2 q^{+}}{Q^{2}} \Longrightarrow q_{0}^{+} \frac{k_{\perp}^{2}}{Q_{0}^{2}} \ll k^{+} \ll q^{+} \frac{k_{\perp}^{2}}{Q^{2}}
$$

Resummation of double logs in DLA

- Time-ordered (correct) version of the DLA equation

$$
\mathcal{A}\left(q^{+}, Q^{2}\right)=\mathcal{A}_{0}\left(Q^{2}\right)+\bar{\alpha}_{s} \int_{Q_{0}^{2}}^{Q^{2}} \frac{\mathrm{~d} k_{\perp}^{2}}{k_{\perp}^{2}} \int_{q_{0}^{+\frac{k^{2}}{Q^{2}}}}^{q^{+}} \frac{\frac{k_{\perp}^{2}}{Q_{0}^{2}}}{} \frac{\mathrm{~d} k^{+}}{k^{+}} \mathcal{A}\left(k^{+}, k_{\perp}^{2}\right)
$$

- Enforce time-ordering for the intermediate gluon $\left(k^{+}, \boldsymbol{k}\right)$:

$$
\frac{2 q_{0}^{+}}{Q_{0}^{2}} \ll \frac{2 k^{+}}{k_{\perp}^{2}} \ll \frac{2 q^{+}}{Q^{2}} \Longrightarrow q_{0}^{+} \frac{k_{\perp}^{2}}{Q_{0}^{2}} \ll k^{+} \ll q^{+} \frac{k_{\perp}^{2}}{Q^{2}}
$$

Resummation of double logs in DLA

- Time-ordered (correct) version of the DLA equation

$$
\mathcal{A}(Y, \rho)=\mathcal{A}_{0}(\rho)+\bar{\alpha}_{s} \int_{0}^{\rho} \mathrm{d} \rho_{1} \int_{\rho_{1}}^{Y-\rho+\rho_{1}} \mathrm{~d} Y_{1} \mathcal{A}\left(Y_{1}, \rho_{1}\right)
$$

- Logarithmic variables: $Y=\ln \left(q^{+} / q_{0}^{+}\right), \rho=\ln \left(Q^{2} / Q_{0}^{2}\right)$
- $Y \geq \rho$ and $\mathcal{A}_{0}(\rho)=\mathcal{A}(Y=\rho, \rho) \Longrightarrow$ a boundary value problem
- Non-local in Y...

Resummation of double logs in DLA

- Time-ordered (correct) version of the DLA equation

$$
\mathcal{A}(Y, \rho)=\mathcal{A}_{0}(\rho)+\bar{\alpha}_{s} \int_{0}^{\rho} \mathrm{d} \rho_{1} \int_{\rho_{1}}^{Y-\rho+\rho_{1}} \mathrm{~d} Y_{1} \mathcal{A}\left(Y_{1}, \rho_{1}\right)
$$

- Logarithmic variables: $Y=\ln \left(q^{+} / q_{0}^{+}\right), \rho=\ln \left(Q^{2} / Q_{0}^{2}\right)$
- $Y \geq \rho$ and $\mathcal{A}_{0}(\rho)=\mathcal{A}(Y=\rho, \rho) \Longrightarrow$ a boundary value problem
- Non-local in $Y \ldots$ but local in the target rapidity $\eta \equiv Y-\rho$:

$$
\overline{\mathcal{A}}(\eta, \rho)=\mathcal{A}_{0}(\rho)+\bar{\alpha}_{s} \int_{0}^{\rho} \mathrm{d} \rho_{1} \int_{0}^{\eta} \mathrm{d} \eta_{1} \overline{\mathcal{A}}\left(\eta_{1}, \rho_{1}\right)
$$

- A local, initial-value problem for $\overline{\mathcal{A}}(\eta, \rho) \equiv \mathcal{A}(Y=\eta+\rho, \rho)$
- This is of course the standard DLA evolution of the target
- Why bother to work with projectile evolution ? ... Because of NLO !

