INntroduction to
Molecular Geometric Phase

Ryan Requist

Max Planck Institute of Microstructure Physics, Halle, Germany

Aug. 23, 2018




Outline

|. Geometric phases in action
A. Falling cats

B. Floppy molecules

Il. Berry phase
A. General theory
B. Observing the Berry phase
C. Generalizations

Ill. Molecular geometric phase — Born-Oppenheimer approximation
A. Example: F ® e Jahn-Teller model
B. Experimental observations

V. Molecular geometric phase — beyond Born-Oppenheimer approx
A. Exact factorization scheme
B. Exact molecular geometric phase
C. Example: pseudorotation triatomic molecule
D. Experimental observation through Ham reduction tfactors



Geometric phases in action

Example 1: Falling cats l . AV
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Cats achieve a net rotation by deforming their bodies
through a sequence of shapes.

The sequence traces out a closed path in the space

of all possible “cat shapes.” v“
Due to the nonholonomic geometry of this path, the final - \ N
orientation of the cat differs from the initial one by a net A ™
rotation angle called an anholonomy. i

base space is the space of “cat shapes” and the gauge

The effect can be described by a gauge theory where the _# \ |
~ Ve
group is SO(3) - the group of rigid rotations in 3D.* g g

\

=
*R. Montgomery, Fields Inst. Commun. 1, 193-218 (1993)



Geometric phases in action

Example 2: Floppy molecules

Like the cat, a molecule can go through a sequence of distortions.
This is called a pseudorotation when it does not lead to an overall
rotation of the molecule.

Instead, the anholonomy occurs for an “internal” degree of freedom,
namely the nodal plane of the electronic wavefunction [Longuet-Higgins 1961].

normal mode coordinates (Q1, Q., Q,) pseudorotation
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Q1 = Symmetric Qx — symmetric Qy = asymmetric
breathing bending bending




Geometric phases in action

Example 2: Floppy molecules Q). = Qcosn Q, = @sinn
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Longuet-Higgins, Adv. Spectrosc. 2, 429 (1961)



General theory of the Berry phase

In adiabatically-driven closed guantum systems

Suppose we are given a Hamiltonian H(R) depending parametrically on
a set of variables R = (R4, R, ..., R,). Consider a closed path R(t).

() = HERWW)  [6(0) = [n(R(0))

Adiabatic theorem implies

t

(1)) = e~ o Bn(B())ds oim(®) 1y (R (¢)))+ small corrections

dynamical phase factor = e~ o En(R(s))ds
Berry phase factor = ¢/

M. V. Berry, Proc. R. Soc. Lond. A, 392, 45 (1984)



General theory of the Berry phase

In adiabatically-driven closed guantum systems

W(t» — 6_”5 E”(R(S))dsem(t)\H(R(t))>—l—small corrections

s))ds

dynamical phase factor = e—if(f Eqn (R(

Berry phase factor = ")

if n(R) is single-valued on the closed path C

M. V. Berry, Proc. R. Soc. Lond. A, 392, 45 (1984)



General theory of the Berry phase

generalized Stokes’s theorem

—7{ A, -dR C = closed path
C

_ // B,.(R)-dS S = surface bounded by C
S

eftective vector potential effective magnetic field
A,(R) =Im(n(R)[Va(R))  B,(R)=V x A,(R)
(“Berry connection”) (n|VH|m) x (m|VH|n)
= Im Z (B, _E,)
m#n
Z
Example: two-level system v (C) = flux of B,(R) Q)

I R

HR) =5 x+iv -z ) B:(R) =2 Rp

2

1( 7 X —1Y

X
v+ (C) = FQ(C) /2 | Q(C) = solid angle subtended by C
M. V. Berry, Proc. R. Soc. Lond. A, 392, 45 (1984)




Properties of the Berry phase

0 (C) = 7{} (n(R)|Vrn(R)) - dR

Path dependent: depends on the history of the dynamics

Gauge invariant. v(C) is invariant to the gauge transformation
n(R)) = *®n(R)) = i(n(R)|Vn(R)) = i(n(R)|Vn(R)) — VA(R)

v(C) can be interpreted as the flux of an effective (induced)
magnetic field

Mathematically, it is the holonomy of U(1) fiber bundle over
parameter space; the adiabatic theorem defines the parallel-
transport Berry connection [Simon PRL 51, 2167 1983].



