Stationary solutions in theories beyond GR

George Pappas

4th of June 2018, Benasque
Numerical Relativity beyond General Relativity workshop
Motivation
 Why theories beyond-GR? How to proceed?

GR
 Brief outline

Theories beyond GR
 What’s out there?
 Scalar-tensor theories
 Quadratic gravity theories

Parametrised deviations from GR
 Deformations of Kerr
 Designer metrics

Conclusions
Why beyond-GR theories:
See morning talk by Thomas (Theoretical motivation for beyond-GR theories).

1 point to remember:
To test GR we also need solutions from theories other than GR in order to form a testbed.

2 approaches:
• Find solutions in specific modifications to GR and work on a case by case basis.
• Construct generic parametric deviations from known GR solutions, like the Kerr solution.

3 ways to proceed:
• Generate an analytic parameterised solution without approximations
• Employ some approximation scheme (slow rotation, small coupling)
• Numerical solution
The Einstein-Hilbert action in GR is

\[S = \frac{1}{16\pi} \int d^4x \sqrt{-g} R + S_m(g_{\mu
u}, \psi), \]

which results to the field equations

\[R_{ab} = 8\pi \left(T_{ab} - \frac{1}{2} g_{ab} T \right) \]

Stationary spacetime: symmetry with respect to time translations and rotations (the spacetime admits a timelike, \(\xi^a \), and a spacelike, \(\eta^a \), killing vector).

The line element for such a spacetime can be written as

\[ds^2 = -e^{2\nu} dt^2 + r^2 \sin^2 \theta B^2 e^{-2\nu} (d\varphi - \omega dt)^2 + e^{2(\zeta-\nu)} (dr^2 + r^2 d\theta^2) \]

This line element describes the spacetime of a rotating compact object. The field equations can be solved either for vacuum spacetimes (BH solutions) or spacetimes that have matter (NS solutions).

- In vacuum we have the well known BH solutions of the Kerr family (which can be extended to include electromagnetic fields as well).
- For NSs the full field equations can only be solved numerically.

• The alternative is to employ the slow rotation Hartle-Thorne method.²

\[ds^2 = -e^\nu dt^2 + e^\lambda dr^2 + r^2 \left[d\theta^2 + \sin^2 \theta d\varphi^2 \right] - 2\varepsilon(\Omega - \omega_1)r^2 \sin^2 \theta d\varphi dt. \]

where \(\varepsilon \) is a slow rotation small bookkeeping parameter. The first order correction \(\omega_1 \) is given by the equation

\[\omega_1'' = \frac{4}{r} \left[\pi r^2 (\varepsilon + p) e^\lambda - 1 \right] \omega_1' + 16\pi (\varepsilon + p) e^\lambda \omega_1. \]

• Finally there is a general algorithm for constructing any vacuum stationary axisymmetric space-time. Such a spacetime can be described by the Weyl-Papapetrou line element³,

\[ds^2 = -f (dt - wd\varphi)^2 + f^{-1} \left[e^{2\gamma} (d\rho^2 + dz^2) + \rho^2 d\varphi^2 \right]. \]

By introducing the complex potential \(\mathcal{E}(\rho, z) = f(\rho, z) + i\psi(\rho, z) \)⁴, the Einstein field equations take the form, \((\text{Re} (\mathcal{E})) \nabla^2 \mathcal{E} = \nabla \mathcal{E} \cdot \nabla \mathcal{E}\), where, \(f = \xi^a \xi_a \) and \(\psi \) is the scalar twist, \(\nabla_a \psi = \varepsilon_{abcd} \xi^b \nabla^c \xi^d \). By prescribing an Ernst potential \(\mathcal{E} \) one can calculate a vacuum GR solution.

A brief (incomplete) list of theories beyond GR.