Getting local

- Two strategies for going from time-ordered DLA to BK
- time-ordered BK equation \Rightarrow non-local in Y (G. Beuf, 14; see below)
- local equation, but with resummed kernel and initial condition (E.I., Madrigal, Mueller, Soyez, and Triantafyllopoulos, 2015)
- DLA: the non-local boundary value problem can be equivalently rewritten as a local, initial-value problem for an analytic continuation down to $Y=0$:

$$
\tilde{\mathcal{A}}(Y, \rho)=\tilde{\mathcal{A}}(0, \rho)+\bar{\alpha}_{s} \int_{0}^{Y} \mathrm{~d} Y_{1} \int_{0}^{\rho} \mathrm{d} \rho_{1} \mathcal{K}_{\mathrm{DLA}}\left(\rho-\rho_{1}\right) \tilde{\mathcal{A}}\left(Y_{1}, \rho_{1}\right)
$$

- ... where $\mathcal{K}_{\text {DLA }}(\rho)$ resums powers of $\bar{\alpha}_{s} \rho^{2}$ to all orders:

$$
\mathcal{K}_{\mathrm{DLA}}(\rho) \equiv \frac{\mathrm{J}_{1}\left(2 \sqrt{\bar{\alpha}_{s} \rho^{2}}\right)}{\sqrt{\bar{\alpha}_{s} \rho^{2}}}=1-\frac{\bar{\alpha}_{s} \rho^{2}}{2}+\frac{\left(\bar{\alpha}_{s} \rho^{2}\right)^{2}}{12}+\cdots
$$

- The physical amplitude at DLA: $\mathcal{A}(Y, \rho)=\tilde{\mathcal{A}}(Y, \rho)$ when $Y \geq \rho$

Collinearly improved BK

- The extension of the local equation to BK happens to be straightforward:

$$
\frac{\partial \tilde{S}_{\boldsymbol{x} \boldsymbol{y}}}{\partial Y}=\bar{\alpha}_{s} \int \frac{\mathrm{~d}^{2} \boldsymbol{z}}{2 \pi} \frac{(\boldsymbol{x}-\boldsymbol{y})^{2}}{(\boldsymbol{x}-\boldsymbol{z})^{2}(\boldsymbol{z}-\boldsymbol{y})^{2}} \mathcal{K}_{\mathrm{DLA}}(\rho(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}))\left(\tilde{S}_{\boldsymbol{x} \boldsymbol{z}} \tilde{S}_{\boldsymbol{z} \boldsymbol{y}}-\tilde{S}_{\boldsymbol{x} \boldsymbol{y}}\right)
$$

- The argument $\rho(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})$ of $\mathcal{K}_{\text {DLA }}$ is well tuned:

$$
\rho^{2}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \equiv \ln \frac{(\boldsymbol{x}-\boldsymbol{z})^{2}}{(\boldsymbol{x}-\boldsymbol{y})^{2}} \ln \frac{(\boldsymbol{y}-\boldsymbol{z})^{2}}{(\boldsymbol{x}-\boldsymbol{y})^{2}}
$$

- $\mathcal{O}\left(\bar{\alpha}_{s} \rho^{2}\right)$ contribution to $\mathcal{K}_{\text {DLA }}$ exactly matches the NLO double collinear log
- Adding all the other NLO corrections is (in principle) straightforward
- The solution gives the physical dipole S-matrix only for $Y \geq \rho$
- It yields the physical saturation fronts when expressed in terms of $\eta \equiv Y-\rho$
- The resummation stabilizes and slows down the evolution

DLA resum, $\bar{\alpha}_{\mathrm{s}}=0.25$

- left: the NLO double-log alone
- right: double collinear logs resummed to all orders

