

Numerical Relativity beyond GR

Plan for the talk

- The initial condition problem for inflation
- Studying inhomogeneous inflation using NR
- Challenges / Opportunities for NR in inflation

The initial condition problem for inflation

Inflation

Inflation

Why does the universe look the same in all directions?

Image ESA/Planck

Inflation

patch to achieve homogeneity beyond the horizon

The initial condition problem for inflation

Small field versus large field models

- Small field $\delta \phi \ll M_{pl}$
- Large field $\delta \phi \gg M_{pl}$

Diagram from: Initial Conditions for Inflation: A Short Review Robert Brandenberger, arXiv 1601.01918 Small field fits better into an effective theory, but is not an attractor in field space

Studying inhomogeneous inflation using NR

Numerical simulations of inflation in full GR

- Dalia S. Goldwirth and Tsvi Piran
 - Inhomogeneity and the onset of inflation Phys. Rev. Lett. 64, 2852 (1990)
- P. Laguna, H. Kurki-Suonio, and R. A. Matzner
 - Inhomogeneous Inflation: Numerical Evolution Phys.Rev. D48 (1993) 3611-3624
- William E. East, Matthew Kleban, Andrei Linde and Leonardo Senatore
 - Beginning Inflation in an inhomogeneous universe JCAP 1609 (2016) no.09, 010
- Katy Clough, Raphael Flauger, Eugene A. Lim, Brandon S. DiNunno, Willy Fischler, Sonia Paban
 - Robustness of Inflation to Inhomogeneous Initial Conditions JCAP 1709 (2017) no.09, 025
 - Robustness of Inflation to Large Tensor Perturbations JCAP 1805 (2018) no.05, 065

Aim: develop our intuition for the failure of slow roll inflation using time domain evolutions of inhomogeneous initial conditions

Metric

• Decompose the 4D spacetime metric as:

$$ds^{2} = -(\alpha^{2} - \beta^{k}\beta_{k})dt^{2} + 2\beta^{i}dx_{i}dt + \gamma_{ij}dx^{i}dx^{j}$$

• Compare to FRLW:

$$ds^2 = -a^2(\tau)d\tau^2 + a^2(\tau)\delta_{ij}dx^i dx^j$$

The extrinsic curvature

 Related to the time derivative of the spatial metric

$$K_{ij} \sim -\frac{\partial_t \gamma_{ij}}{2\alpha}$$

Usually decomposed into its trace and trace free parts

$$K_{ij} = \frac{1}{\chi} (\tilde{A}_{ij} + \frac{1}{3} \tilde{\gamma}_{ij} K)$$

- (In FRW the trace K is K = -3H)

Inhomogeneous inflation - initial conditions

Scalar perturbations in the inflaton field (+ in the metric)

$$\phi = f(x, y, z) \quad \dot{\phi} = 0$$

 $\chi = g(x, y, z)$ K = const

✓ Done

Tensor perturbations in metric

$$A_{ij}^{TT} \neq 0 \quad A_{ij}^{L} = 0$$
Image: Dome transformation of the second state of the second state

$$A_{ij}^{TT} \neq 0 \quad A_{ij}^{L} \neq 0$$
$$\dot{\phi} = f(x, y, z)$$

: in progress

Large field inflation - very robust

JCAP 1609 (2016) no.09, 010

Small field inflation - not very robust

Small field inflation - not very robust

amplitude of metric/tensor fluctuations

Clough et al. JCAP 1709 (2017) no.09, 025 JCAP 1805 (2018) no.05, 065

Small field inflation - not very robust

inflaton field (simulation) 0.004 $\phi_{initmin} \Delta A = 0 \times 10^{-10} M_{pl}$ 0.002 $\phi_{initmin} \Delta A = 1 \times 10^{-10} M_{pl}$ 0.003 = 0 $\phi_{initmin} \Delta A = 2 \times 10^{-10} M_{pl}$ 0.002 r = 20.001 φ [M_p] $\phi(\mathcal{N}) [M_{pl}]$ r = 5 0.001 r = 100.000 0.000 r = 20r = 40-0.001-0.001 -0.002 ġ. 1 2 4 5 6 7 2 3 5 6 7 0 $\langle N \rangle$ 1 \mathcal{N} e-folds e-folds You are here Clough et al. JCAP 1709 (2017) no.09, 025 JCAP 1805 (2018) no.05, 065

inflaton field (toy model)

Challenges / Opportunities for studying early universe physics with NR

Resolution required for power spectra

Giblin et al. Departures from the Friedmann-Lemaitre-Robertston-Walker Cosmological Model in an Inhomogeneous Universe PRL 116 251301

Interpretation of results / observables

 $ds^{2} = a^{2}(\tau) \left[(1+2A)d\tau - 2B_{i}dx^{i}d\tau - (\delta_{ij} + h_{ij}) dx^{i}dx^{j} \right]$

East et al. Comparing Fully General Relativistic and Newtonian Calculations of Structure Formation Phys.Rev. D97 (2018) no.4, 043509

Initial conditions and boundary conditions

$$D^2\chi \sim K^2 - 24\pi G(\rho + \rho_{A_{ij}})$$

• Are there preferred initial conditions?

e.g. GW turbulence

Galtier and Nazarenko Turbulence of Weak Gravitational Waves in the Early Universe Phys. Rev. Lett. **119**, 221101

Clough and Niemeyer On the difficulty of generating gravitational wave turbulence in the early universe arXiv:1803.10719

New physics / modified gravity

Thank you for listening, any questions?