Observing the Berry phase

Berry phases can be observed in several ways.

They are observable as shifts in the interference fringes in experiments
involving superpositions of multiple pathways.

(W) = cre 1) + coe™2|2)
(W[O[P) = [e1[(1|ON1) + [es]*(2]O|2) + 2Re[erc5e’ ™ 2(1]O[2)]

They modity the energy spectrum as observed in vibrational spectroscopy
[von Busch, et al., PRL 81, 4585 (1998)].



Generalizations of the Berry phase

Open-path geometric phase
[Samuel Bandari PRL 60, 2339 (1988); Mukunda Simon Ann. Phys. 228, 269 (1993)]

Non-adiabatic geometric phase
Aharonov-Anandon phase [PRL 58, 1593 (1987)]

Non-Abelian geometric phase U(1) — U(N)
[Wilczek Zee PRL 52, 2111 (1984)]

Geometric phase of Bloch functions in the Brillouin zone

[Thouless et al PRL 49, 405 (1982); Zak PRL 62, 2747 (1989); King-Smith Vanderbilt PRB 47, 1651
(1993)]

Molecular geometric phase

[Longuet-Higgins et al. Proc. R. Soc. London, Ser. A 244, 1 (1958); Gidopoulos Gross Phil. Trans. Roy. Soc. A
372, 20130059 (2014); Min Abedi Kim Gross PRL 113, 263004 (2014); RR Tandetzky Gross PRA 93, 042108
(2016)]



Molecular geometric phase

U(r,R) ~ Pr(r)x(R) Born-Oppenheimer approximation

elec 9 elec nucl
p. /\
— r)=E&(R)Pr(r
( o, 3 — ) Pr(r) = E(R)P (0
electronic and nuclear coordinates conical intersection of
r=(r,ry...) R=(Ri,Ry,...) Born-Oppenheimer

potential energy surfaces

a real-valued electronic function ®gr(r)
changes sign when transported along C

Pr(r) = —Pr(r)

= Berry phase equals 7

(here called Longuet-Higgins phase™) @

®g(r) and x(R) are multivalued

*Longuet-Higgins, Opik, Pryce & Sack, Proc. R. Soc. London, Ser. A 244, 1 (1958)



Molecular geometric phase

dr and X can be made single-valued by multiplying by a Dirac phase factor*

@gﬁégze%fé‘@@f{ A:(AhAQ,...)

i AR A, = Im(®g|Vg, Pr)

C
Born-Oppenheimer
= — éé -dR molecular geometric phase
=0orm

*Mead & Truhlar, J. Chem. Phys., 70, 2284 (1979)



Example: E ® e Jahn-leller model

Two degenerate electronic states |u) and |g) coupled to
two degenerate vibrational normal modes @5 and @5

Born-Oppenheimer Hamiltonian polar coor.’s
mo _ K Q: —Q Q= /03 + Q3
HBO _ 2 + 2 4+ ( 2 3 )

9 (QQ QS) g _QS _QQ p— tan_l(QS/QQ)

Born-Oppenheimer potential energy surfaces

K
k= gQZ + gQ)




Example: E ® e Jahn-leller model

Real-valued Born-Oppenheimer eigenstates

o n n
cp(sm2> c1>+< COS?) (change sign when n — n + 2m)

n —Qqn n
0082 Sll”l2

Single-valued Born-Oppenheimer eigenstates

‘v N n
~ . S111 = ~ ) COS =
o — 6—277/2 2 (I)_|_ _ 6—m/2 2

cos 4 — sin g

2

Born-Oppenheimer molecular geometric phase

27
(€)=~ [ (@ 10,8 )y
0

_/27?@
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Observations of the molecular geometric phase

B ab initio, I rovibronic
— Berry's phase =0 symmetries:

. i i Ale— A n: .
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i X(Q? 77 B 27T) — _X(Q7 77) :_ Experiment
[ e A(1,0,0) < X(0,0,0)

(antiperiodic boundary conditions)

OQODR intensity

X(Qa 77) — f(@)eimn, m = ::%, ::5, .