Numerical solutions: collBK + NLO corrections

- The resummation stabilizes and slows down the evolution

Lappi, Mäntysaari, arXiv:1502.02400

Lappi, Mäntysaari, arXiv:1601.06598

- left: BK equation at strict NLO
- right: NLO BK + collinear improvement

Saturation exponent $\lambda_{s} \equiv \mathrm{~d} \ln Q_{s}^{2} / \mathrm{d} Y$

Fixed coupling $\bar{\alpha}_{s}=0.25$
speed, $\beta_{0}=0.72$, smallest

Running coupling

- Further slowing down when also resumming single logs (part of DGLAP)
- Altogether: $\mathrm{DL}+\mathrm{SL}+\mathrm{RC}: \lambda_{s} \simeq 0.2$
- But what about the initial condition ?
- Recall: the physical I.C. must act as a boundary condition at $Y=\rho$

$$
\tilde{S}(Y=\rho, \rho)=S_{0}(\rho) \equiv S(\eta=0, \rho)=\mathrm{e}^{-\frac{1}{4} r^{2} Q_{0}^{2} \ln \frac{1}{r^{2} \Lambda^{2}}}
$$

- The unphysical I.C. $\tilde{S}(Y=0, \rho)$ must be chosen in such a way to construct, via the collBK evolution, the physical I.C. at $Y=\rho$.
- At DLA, this is a simple task:

$$
\tilde{\mathcal{A}}(0, \rho)=\overline{\mathcal{A}}(\eta=-\rho, \rho)=\left\{\begin{array}{lll}
\mathrm{J}_{0}\left(2 \sqrt{\bar{\alpha}_{s} \rho^{2}}\right) & \text { for } & \overline{\mathcal{A}}(0, \rho)=1, \\
\frac{\mathrm{~J}_{1}\left(2 \sqrt{\bar{\alpha}_{s} \rho^{2}}\right)}{\sqrt{\bar{\alpha}_{s}}} & \text { for } & \overline{\mathcal{A}}(0, \rho)=\rho .
\end{array}\right.
$$

- Beyond DLA, we don't know how to do that (perhaps, via a fit to an Ansatz with many parameters?)
- The simple guess: "exponentiate the DLA result" ... does not really work!

Numerical solutions: IC at DLA

- The DLA-like I.C. does not reproduce the physical B.C. at $Y=\rho$

- L: collBK with 2 I.C.s: GBW (cont.) and resummed DLA (J_{0}; dashed)
- R: collBK + resummed DLA $\left(\mathrm{J}_{0}\right)$ replotted in terms of η
- Oscillations disappear with increasing $Y \Longrightarrow$ well defined fronts in Y
- ... which however are irrelevant: The fronts in η are not that clear

Numerical solutions: IC at DLA

- The DLA-like I.C. does not reproduce the physical B.C. at $Y=\rho$

- L: collBK with 2 I.C.s: GBW (cont.) and resummed DLA (J_{0}; dashed)
- R: collBK + resummed DLA $\left(\mathrm{J}_{0}\right)$ vs. LO BK in η replotted in Y
- Oscillations disappear with increasing $Y \Longrightarrow$ well defined fronts in Y
- The effect of the resummation \approx solving LO BK in η

Saturation fronts: η vs. Y

- The physical fronts at LO are obtained by solving LO BK equation in η
- The solution can be replotted in terms of Y to compare with collBK

- saturation exponent λ_{s}

$$
Q_{s}^{2}(Y) \simeq Q_{0}^{2} \mathrm{e}^{\lambda_{s} Y}
$$

- anomalous dimensions γ_{s}

$$
T(Y, r) \simeq\left(r^{2} Q_{s}^{2}(Y)\right)^{\gamma_{s}}
$$

- similarly for η-evolution: $\bar{\lambda}_{s}, \bar{\gamma}_{s}$

$$
\bar{\gamma}_{s}=\gamma_{s}\left(1-\lambda_{s}\right), \quad \bar{\lambda}_{s}=\frac{\lambda_{s}}{1-\lambda_{s}} \quad \text { (asymptotically) }
$$