- Scalar-tensor theories
- $f(R)$ theories
- Quadratic gravity theories
 - Einstein-dilaton-Gauss-Bonnet (EdGB)
 - dynamical Chern-Simons (dCS)
- Lorentz-violating theories
- Massive gravity theories
- Theories with non-dynamical fields
The *Bergmann-Wagoner* action for Scalar-Tensor theories is,

\[
S = \int d^4 x \sqrt{-\hat{g}} \left(\varphi \hat{R} - \frac{\omega(\varphi)}{\varphi} \hat{\nabla}^\mu \varphi \hat{\nabla}_\mu \varphi U(\varphi) \right) + S_m(\hat{g}_{\mu\nu}, \psi)
\]

In the Einstein frame it takes the form,

\[
S = \frac{1}{16\pi} \int d^4 x \sqrt{-\tilde{g}} \left(\tilde{R} - 2 \tilde{\nabla}^\mu \phi \tilde{\nabla}_\mu \phi - V(\phi) \right) + S_m(\tilde{g}_{\mu\nu}, \psi)
\]

where \(\varphi \) is redefined to \(\phi \), \(\hat{g}_{\mu\nu} = A^2(\phi)\tilde{g}_{\mu\nu} \), and \(V(\phi) \equiv A^4(\phi)U(\varphi(\phi)) \). Then the field equations take the form,

\[
\tilde{R}_{ab} = 2 \partial_a \phi \partial_b \phi + 8\pi \left(T_{ab} - \frac{1}{2} \tilde{g}_{ab} T \right) + 2V\tilde{g}_{ab}, \quad \tilde{g}^{ab} \tilde{\nabla}_a \tilde{\nabla}_b \phi = -4\pi \alpha(\phi) T + \frac{1}{4} \frac{dV}{d\phi}
\]

These equations can be solved as in GR in vacuum or in the presence of matter.\(^5\) Since the actual physics is done in the Jordan frame (the particles follow the geodesics of the Jordan metric), one can return to that frame by the conformal transformation \(\hat{g}_{\mu\nu} = A^2(\phi)\tilde{g}_{\mu\nu} \).

In the case of a massless scalar field \(V(\phi) = 0 \), the vacuum field equations

\[
\tilde{R}_{ab} = 2\partial_a \phi \partial_b \phi, \quad \tilde{g}^{ab} \tilde{\nabla}_a \tilde{\nabla}_b \phi = 0
\]
can admit an Ernst formulation as in GR,\(^6\) having the metric,

\[
ds^2 = -f (dt - w d\phi)^2 + f^{-1} \left[e^{2\gamma} \left(d\rho^2 + dz^2 \right) + \rho^2 d\phi^2 \right]
\]
and the field equations,

\[
(Re(\mathcal{E})) \nabla^2 \mathcal{E} = \nabla \mathcal{E} \cdot \nabla \mathcal{E},
\]
with the addition of a Laplace equation for the scalar field, \(\nabla^2 \phi = 0 \), and a set of equations for the metric function \(\gamma \) of the Weyl-Papapetrou metric,

\[
\frac{\partial \gamma}{\partial \rho} = \left(\frac{\partial \gamma}{\partial \rho} \right)_{GR} + \rho \left[\left(\frac{\partial \phi}{\partial \rho} \right)^2 - \left(\frac{\partial \phi}{\partial z} \right)^2 \right], \quad \frac{\partial \gamma}{\partial z} = \left(\frac{\partial \gamma}{\partial z} \right)_{GR} + 2\rho \left(\frac{\partial \phi}{\partial \rho} \right) \left(\frac{\partial \phi}{\partial z} \right),
\]

Any vacuum stationary axisymmetric GR solution can be turned into a scalar-tensor solution with a massless scalar field.\(^7\)

In the case of a massive scalar field, one doesn't have the Ernst formulation, but can still do a fully numerical calculation, or employ a HT-like slow rotation approximation, like in GR.8

The TOV equations then become (0th-order in the rotation),

\[
M' = 4\pi r \left(rA^4 \epsilon_0 + \frac{1}{2} (r - 2M) \phi_0'' + rV \right),
\]

\[
\nu' = \frac{2 \left(4\pi r^3 (A^4 p_0 - V) + M \right)}{r(r - 2M)} + 4\pi r \left(\phi_0' \right)^2,
\]

\[
p' = -(p_0 + \epsilon_0) \frac{1}{2} \nu' - \alpha \phi_0',
\]

\[
\phi_0'' = \frac{2\phi_0' \left(r \left(2\pi r^2 (A^4 (\epsilon_0 - p_0) + 2V) - 1 \right) + M \right) + r^2 (A^3 A' (\epsilon_0 - 3p_0) + V')}{r(r - 2M)},
\]

and at 1st-order in the rotation,

\[
\omega_1'' = \frac{4 \left(\pi A^4 r^2 (p_0 + \epsilon_0) (r\omega_1' + 4\omega_1) + (r - 2M)\omega_1' \left(\pi r^2 (\phi_0')^2 - 1 \right) \right)}{r(r - 2M)}.
\]

