Double parton distributions

Evolution, initial conditions and transverse momentum dependence

Anna Stasto

PENNSTATE

Outline

- Evolution equations for double Parton Distribution Functions (dPDFs)
- Sum rules
- Initial conditions
- Examples for the single channel: gluons
- Transverse momentum dependence in dPDFs

```
References:
Initial conditions: Golec-Biernat, Lewandowska, Serino, Snyder,AS; I507.08583
Unintegrated dPDFs:Golec-Biernat, AS; I6 | I.02033, I80 |.000 | 8
```


Single scattering process

Single parton scattering: one hard process

Single collinear PDF:

$$
D_{1}^{f}\left(x, Q^{2}\right)
$$

Partonic cross section:

$$
\hat{\sigma}^{f f^{\prime}}\left(x_{1}, x_{2}, Q^{2}\right)
$$

Collins, Soper, Sterman

Collinear factorization:

Given the presence of the hard scale, the cross section (up to power corrections) can be factorized into perturbatively calculable partonic cross section and non-perturbative parton distribution functions.

$$
\sigma=\sum_{f f^{\prime}} \int d x_{1} d x_{2} D_{1}^{f}\left(x_{1}, Q^{2}\right) \hat{\sigma}^{f f^{\prime}}\left(x_{1}, x_{2}, Q^{2}\right) D_{1}^{f^{\prime}}\left(x_{2}, Q^{2}\right)
$$

Double scattering process

Double parton scattering: two hard processes

Two types of partons: $\quad f_{1}, f_{2}$
Two momentum fractions: $\quad x_{1}, x_{2} \quad x_{1}+x_{2} \leq 1$
Two hard scales:
$Q_{1}, Q_{2} \gg \Lambda_{Q C D}$
Relative transverse momentum:
Δ

Double PDF (DPDF): $\quad D_{2}^{f_{1} f_{2}}\left(x_{1}, x_{2} ; Q_{1}^{2}, Q_{2}^{2} ; \Delta\right)$
Factorization formula(?):

$$
\sigma=\int d x_{1} d x_{2} d x_{1}^{\prime} d x_{2}^{\prime} d^{2} \Delta D_{2}^{f_{1} f_{2}}\left(x_{1}, x_{2} ; Q_{1}^{2}, Q_{2}^{2} ; \Delta\right) \hat{\sigma}^{f_{1} f_{1}^{\prime}}\left(\hat{s}_{1}, Q_{1}^{2}\right) \hat{\sigma}^{f_{2} f_{2}^{\prime}}\left(\hat{s}_{2}, Q_{2}^{2}\right) D_{2}^{f_{1}^{\prime} f_{2}^{\prime}}\left(x_{1}^{\prime}, x_{2}^{\prime}, Q_{1}^{2}, Q_{2}^{2} ;-\Delta\right)
$$

Double scattering process

The loop momentum comes from the mismatch between the momenta in amplitude and c.c. amplitude in a graph.

In coordinate representation: Fourier conjugate variable
In collinear approximation it is the distance between the active partons in the scattering

$$
\sigma=\int d x_{1} d x_{2} d x_{1}^{\prime} d x_{2}^{\prime} d^{2} y d^{2} b d^{2} \bar{b} \tilde{D}_{2}^{f_{1} f_{2}}\left(x_{1}, x_{2} ; Q_{1}^{2}, Q_{2}^{2} ; y, b\right) \hat{\sigma}^{f_{1} f_{1}^{\prime}}\left(\hat{s}_{1}, Q_{1}^{2}\right) \hat{\sigma}^{f_{2} f_{2}^{\prime}}\left(\hat{s}_{2}, Q_{2}^{2}\right) \tilde{D}_{2}^{f_{1}^{\prime} f_{2}^{\prime}}\left(x_{1}^{\prime}, x_{2}^{\prime}, Q_{1}^{2}, Q_{2}^{2} ; y, \bar{b}\right)
$$

Evolution equations for single PDFs

DGLAP evolution equation for single PDF:

$$
\partial_{t} D_{f}(x, t)=\sum_{f^{\prime}} \int_{0}^{1} d u \mathcal{K}_{f f^{\prime}}(x, u, t) D_{f^{\prime}}(u, t)
$$

Evolution variable:

$$
t=\ln Q^{2} / Q_{0}^{2}
$$

Real and virtual parts of the kernel:

$$
\mathcal{K}_{f f^{\prime}}(x, u, t)=\mathcal{K}_{f f^{\prime}}^{R}(x, u, t)-\delta(u-x) \delta_{f f^{\prime}} \mathcal{K}_{f}^{V}(x, t)
$$

Real emission kernel:
$\mathcal{K}_{f f^{\prime}}^{R}(x, u, t)=\frac{1}{u} P_{f f^{\prime}}\left(\frac{x}{u}, t\right) \theta(u-x)$
Splitting functions:

$$
P_{f f^{\prime}}(z, t)=\frac{\alpha_{s}(t)}{2 \pi} P_{f f^{\prime}}^{(0)}(z)+\frac{\alpha_{s}^{2}(t)}{(2 \pi)^{2}} P_{f f^{\prime}}^{(1)}(z)+\ldots
$$