- Physical fronts in η are less step \& faster
- Recall: at DLA, one has a non-local (in Y) boundary value problem

$$
\begin{array}{r}
\mathcal{A}(Y, \rho)=\mathcal{A}_{0}(\rho)+\bar{\alpha}_{s} \int_{\rho}^{Y} \mathrm{~d} Y_{1} \int_{0}^{\rho} \mathrm{d} \rho_{1} \mathcal{A}\left(Y_{1}-\rho+\rho_{1}, \rho_{1}\right) \\
\text { - } \rho=\ln \frac{1}{r^{2} Q_{0}^{2}}>\rho_{1}=\ln \frac{1}{z^{2} Q_{0}^{2}} \text { since } z^{2} \gg r^{2}: \text { hard-to-soft }
\end{array}
$$

- For full BFKL dynamics, soft-to-hard ($\rho_{1}>\rho$) is possible as well, even in DIS - non-locality of the kernel in the transverse plane ("BFKL diffusion")
- Soft-to-hard evolution in Y is correctly time-ordered: no new constraint

$$
S_{\boldsymbol{x} \boldsymbol{y}}(Y)=S_{x y}^{0}+\frac{\bar{\alpha}_{s}}{2 \pi} \int_{\rho}^{Y} \mathrm{~d} Y_{1} \int \mathrm{~d}^{2} \boldsymbol{z} \mathcal{M}_{\boldsymbol{x} \boldsymbol{y} \boldsymbol{z}}\left[S_{\boldsymbol{x} \boldsymbol{z}}\left(Y_{1}-\Delta_{\boldsymbol{x} \boldsymbol{z}}\right) S_{\boldsymbol{z} \boldsymbol{y}}\left(Y_{1}-\Delta_{\boldsymbol{z} \boldsymbol{y}}\right)-S_{x y}\left(Y_{1}\right)\right]
$$

- $S_{x y}^{0}$: the physical "initial condition", here a boundary value at $Y=\rho$

$$
\Delta_{\boldsymbol{x} \boldsymbol{z}} \equiv \Theta\left(\ln \frac{(\boldsymbol{x}-\boldsymbol{z})^{2}}{r^{2}}\right) \ln \frac{(\boldsymbol{x}-\boldsymbol{z})^{2}}{r^{2}}
$$

- slight extension of the equation proposed by Guillaume Beuf (2014)

Non-local BK evolution in η

$S_{\boldsymbol{x} \boldsymbol{y}}(Y)=S_{\boldsymbol{x} \boldsymbol{y}}^{0}+\frac{\bar{\alpha}_{s}}{2 \pi} \int_{\rho}^{Y} \mathrm{~d} Y_{1} \int \mathrm{~d}^{2} \boldsymbol{z} \mathcal{M}_{\boldsymbol{x} \boldsymbol{y} \boldsymbol{z}}\left[S_{\boldsymbol{x} \boldsymbol{z}}\left(Y_{1}-\Delta_{\boldsymbol{x} \boldsymbol{z}}\right) S_{\boldsymbol{z} \boldsymbol{y}}\left(Y_{1}-\Delta_{\boldsymbol{z} \boldsymbol{y}}\right)-S_{\boldsymbol{x} \boldsymbol{y}}\left(Y_{1}\right)\right]$

- Some obvious and less obvious complications ...
- a boundary value problem
- potentially large non-locality in rapidity: $\bar{\alpha}_{s} \Delta^{2} \gtrsim 1$
- solution must be replotted in terms of $\eta=Y-\rho$ to study saturation
- not clear how to add the full NLO corrections (despite contrary claims)
- The first 3 problems can be avoided by changing rapidity variable $Y \rightarrow \eta$

$$
\bar{S}_{x y}(\eta)=S_{x y}^{0}+\frac{\bar{\alpha}_{s}}{2 \pi} \int_{0}^{\eta} \mathrm{d} \eta_{1} \int \mathrm{~d}^{2} \boldsymbol{z} \mathcal{M}_{x y z}\left[\bar{S}_{x z}\left(\eta_{1}-\bar{\Delta}_{x z}\right) \bar{S}_{z y}\left(\eta_{1}-\bar{\Delta}_{z y}\right)-\bar{S}_{x y}\left(\eta_{1}\right)\right]
$$