8 Pani, Berti, Phys. Rev. D 90, 024025 (2014); Yazadjiev et al., Phys. Rev. D 93, 084038 (2016)
A lot of work has been done in scalar-tensor theories for both BHs and NSs. These results also extend to f(R) theories due to the equivalence between them (although there are subtleties).

▶ Black Holes:
 ▶ Real scalar field:
 No-hair theorems. Same BH solutions as in GR, i.e., Kerr BHs.
 ▶ Complex scalar field:
 Evade the no-hair theorems for $\Psi(t, \varphi, x^i) = e^{-i\omega t} e^{im\varphi} \phi(x^i)$. Stationary BH solutions with scalar clouds when $\omega = m\Omega_H$.

▶ Neutron Stars:
 Systematic studies in slow rotation and rapid rotation for massless and massive scalar fields. Spontaneously scalarised solutions.
 f(R) theories such as $f(R) = R + aR^2$ studied in their scalar-tensor formulation.
The most general action for quadratic gravity with a scalar field is

\[
S = \frac{1}{16\pi} \int d^4x \sqrt{-g} \left[R - 2\nabla^\mu \phi \nabla_\mu \phi - V(\phi) + f_1(\phi)R^2 + f_2(\phi)R_{\mu\nu}R^{\mu\nu} + f_3(\phi)R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma} + f_4(\phi)^* RR \right] + S_m(\gamma(\phi)g_{\mu\nu}, \psi)
\]

Special cases are the EdGB gravity (Gauss-Bonnet scalar)

\[
R_{GB}^2 \equiv R^2 - 4R_{\mu\nu}R^{\mu\nu} + R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma},
\]

and dCS gravity (Pontryagin scalar),

\[
*RR \equiv \frac{1}{2} R_{\mu\nu\rho\sigma}\epsilon^{\nu\mu\lambda\kappa} R_{\lambda\kappa}^{\rho\sigma}.
\]

Quite some work has been done in quadratic gravity for both BHs and NSs.

- **Black Holes:**
 Solutions have been found in the perturbative slow-rotation limit. The BH solutions are scalarised. In EdGB solutions have been also found for rapidly rotating BHs. EdGB also has spontaneously scalarised BHs.

- **Neutron Stars:**
 - **EdGB:** Studies in slow rotation and rapid rotation. Spontaneously scalarised solutions. There exists a critical \(p_c \).
 - **dCS:** Studies in 1st and 2nd order in rotation. Scalar dipole. No-scalar-monopole theorem for both theories at the perturbative level.
It is probably impossible to study all solutions of all the theories beyond GR. Still, without committing to a specific theory, one could construct parameterised spacetimes that can be used to test GR. These spacetimes do not necessarily satisfy some specific field equations.

- One such example is the Cardoso, Pani, Rico extension of the Johannsen-Psaltis non-Kerr metric:\(^9\)

\[
ds^2 = -f dt^2 + \frac{\Sigma(1 + h^r)}{\Delta + a^2 \sin^2 \theta h^r} dr^2 + \Sigma d\theta^2 - 2a \sin^2 \theta (H - f) d\varphi dt \\
+ \sin^2 \theta \left[\Sigma + a^2 \sin^2 \theta (2H - f) \right] d\varphi^2
\]

where \(f = (1 - \frac{2mr}{\Sigma})(1 + h^t)\), \(H = \sqrt{(1 + h^r)(1 + h^t)}\), \(\Sigma = r^2 + a^2 \cos^2 \theta\), \(\Delta = r^2 + a^2 - 2mr\), and \(h^{r,t} = \sum_{k=0}^{\infty} (\varepsilon_{2k}^{r,t} + \varepsilon_{2k+1}^{r,t} \frac{mr}{\Sigma}) \left(\frac{m^2}{\Sigma} \right)^k\).