Evolution equations for double PDFs

Evolution equations for dPDFs are known for the case of equal scales and momentum transfer zero:

$$
D_{2}^{f_{1} f_{2}}\left(x_{1}, x_{2} ; Q^{2}, Q^{2} ; \Delta=0\right) \quad \text { (integrated over the transverse coordinate space) }
$$

In (leading logarithmic approximation) they correspond to the inclusive probability of finding two partons in a hadron with longitudinal momenta x_{1} and x_{2}

DGLAP evolution equation for double PDF:

$$
\begin{aligned}
\partial_{t} D_{f_{1} f_{2}}\left(x_{1}, x_{2}, t\right) & =\sum_{f^{\prime}} \int_{0}^{1-x_{2}} d u \mathcal{K}_{f_{1} f^{\prime}}\left(x_{1}, u, t\right) D_{f^{\prime} f_{2}}\left(u, x_{2}, t\right) \\
& +\sum_{f^{\prime}} \int_{0}^{1-x_{1}} d u \mathcal{K}_{f_{2} f^{\prime}}\left(x_{2}, u, t\right) D_{f_{1} f^{\prime}}\left(x_{1}, u, t\right)
\end{aligned}
$$

$$
+\sum_{f^{\prime}} \mathcal{K}_{f^{\prime} \rightarrow f_{1} f_{2}}^{R}\left(x_{1}, x_{2}, t\right) D_{f^{\prime}}\left(x_{1}+x_{2}, t\right) \longleftarrow
$$

Konishi, Ukawa, Veneziano; Snigirev, Zinovev, Shelest
Non-homogeneous term Splitting term of one parton into two:

$$
\mathcal{K}_{f^{\prime} \rightarrow f_{1} f_{2}}^{R}\left(x_{1}, x_{2}, t\right)=\frac{\alpha_{s}(t)}{2 \pi} \frac{1}{x_{1}+x_{2}} P_{f^{\prime} f_{1}}^{(0)}\left(\frac{x_{1}}{x_{1}+x_{2}}\right)
$$

Evolution equations for double PDFs

DGLAP evolution equation for double PDF:

$$
\begin{aligned}
\partial_{t} D_{f_{1} f_{2}}\left(x_{1}, x_{2}, t\right) & =\sum_{f^{\prime}} \int_{0}^{1-x_{2}} d u \mathcal{K}_{f_{1} f^{\prime}}\left(x_{1}, u, t\right) D_{f^{\prime} f_{2}}\left(u, x_{2}, t\right) \\
& +\sum_{f^{\prime}} \int_{0}^{1-x_{1}} d u \mathcal{K}_{f_{2} f^{\prime}}\left(x_{2}, u, t\right) D_{f_{1} f^{\prime}}\left(x_{1}, u, t\right) \\
& +\sum_{f^{\prime}} \mathcal{K}_{f^{\prime} \rightarrow f_{1} f_{2}}^{R}\left(x_{1}, x_{2}, t\right) D_{f^{\prime}}\left(x_{1}+x_{2}, t\right)
\end{aligned}
$$

Homogeneous term

Non-homogeneous (splitting) term

DGLAP evolution equation for single PDF:
$\partial_{t} D_{f}(x, t)=\sum_{f^{\prime}} \int_{0}^{1} d u \mathcal{K}_{f f^{\prime}}(x, u, t) D_{f^{\prime}}(u, t)$
Need to be solved together with suitable initial conditions.

Sum rules for single and double PDFs

Momentum sum rule for single PDFs

Quark number sum rule for single PDFs

Momentum sum rule for double PDFs

$$
\sum_{f} \int_{0}^{1} d x x D_{f}(x, t)=1
$$

Conditional probability to find the parton f_{1} with the momentum fraction x_{1} while keeping fixed the second parton f_{2} with momentum x_{2}.

Valence quark number sum rule for double PDFs

$$
\sum_{f_{1}} \int_{0}^{1-x_{2}} d x_{1} x_{1} \frac{D_{f_{1} f_{2}}\left(x_{1}, x_{2}, t\right)}{D_{f_{2}}\left(x_{2}, t\right)}=1-x_{2}
$$

$$
\left\{\begin{aligned}
& \int_{0}^{1-x_{2}} d x_{1}\left\{D_{q_{i} f_{2}}\left(x_{1}, x_{2}, t\right)-D_{\bar{q}_{i} f_{2}}\left(x_{1}, x_{2}, t\right)\right\} \\
&= \begin{cases}N_{i} D_{f_{2}}\left(x_{2}, t\right) & \text { for } f_{2} \neq q_{i}, \bar{q}_{i} \\
\left(N_{i}-1\right) D_{f_{2}}\left(x_{2}, t\right) & \text { for } f_{2}=q_{i} \\
\left(N_{i}+1\right) D_{f_{2}}\left(x_{2}, t\right) & \text { for } f_{2}=\bar{q}_{i}\end{cases}
\end{aligned}\right.
$$

If sum rules hold for initial conditions they will hold for higher scales after the evolution. How to consistently impose the initial conditions for sPDF and dPDF with sum rules?