- A product of Θ-functions $\Theta\left(\eta_{1}-\bar{\Delta}_{x z}\right) \Theta\left(\eta_{1}-\bar{\Delta}_{z y}\right)$ is understood

$$
\bar{\Delta}_{\boldsymbol{x} \boldsymbol{z}} \equiv \Theta\left(\ln \frac{r^{2}}{(\boldsymbol{x}-\boldsymbol{z})^{2}}\right) \ln \frac{r^{2}}{(\boldsymbol{x}-\boldsymbol{z})^{2}}
$$

- The rapidity shift in η avoids violations of time-ordering in soft-to-hard
- N.B. η corresponds to k^{-}, so the corresponding "time" is x^{-}
- In DIS, the typical evolution is hard-to-soft \Longrightarrow the shift in η is small
- its effect is a pure α_{s}-correction, like many others that are forgotten
- Why can't we just ignore this shift $\bar{\Delta}$? Why not simply use rcBK in η ?
- To answer this, we expanded the non-locality to $\mathcal{O}\left(\bar{\alpha}_{s}\right)$, i.e. to NLO
- The "pure NLO" effect is numerically large !
- it triggers an instability for all but unphyscally tiny values of $\bar{\alpha}_{s}$
- The mathematics is quite clear, but a physical understanding is still lacking

Expanding the non-locality to NLO

$\bar{S}_{\boldsymbol{x} \boldsymbol{y}}(\eta)=S_{\boldsymbol{x} \boldsymbol{y}}^{0}+\frac{\bar{\alpha}_{s}}{2 \pi} \int_{0}^{\eta} \mathrm{d} \eta_{1} \int \mathrm{~d}^{2} \boldsymbol{z} \mathcal{M}_{\boldsymbol{x} \boldsymbol{y} \boldsymbol{z}}\left[\bar{S}_{\boldsymbol{x} \boldsymbol{z}}\left(\eta_{1}-\bar{\Delta}_{\boldsymbol{x} z}\right) \bar{S}_{\boldsymbol{z} \boldsymbol{y}}\left(\eta_{1}-\bar{\Delta}_{\boldsymbol{z} \boldsymbol{y}}\right)-\bar{S}_{\boldsymbol{x} \boldsymbol{y}}\left(\eta_{1}\right)\right]$

- Expand e.g. $\bar{S}_{x z}\left(\eta_{1}-\bar{\Delta}_{x z}\right)$ to linear order in $\bar{\Delta}_{x z}$:

$$
\bar{S}_{x z}\left(\eta_{1}-\bar{\Delta}_{x z}\right) \simeq \bar{S}_{x z}\left(\eta_{1}\right)-\bar{\Delta}_{x z} \frac{\partial \bar{S}_{x z}}{\partial \eta_{1}}
$$

- Use the (usual, local) LO BK equation for $\partial \bar{S}_{\boldsymbol{x} z} / \partial \eta_{1}$

$$
\frac{\partial \bar{S}_{\boldsymbol{x} z}}{\partial \eta_{1}}=\frac{\bar{\alpha}_{s}}{2 \pi} \int \mathrm{~d}^{2} \boldsymbol{u} \mathcal{M}_{\boldsymbol{x} z \boldsymbol{u}}\left[\bar{S}_{\boldsymbol{x} \boldsymbol{u}} \bar{S}_{\boldsymbol{u} \boldsymbol{z}}-\bar{S}_{\boldsymbol{x} \boldsymbol{z}}\right]
$$

- $\mathcal{O}\left(\bar{\alpha}_{s} \bar{\Delta}\right)$ corrections which involve up to 3 dipole S-matrices: $\bar{S}_{x u} \bar{S}_{u z} \bar{S}_{z y}$... ... as expected for 2 successive gluon emissions
- Since $\bar{\Delta} \sim 1$ should be quite small, why should this bring any problem ?