Asymptotic flatness imposes \(\varepsilon_0^{r,t} = 0\), while the mass is \(M = m(1 - \varepsilon_1^t/2)\). Caveat: seems to be mapped to known static solutions but not stationary.

There are other more successful approaches in that respect.\(^10\)

Another approach: metrics with special properties, i.e., a **Carter constant**. Such examples are the bumpy Kerr and the Johannsen metric,\(^\text{11}\)

\[
\begin{align*}
 ds^2 &= -\frac{2a [(r^2 + a^2)A_1(r)A_2(r) - \Delta]}{[(r^2 + a^2)A_1(r) - a^2A_2(r)\sin^2 \theta]^2} \tilde{\Sigma} \sin^2 \theta d\varphi dt + \frac{\tilde{\Sigma} dr^2}{\Delta A_5(r)} + \tilde{\Sigma} d\theta^2 \\
 &= -\frac{\tilde{\Sigma} \left[\Delta - a^2A_2(r)^2 \sin^2 \theta\right]}{[(r^2 + a^2)A_1(r) - a^2A_2(r)\sin^2 \theta]^2} dt^2 + \frac{\tilde{\Sigma} \sin^2 \theta \left[(r^2 + a^2)A_1(r)^2 - a^2 \Delta \sin^2 \theta\right]}{[(r^2 + a^2)A_1(r) - a^2A_2(r)\sin^2 \theta]^2} d\varphi^2
\end{align*}
\]

where \(\tilde{\Sigma} = \Sigma + f(r)\), and \(A_1, A_2, A_5,\) and \(f\) are expansions in powers of \(1/r\). The Johannsen metric can be related to the bumpy Kerr and these two can describe slowly rotating dCS, and some static EdGB BHs.

History note: Johannsen’s metric is of the form of Carter’s canonical metric\(^\text{12}\),

\[
 ds^2 = \frac{Z}{\Delta_r} dr^2 + \frac{Z}{\Delta_\theta} d\theta^2 + \frac{\Delta_\theta}{Z} \left(P_r d\varphi - Q_r dt\right)^2 + \frac{\Delta_r}{Z} \left(Q_\theta dt - P_\theta d\varphi\right)^2 ,
\]

where \(Z = P_r Q_\theta - Q_r P_\theta\), and the \(P, Q,\) and \(\Delta\) are functions of either \(r\) or \(\theta\).

<table>
<thead>
<tr>
<th>Theory</th>
<th>Solutions</th>
<th>Stability</th>
<th>Geodesics</th>
<th>Quadrupole</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extra scalar field</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scalar-tensor</td>
<td>≃GR [55–60]</td>
<td>[61–67]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiscalar/Complex scalar</td>
<td>≃GR [56, 58, 69]</td>
<td>?</td>
<td></td>
<td>[68, 69]</td>
</tr>
<tr>
<td>Metric $f(R)$</td>
<td>≃GR [58, 59]</td>
<td>[70, 71]</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Quadratic gravity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gauss-Bonnet</td>
<td>NR [72–74]; SR [75, 76]; FR [77]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chern-Simons</td>
<td>SR [83–85]; FR [86]</td>
<td>[78, 79]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generic</td>
<td>SR [80]</td>
<td></td>
<td>?</td>
<td>[80]</td>
</tr>
<tr>
<td>Horndeski</td>
<td>[92–94]</td>
<td></td>
<td>[95, 96]</td>
<td>?</td>
</tr>
<tr>
<td>Lorentz-violating</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Φ-gravity</td>
<td>NR [97–99]</td>
<td>?</td>
<td>[98, 99]</td>
<td>?</td>
</tr>
<tr>
<td>Khoronometric/</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n-DBI</td>
<td>NR [103, 104]</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Massive gravity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dRGT/Bimetric</td>
<td>≃GR, NR [105–108]</td>
<td>[109–112]</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Galileon</td>
<td></td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Nondynamical fields</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palatini $f(R)$</td>
<td>≃GR [113]</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Eddington-Born-Infeld</td>
<td>≃GR</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>