Problem of initial conditions in dPDFs

Usually simplifying assumption is taken:

$$
D_{f_{1} f_{2}}\left(x_{1}, x_{2}\right)=D_{f_{1}}\left(x_{1}\right) D_{f_{2}}\left(x_{2}\right)
$$

Factorizable ansatz, could work well for rather small x but is inconsistent with sum rules.

Improvement with correlating factor:
Gaunt, Stirling

$$
D_{f_{1} f_{2}}\left(x_{1}, x_{2}\right)=D_{f_{1}}\left(x_{1}\right) D_{f_{2}}\left(x_{2}\right) \frac{\left(1-x_{1}-x_{2}\right)^{2}}{\left(1-x_{1}\right)^{2+n_{1}}\left(1-x_{2}\right)^{2+n_{2}}}
$$

Takes into account some correlation but still does not obey sum rules exactly.

Initial conditions: Dirichlet distribution

Consider Beta distribution and gluons only (for now)

$$
\left.D(x)=N_{1} x^{-\alpha}(1-x)^{\beta}\right)
$$

Mellin transform:

$$
\tilde{D}(n)=\int_{0}^{1} d x x^{n-1} D(x)
$$

Momentum sum rule in Mellin space:

$$
\tilde{D}(2)=1
$$

$$
\tilde{D}(n)=\frac{1}{B(2-\alpha, 1+\beta)} \int_{0}^{1} d x x^{n-1} x^{-\alpha}(1-x)^{\beta}=\frac{B(n-\alpha, \beta+1)}{B(2-\alpha, \beta+1)}
$$

Take the ansatz for double distribution in the form of the Dirichlet distribution:

$$
D\left(x_{1}, x_{2}\right)=N_{2} x_{1}^{-\tilde{\alpha}} x_{2}^{-\tilde{\alpha}}\left(1-x_{1}-x_{2}\right)^{\tilde{\beta}}
$$

Double Mellin transform:

$$
\tilde{D}\left(n_{1}, n_{2}\right)=\int_{0}^{1} d x_{1} x_{1}^{n_{1}-1} \int_{0}^{1} d x_{2} x_{2}^{n_{2}-1} D\left(x_{1}, x_{2}\right) \quad \longrightarrow \quad \tilde{D}\left(n_{1}, n_{2}\right)=N_{2} \frac{\Gamma\left(n_{1}-\tilde{\alpha}\right) \Gamma\left(n_{2}-\tilde{\alpha}\right) \Gamma(1+\tilde{\beta})}{\Gamma\left(n_{1}+n_{2}+1+\tilde{\beta}-2 \tilde{\alpha}\right)}
$$

Initial conditions: relating the parameters

The momentum sum rule for dPDFs in Mellin space

LHS: Double PDFs in Mellin space

RHS: Single PDFs in Mellin space

RHS: $\quad \tilde{D}\left(n_{1}\right)-\tilde{D}\left(n_{1}+1\right)=\frac{1}{B(2-\alpha, \beta+1)}\left(B\left(n_{1}-\alpha, \beta+1\right)-B\left(n_{1}+1-\alpha, \beta+1\right)\right)=\frac{1}{B(2-\alpha, \beta+1)} \frac{\Gamma\left(n_{1}-\alpha\right) \Gamma(2+\beta)}{\Gamma\left(2+\beta+n_{1}-\alpha\right)}$
Where the following property of Beta function was used:

$$
B(a, b)=B(a+1, b)+B(a, b+1)
$$

LHS:

$$
\tilde{D}\left(n_{1}, 2\right)=N_{2} \frac{\Gamma\left(n_{1}-\tilde{\alpha}\right) \Gamma(2-\tilde{\alpha}) \Gamma(1+\tilde{\beta})}{\Gamma\left(n_{1}+3+\tilde{\beta}-2 \tilde{\alpha}\right)}
$$

Comparing the functional form of both sides we see that the equality can be satisfied if

$$
\tilde{\alpha}=\alpha, \quad \tilde{\beta}=\beta+\alpha-1 \quad \text { and } \quad N_{2}=\frac{1}{B(2-\alpha, \alpha+\beta) B(2-\alpha, \beta+1)}
$$

Initial conditions

If the single distribution is given by a Beta distribution

$$
D(x)=N_{1} x^{-\alpha}(1-x)^{\beta}
$$

There is a unique solution in terms of the Dirichlet distribution for the double parton density:

$$
D\left(x_{1}, x_{2}\right)=N_{2} x_{1}^{-\tilde{\alpha}} x_{2}^{-\tilde{\alpha}}\left(1-x_{1}-x_{2}\right)^{\tilde{\beta}}
$$

With powers of the dPDF being related to the powers of sPDF

$$
\tilde{\alpha}=\alpha, \quad \tilde{\beta}=\beta+\alpha-1
$$

Normalization for dPDF in this particular case is uniquely determined.