Expanding the non-locality to NLO

- Problems could be expected in the linear regime, where one can integrate out one of the 2 gluons ...

$$
\frac{\partial \bar{S}_{x y}}{\partial \eta}=\frac{\bar{\alpha}_{s}}{2 \pi} \int \mathrm{~d}^{2} \boldsymbol{z} \mathcal{M}_{x y z}\left(1-\frac{\bar{\alpha}_{s}}{2} \ln ^{2} \frac{(\boldsymbol{x}-\boldsymbol{z})^{2}}{(\boldsymbol{z}-\boldsymbol{y})^{2}}\right)\left[\bar{S}_{\boldsymbol{x} z} \bar{S}_{z y}-\bar{S}_{x y}\right]
$$

- The double-log is important when one daughter dipole is much smaller than the other one ... but in practice this is rarely the case!

- "NLO": oscillations leading to instability for $\bar{\alpha}_{s}>0.03$

Expanding the non-locality to NLO

- Problems could be expected in the linear regime, where one can integrate out one of the 2 gluons ...

$$
\frac{\partial \bar{S}_{\boldsymbol{x} \boldsymbol{y}}}{\partial \eta}=\frac{\bar{\alpha}_{s}}{2 \pi} \int \mathrm{~d}^{2} \boldsymbol{z} \mathcal{M}_{\boldsymbol{x} \boldsymbol{z} \boldsymbol{z}} \mathcal{K}_{\mathrm{DLA}}\left(\frac{\bar{\alpha}_{s}}{2} \ln ^{2} \frac{(\boldsymbol{x}-\boldsymbol{z})^{2}}{(\boldsymbol{z}-\boldsymbol{y})^{2}}\right)\left[\bar{S}_{\boldsymbol{x} \boldsymbol{z}} \bar{S}_{\boldsymbol{z} \boldsymbol{y}}-\bar{S}_{\boldsymbol{x} \boldsymbol{y}}\right]
$$

- The double-log is important when one daughter dipole is much smaller than the other one ... but in practice this is rarely the case!

- "Resummed": all-order resummation of the double-logs in the kernel

Back to the non-local equation

- The resummation of the double-logs captures the main effects of the rapidity shift $\bar{\Delta}$ in the linear regime ...
- ... but not also in the approach to saturation, where "soft-to-hard" matters as well ("Levin-Tuchin law for the approach to the black-disk limit")
- Numerically solve the non-local equation in η (here, fixed coupling)

- saturation exponent $\lambda_{s} / \bar{\alpha}_{s}$
- leading order: $\lambda_{s} / \bar{\alpha}_{s} \simeq 4.88$
- non-local equation: $\lambda_{s} / \bar{\alpha}_{s}$ decreases with $\bar{\alpha}_{s}$
- the decrease in λ_{s} is of $\mathcal{O}\left(\bar{\alpha}_{s}\right)$
- the other NLO effects of $\mathcal{O}\left(\bar{\alpha}_{s}\right)$ must be "simply" added

Conclusions

- The rapidity of the dilute but hard projectile is a "bad" variable for studying the high energy evolution beyond leading order
- instability requiring for all-order resummations (in both the kernel and the initial condition)
- alternatively: non-local evolution equation, formulated as a boundary-value problem
- saturation fronts/physics is meaningful in the target rapidity anyway
- The problem is much better behaved when the evolution time is the rapidity η of the comparatively soft target
- still projectile evolution, but in a new variable
- still non-local, but the non-locality in η is smaller
- initial value problem
- physics can be directly read off the solutions
- The main remaining problem: how to extend to full NLO accuracy ?