Small x powers for single and double PDFs are the same.

The large \times power of the correlating factor in dPDF is related to the sum of large and small \times powers of the single distribution.

Initial conditions: expansion

Realistic parametrizations are however more complicated than a single Beta distribution.

Example MSTW2008 gluon PDF: $\quad x D_{1}^{g}\left(x, Q^{2}\right)=N_{1} x^{-\delta_{g}}(1-x)^{\eta_{g}}\left(1+\epsilon_{g} \sqrt{x}+\gamma_{g} x\right)$,

However, this parametrization is sum of Beta distributions of the form:

$$
D(x)=N_{1} \sum_{k=1}^{K} a_{k} x^{-\alpha_{k}}(1-x)^{\beta_{k}}
$$

Assuming that the dPDF is the sum of Dirichlet distributions:

$$
D\left(x_{1}, x_{2}\right)=N_{2} \sum_{k=1}^{K} c_{k} x_{1}^{-\tilde{\alpha}_{k}} x_{2}^{-\tilde{\alpha}_{k}}\left(1-x_{1}-x_{2}\right)^{\tilde{\beta}_{k}}
$$

Performing the same analysis as before (for single channel) one obtains the conditions for each k :

$$
\tilde{\beta}_{k}=\beta_{k}-1+\alpha_{k}
$$

The normalizations:

$$
c_{k}=a_{k} \frac{B\left(\alpha_{1}+\beta_{1}, 2-\alpha_{1}\right)}{B\left(\beta_{k}+\alpha_{k}, 2-\alpha_{k}\right)} \quad N_{2}=N_{1} \frac{1}{B\left(\alpha_{1}+\beta_{1}, 2-\alpha_{1}\right)}
$$

Initial conditions for dPDFs

- Use this algorithm, expansion in terms of Beta and Dirichlet distributions, to construct dPDF from MSTW2008 gluon.
- Single channel (gluons) only.
- Using different normalization for the LO MSTW2008 gluon.

Double Parton Distribution Function at Inital Scale

$$
x_{2}=1 . \times 10^{-2}, Q^{2}=1 . \mathrm{GeV}^{2}
$$

Initial conditions for dPDFs: ratios

Ratio of double distribution to product of single distributions:

$$
R^{g g}\left(x_{1}, x_{2}, Q^{2}\right)=\frac{D_{2}^{g g}\left(x_{1}, x_{2}, Q^{2}\right)}{D_{1}^{g}\left(x_{1}, Q^{2}\right) D_{1}^{g}\left(x_{2}, Q^{2}\right)}
$$

Ratio of Double Parton Distribution to Product
of Single Parton Distributions

$$
x_{2}=1 . \times 10^{-2}, Q^{2}=1 . \mathrm{GeV}^{2}
$$

- Measure of the correlations at the initial scale.
- For this parametrization the correlations are very significant.
- Ratio different from unity over wide range of x.
- Factorization of powers at small x but different normalization.
- In principle can extend to quarks, requires some constraints put onto the form of the single PDFs.

Evolution of single and double PDFs

Evolve the dPDFs and sPDFs using DGLAP equations;

$$
\begin{aligned}
D_{1}^{f}\left(x, Q_{0}\right) & \rightarrow D_{1}^{f}(x, Q) \\
D_{2}^{f_{1} f_{2}}\left(x_{1}, x_{2}, Q_{0}\right) & \rightarrow D_{2}^{f_{1} f_{2}}\left(x_{1}, x_{2}, Q\right)
\end{aligned}
$$

Correlation washed out by evolution except for large x .

More on Factorization of dPDFs into sPDFs

How good is factorization of the dPDFs into product of sPDFs

$$
D_{f_{1} f_{2}}\left(x_{1}, x_{2}\right)=D_{f_{1}}\left(x_{1}\right) D_{f_{2}}\left(x_{2}\right) ?
$$

The solution to the evolution equations (generally for unequal scales) can be written as a sum of homogenous and inhomogenous terms

$$
\begin{gathered}
D_{f_{1} f_{2}}=D_{f_{1} f_{2}}^{(h)}+D_{f_{1} f_{2}}^{(n h)} \\
D_{f_{1} f_{2}}=\sum_{f^{\prime}, f^{\prime \prime}}\left\{\int_{x_{1}}^{1-x_{2}} \frac{d z_{1}}{z_{1}} \int_{x_{2}}^{1-z_{1}} \frac{d z_{2}}{z_{2}} E_{f_{1} f^{\prime}}\left(\frac{x_{1}}{z_{1}}, Q_{1}, Q_{0}\right) E_{f_{2} f^{\prime \prime}}\left(\frac{x_{2}}{z_{2}}, Q_{2}, Q_{0}\right) \times D_{f^{\prime} f^{\prime \prime}}\left(z_{1}, z_{2}, Q_{0}, Q_{0}\right)\right. \\
\left.+\int_{Q_{0}^{2}}^{Q_{\min }^{2}} \frac{d Q_{s}^{2}}{Q_{s}^{2}} \int_{x_{1}}^{1-x_{2}} \frac{d z_{1}}{z_{1}} \int_{x_{2}}^{1-z_{1}} \frac{d z_{2}}{z_{2}} E_{f_{1} f^{\prime}}\left(\frac{x_{1}}{z_{1}}, Q_{1}, Q_{s}\right) E_{f_{2} f^{\prime \prime}}\left(\frac{x_{2}}{z_{2}}, Q_{2}, Q_{s}\right) D_{f^{\prime} f^{\prime \prime}}^{(s p)}\left(z_{1}, z_{2}, Q_{s}\right)\right\}
\end{gathered}
$$

Green's functions for DGLAP evolution:

$$
D_{a}(x, \mu)=\sum_{b} \int_{x}^{1} \frac{d z}{z} E_{a b}\left(\frac{x}{z}, \mu, \mu_{0}\right) D_{b}\left(z, \mu_{0}\right)
$$

Splitting/non-homogenous term

$$
D_{a^{\prime} a^{\prime \prime}}^{(s p)}\left(x_{1}, x_{2}, Q_{s}\right)=\frac{\alpha_{s}\left(Q_{s}\right)}{2 \pi} \sum_{a} \frac{D_{a}\left(x_{1}+x_{2}, Q_{s}\right)}{x_{1}+x_{2}} P_{a \rightarrow a^{\prime} a^{\prime \prime}}\left(\frac{x_{1}}{x_{1}+x_{2}}\right)
$$

More on Factorization of dPDFs into sPDFs

Factorization works well for small x and large Q, provided momentum sum rule is implemented in the initial conditions.

Factorization holds for the sum of homogeneous and inhomogeneous terms.

Unintegrated DPDFs

What about the transverse momentum dependence of the DPDFs?

Possible formulation:

Small \times Color Glass Condensate formalism: higher Wilson line correlators
TMD formulation Buffing, Diehl, Kasemets

Simple practical approach:

- Kimber - Martin - Ryskin approach to the unintegrated parton densities.
- Includes transverse momentum dependence in the parton densities.
- Practical approach for the phenomenology, using integrated densities, convoluted with the Sudakov form factors

Unintegrated PDFs

Martin, Kimber, Ryskin

DGLAP evolution for single PDF

$$
\underbrace{\frac{\partial D_{a}(x, \mu)}{\partial \ln \mu^{2}}=\sum_{a^{\prime}} \int_{x}^{1-\Delta} \frac{d z}{z} P_{a a^{\prime}}(z, \mu) D_{a^{\prime}}\left(\frac{x}{z}, \mu\right)-D_{a}(x, \mu) \sum_{a^{\prime}} \int_{0}^{1-\Delta} d z z P_{a^{\prime} a}(z, \mu)}_{\text {real }}
$$

after integrating out the virtual part

$$
D_{a}(x, Q)=T_{a}\left(Q, Q_{0},\right) D_{a}\left(x, Q_{0}\right)+\int_{Q_{0}^{2}}^{Q^{2}} \frac{d k_{\perp}^{2}}{k_{\perp}^{2}} f_{a}\left(x, k_{\perp}, Q\right)
$$

where the "unintegrated density":

$$
f_{a}\left(x, k_{\perp}, Q\right) \equiv T_{a}\left(Q, k_{\perp}\right) \sum_{a^{\prime}} \int_{x}^{1-\Delta} \frac{d z}{z} P_{a a^{\prime}}\left(z, k_{\perp}\right) D_{a^{\prime}}\left(\frac{x}{z}, k_{\perp}\right)
$$

$$
\left.\begin{array}{l}
\text { or } \\
\begin{array}{r}
f_{a}\left(x, k_{\perp}, Q\right)=\frac{\partial}{\partial \ln k_{\perp}^{2}}\left[T_{a}\left(Q, k_{\perp}\right) D_{a}\left(x, k_{\perp}\right)\right]
\end{array} \begin{array}{c}
\text { with Sudakov } \\
\text { formfactor }
\end{array} \\
T_{a}\left(Q, k_{\perp}\right)=\exp \left\{-\int_{k_{\perp}^{2}}^{Q^{2}} \frac{d p_{\perp}^{2}}{p_{\perp}} \sum_{a^{\prime}} \int_{0}^{1-\Delta} d z z P_{a^{\prime} a}\left(z, p_{\perp}\right)\right\}
\end{array}\right\}
$$

Unintegrated PDFs

$$
f_{a}\left(x, k_{\perp}, Q\right) \equiv T_{a}\left(Q, k_{\perp}\right) \sum_{a^{\prime}} \int_{x}^{1-\Delta} \frac{d z}{z} P_{a a^{\prime}}\left(z, k_{\perp}\right) D_{a^{\prime}}\left(\frac{x}{z}, k_{\perp}\right)
$$

Dependence on two scales obtained in the last step of the evolution

Need to specify the cutoff :

DGLAP ordering:

$$
\Delta=\frac{k_{\perp}}{Q}
$$

CCFM angular ordering:

$$
\Delta=\frac{k_{\perp}}{k_{\perp}+Q}
$$

$$
\Theta\left(\theta-\theta^{\prime}\right) \Rightarrow \mu>z k_{t} /(1-z)
$$

$$
z_{\max }=\frac{\mu}{\mu+k_{t}}
$$

Larger phase space for emissions, tail in transverse momentum extends to $\quad k_{\perp}>Q$

Extending the KMR framework to DPDFs

Use parton-to-parton evolution function:

$$
\tilde{D}_{a}(n, \mu)=\sum_{. b \ldots \cdot\rangle} \tilde{E}_{a b}\left(n, \mu, \mu_{0}\right) \tilde{D}_{b}\left(n, \mu_{0}\right) .
$$

It evolves sPDF to scale μ from scale μ_{0}

$$
\begin{aligned}
& \qquad \frac{\partial}{\partial \ln \mu^{2}} \tilde{E}_{a b}\left(n, \mu, \mu_{0}\right)=\sum_{a^{\prime}} \tilde{P}_{a a^{\prime}}(n, \mu) \tilde{E}_{a^{\prime} b}\left(n, \mu, \mu_{0}\right)-\tilde{E}_{a b}\left(n, \mu, \mu_{0}\right) \sum_{a^{\prime}} \int_{0}^{1} d z z P_{a^{\prime} a}(z, \mu) \\
& \text { initial condition } \\
& \text { Formally integrating out virtual part: }
\end{aligned}
$$

$$
\begin{gathered}
\left.\tilde{E}_{a b}\left(n, Q, Q_{0}\right)=T_{a}\left(Q, Q_{0}\right) \delta_{a b}+\int_{Q_{0}^{2}}^{Q^{2}} \frac{d k_{\perp}^{2}}{k_{\perp}^{2}} T_{a}\left(Q, k_{\perp}\right) \sum_{a^{\prime}} \tilde{P}_{a a^{\prime}}\left(n, k_{\perp}\right) \tilde{E}_{a^{\prime} b}\left(n, k_{\perp}, Q_{0}\right)\right)
\end{gathered}
$$

Double parton distributions (DGLAP eq):

$$
\tilde{D}_{a_{1} a_{2}}\left(n_{1}, n_{2}, \mu_{1}, \mu_{2}\right)=\sum_{a^{\prime}, a^{\prime \prime}}\left\{\tilde{E}_{a_{1} a^{\prime}}\left(n_{1}, \mu_{1}, \mu_{0}\right) \stackrel{\bullet}{E}_{a_{2} a^{\prime \prime}}\left(n_{2}, \mu_{2}, \mu_{0}\right) \tilde{D}_{a^{\prime} a^{\prime \prime}}\left(n_{1}, n_{2}, \mu_{0}, \mu_{0}\right)\right.
$$

$$
\left.+\int_{\mu_{0}^{2}}^{\mu_{\min }^{2}} \frac{d \mu_{s}^{2}}{\mu_{s}^{2}} \tilde{E}_{a_{1} a^{\prime}}\left(n_{1}, \mu_{1}, \mu_{s}\right) \tilde{E}_{a_{2} a^{\prime \prime}}\left(n_{2}, \mu_{2}, \mu_{s}\right) \tilde{D}_{a^{\prime} a^{\prime \prime}}^{(s p)}\left(n_{1}, n_{2}, \mu_{s}\right)\right\}
$$

Homogeneous part of DPDF evolution

$$
\begin{aligned}
\tilde{D}_{a_{1} a_{2}}^{(h)}\left(n_{1}, n_{2}, Q_{1}, Q_{2}\right)=T_{a_{1}}\left(Q_{1}, Q_{0}\right) T_{a_{2}}\left(Q_{2}, Q_{0}\right) \tilde{D}_{a_{1} a_{2}}\left(n_{1}, n_{2}, Q_{0}, Q_{0}\right) \\
+\int_{Q_{0}^{2}}^{Q_{2}^{2}} \frac{d k_{2 \perp}^{2}}{k_{2 \perp}^{2}}\left\{T_{a_{1}}\left(Q_{1}, Q_{0}\right) T_{a_{2}}\left(Q_{2}, k_{2 \perp}\right) \sum_{b} \tilde{P}_{a_{2} b}\left(n_{2}, k_{2 \perp}\right)\left[\sum_{a^{\prime \prime}} \tilde{E}_{b a^{\prime \prime}}\left(n_{2}, k_{2 \perp}, Q_{0}\right) \tilde{D}_{a_{1} a^{\prime \prime}}\left(n_{1}, n_{2}, Q_{0}, Q_{0}\right)\right]\right\} \\
+\int_{Q_{0}^{2}}^{Q_{1}^{2}} \frac{d k_{1 \perp}^{2}}{k_{1 \perp}^{2}}\left\{T_{a_{1}}\left(Q_{1}, k_{1 \perp}\right) T_{a_{2}}\left(Q_{2}, Q_{0}\right) \sum_{b} \tilde{P}_{a_{1} b}\left(n_{1}, k_{1 \perp}\right)\left[\sum_{a^{\prime}} \tilde{E}_{b a^{\prime}}\left(n_{1}, k_{1 \perp}, Q_{0}\right) \tilde{D}_{a^{\prime} a_{2}}\left(n_{1}, n_{2}, Q_{0}, Q_{0}\right)\right]\right\}
\end{aligned}
$$

$$
+\int_{Q_{0}^{2}}^{Q_{1}^{2}} \frac{d k_{1 \perp}^{2}}{k_{1 \perp}^{2}} \int_{Q_{0}^{2}}^{Q_{2}^{2}} \frac{d k_{2 \perp}^{2}}{k_{2 \perp}^{2}}\left\{T_{a_{1}}\left(Q_{1}, k_{1 \perp}\right) T_{a_{2}}\left(Q_{2}, k_{2 \perp}\right) \sum_{b, c} \tilde{P}_{a_{1} b}\left(n_{1}, k_{1 \perp}\right) \tilde{P}_{a_{2} c}\left(n_{2}, k_{2 \perp}\right)\left[\sum_{a^{\prime}, a^{\prime \prime}} \tilde{E}_{b a^{\prime}}\left(n_{1}, k_{1 \perp}, Q_{0}\right) \tilde{E}_{c a^{\prime \prime}}\left(n_{2}, k_{2 \perp}, Q_{0}\right) \tilde{D}_{a^{\prime} a^{\prime \prime}}\left(n_{1}, n_{2}, Q_{0}, Q_{0}\right)\right]\right\}
$$

Four distinct regions of phase space depending on the ordering of scales.

Homogeneous part

$Q_{1}^{2} \sim Q_{2}^{2} \gg Q_{0}^{2}$
$k_{1 \perp}$ unintegrated $\quad k_{2 \perp} \quad$ unintegrated
$\underbrace{\left(f_{a_{1} a_{2}}^{(h)}\left(x_{1}, x_{2}, k_{1 \perp}, k_{2 \perp}, Q_{1}, Q_{2}\right)=T_{a_{1}}\left(Q_{1}, k_{1 \perp}\right) T_{a_{2}}\left(Q_{2}, k_{2 \perp}\right) \sum_{b, c} \int_{\frac{x_{1}}{1-x_{2}}}^{1-\Delta_{1}} \frac{d z_{1}}{z_{1}} \int_{\frac{x_{2}}{1-x_{1} / z_{1}}}^{1-\Delta_{2}} \frac{d z_{2}}{z_{2}} P_{a_{1} b}\left(z_{1}, k_{1 \perp}\right) P_{a_{2} c}\left(z_{2}, k_{2 \perp}\right) D_{b c}^{(h)}\left(\frac{x_{1}}{z_{1}}, \frac{x_{2}}{z_{2}}, k_{1 \perp}, k_{2 \perp}\right)\right)}$
$Q_{1}^{2} \sim Q_{0}^{2}$ and $Q_{2}^{2} \gg Q_{0}^{2} \quad k_{1 \perp}$ integrated $\quad k_{2 \perp}$ unintegrated
$f 1_{a_{1}, a_{2}}^{(h)}\left(x_{1}, x_{2}, k_{2 \perp}, Q_{1}, Q_{2}\right)=T_{a_{1}}\left(Q_{1}, Q_{0}\right) T_{a_{2}}\left(Q_{2}, k_{2 \perp}\right) \sum_{b} \int_{\frac{x_{2}}{1-x_{1}}}^{1-\Delta_{2}} \frac{d z_{2}}{z_{2}} P_{a_{2} b}\left(z_{2}, k_{2 \perp}\right) D_{a_{1} b}^{(h)}\left(x_{1}, \frac{x_{2}}{z_{2}}, Q_{0}, k_{2 \perp}\right)$
$\underline{Q_{1}^{2} \gg Q_{0}^{2} \text { and } Q_{2}^{2} \sim Q_{0}^{2} .}$
$f 1_{a_{1}, a_{2}}^{(h)}\left(x_{1}, x_{2}, k_{1 \perp}, Q_{1}, Q_{2}\right)=T_{a_{1}}\left(Q_{1}, k_{1 \perp}\right) T_{a_{2}}\left(Q_{2}, Q_{0}\right) \sum_{b} \int_{\frac{x_{1}}{1-x_{2}}}^{1-\Delta_{1}} \frac{d z_{1}}{z_{1}} P_{a_{1} b}\left(z_{1}, k_{1 \perp}\right) D_{b a_{2}}^{(h)}\left(\frac{x_{1}}{z_{1}}, x_{2}, k_{1 \perp}, Q_{0}\right)$
$\underline{Q_{1}^{2} \sim Q_{2}^{2} \sim Q_{0}^{2}}$
non-perturbative region - parametrized by integrated density

Results for unintegrated dPDFs

The same method can be applied to the non-homogeneous term.

$$
f_{g g}=f_{g g}^{(h)}\left(x_{1}, x_{2}, k_{1 \perp}, k_{2 \perp}, Q_{1}, Q_{2}\right)+f_{g g}^{(n h)}\left(x_{1}, x_{2}, k_{1 \perp}, k_{2 \perp}, Q_{1}, Q_{2}\right)
$$

Showing contributions from
 perturbative region only

Non-homogenous term smaller than the homogenous one(that ratio could depend on the initial condition)
Higher Q, lower x, the maximum shifts to higher transverse momenta

Results for unintegrated dPDFs

Effect of angular ordering cutoff: larger tails in kT

Results for unintegrated dPDFs

Fixed Q, fixed $x I, x 2$
Non-homogeneous term is more perturbative, higher transverse momenta

Smaller value for nonhomogeneous term.

Factorization of unintegrated dPDFs

[^0]
Summary and outlook

- Summary \& outlook I - initial conditions:
- Double integrated PDFs need consistent initial conditions for the evolution.
- Beta functions for single PDF and Dirichlet distributions for double PDF with suitably matched powers and coefficients are good initial conditions. The momentum sum rule and quark number sum rule are satisfied simultaneously.
- Extending the formalism: expansion in terms of Dirichlet distributions. First numerical tests with gluons. Sum rules provide relations between the powers at small and large x for single and double parton distributions.
- In principle one can include quarks into the formalism; some additional constraints needed.
- Is there any deeper physical meaning to the presented algorithm?

Summary and outlook

- Summary \& outlook 2 - transverse momentum dependence:
- Extended the KMR approach to dPDFs.
- Expressions include correlations through the integrated dPDFs. Additional correlations enter through the regularization cutoffs.
- Unintegrated dPDFs: small x , higher kT values. Homogenous term dominates over the non-homogenous one.
- Numerical simulations indicate very good factorization for large scales and small x for the sum of homogeneous and non-homogenous contributions. That property is contingent upon the momentum sum rule.
- Include the momentum transfer.

backup

Initial conditions: quarks and gluons

Momentum sum rule with quarks:
$\sum_{f_{1}} \tilde{D}_{f_{1} f_{2}}\left(2, n_{2}\right)=\tilde{D}_{f_{2}}\left(n_{2}\right)-\tilde{D}_{f_{2}}\left(n_{2}+1\right)$

Quark number sum rule:

$$
\begin{gathered}
\tilde{D}_{q_{i} f_{2}}\left(1, n_{2}\right)-\tilde{D}_{\bar{q}_{i} f_{2}}\left(1, n_{2}\right)=A_{i f_{2}} \tilde{D}_{f_{2}}\left(n_{2}\right) \\
A_{i f_{2}}=N_{i}-\delta_{f_{2} q_{i}}+\delta_{f_{2} \bar{q}_{i}}
\end{gathered}
$$

Ansatz for dPDF with different flavors:

$$
\text { Ansatz for sPDF : } \quad D_{f}(x)=N_{1} x^{-\alpha^{f}}(1-x)^{\beta^{f}}
$$

- Can perform the same analysis as before.
- Conditions for powers for dPDFs and sPDFs are exactly the same from both momentum and quark sum rules.
- Can satisfy simultaneously both sum rules:

Small \times powers are $\quad \tilde{\alpha}^{f_{2}}=\alpha^{f_{2}}$
Large x powers: $\quad \tilde{\beta}^{f_{1} f_{2}}=\beta^{f_{2}}+\alpha^{f_{1}}-1$
$D_{f_{1} f_{2}}\left(x_{1}, x_{2}\right)=N_{2} x_{1}^{-\tilde{\alpha}^{f_{1}}} x_{2}^{-\tilde{\alpha}^{f_{2}}}\left(1-x_{1}-x_{2}\right)^{\tilde{\beta}^{f_{1} f_{2}}}$
identical:

$$
\tilde{\alpha}^{f_{1}}=\alpha^{f_{1}}
$$

Symmetry with respect to the parton exchange

Implies the correlation of

$$
\beta^{f_{2}}+\alpha^{f_{1}}=\beta^{f_{1}}+\alpha^{f_{2}}
$$ powers in sPDFs:

[^0]: $r=\frac{f_{g g}\left(x_{1}, x_{2}, k_{1 \perp}, k_{2 \perp}, Q, Q\right)}{f_{g}\left(x_{1}, k_{1 \perp}, Q\right) f_{g}\left(x_{2}, k_{2 \perp}, Q\right)}$