Two-fold ground state

[ ' [ ' [ ' [ ' [ ' [ ' [
15020 15021 15022 15023 15024 15025 15026

degeneracy Is connected to
the molecular Berry phase  Berry's phase =7 |

vibronic symmetry
ab initio, E «<™> A

—————————————————
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von Busch, et al., PRL 81, 4585 (1998) wave number [cm!]



Observations of the molecular geometric phase

Na, 1%E"

contour lines
in steps of 50 cm™
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Vibrational spectroscopy for Naa:
D3n symmetry has E and A
Irreducible representations

von Busch, et al., PRL 81, 4585 (1998)

OODR intensity

B ab initio,
— Berry's phase =0

————————————————— rovibronic
! symmetries:
. . I | A2‘ < AZH: T
vibronic symmetry ! | \ "

15020 15021

Experiment

[ ' [ ' [ ' [ ' [
15022 15023 15024 15025 15026

A(1,0,0) + X(0,0,0)
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| Berry's phase = &t i __________________________
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wave number [cm!]



Does the interpretation of experiment depend
on the Born-Oppenheimer approximation?

In our calculations, the molecular geometric phase of m appeared to
depend on the existence of a conical intersection, yet the point of
conical intersection is precisely where the Born-Oppenheimer
approximation breaks down.

The geometric phase of a subsystem, as originally defined, depended
on an adiabatic separation of fast and slow degrees of freedom, e.g.

r and R, with the latter being interpreted as parameters that drive the
guantum state of the former.”

One may therefore wonder whether the experimental observations really
observe a molecular geometric phase of 7.

*M. V. Berry, Proc. R. Soc. Lond. A, 392, 45 (1984)



Exact factorization scheme

U(r,R) ~ ®r (r)xo (R)  Born-Oppenheimer approximation

U(r, R) = Pr(r)x(R) Exact factorization

x(E) — marginal nuclear wavefunction

— nuclear probability |x(R)|”

and current density J, = Im x*(R)V,x(R) + |x(R)|’A,

$gr (r) = conditional electronic wavefunction

partial normalization condition — /<I>§(£)<I>R(y)d£ =1

Hunter, Int. J. Quant. Chem. 9, 237 (1975); Abedi, Maitra & Gross, Phys. Rev. Lett. 105, 123002 (2010);
Gidopoulos & Gross, Phil. Trans. R. Soc. A, 372, 20130059 (2014)



Coupled exact factorization equations

e

> i (i + A+ ER) [X(R) = BX(R

h— n —

1
2M,

[A{elec — Te + ‘A/en + ‘A/ee + ‘A/nn + Z [(_Zvn _ An)2 + (_Zan/X + An)(_zvn T An)}

Exact potential energy surface: ER,t) = <<I>§\F[BO\<I>§> + Egeo (R, 1)

V,Pr|(1l — |Pr){(PRr|)IV,Pr
ggeo(ﬁ, t) — Z < :|< ‘2M7>f :D’ :>

n

Exact induced vector potential: A, =Im(Pgr|V,Pr) (Berry connection)

Hunter, Int. J. Quant. Chem. 9, 237 (1975); Abedi, Maitra & Gross, Phys. Rev. Lett. 105, 123002 (2010);
Gidopoulos & Gross, Phil. Trans. R. Soc. A, 372, 20130059 (2014)



Exact molecular geometric phase

Nonadiabatic effects are usually included through the Born-Huang expansion

U(ER) =) CRE)X,R)

n

...but that does not give us a way to calculate corrections to the phase

To define an exact molecular geometric phase, replace <I>§O — g IN
in the Berry connection A,, = Im(®g|V,PR)

exact molecular geometric phaset

W(C)Z—jié-c@ A= (A A, .. )

TGidopoulos & Gross, Phil. Trans. Roy. Soc. A 372, 20130059 (2014); Min, Abedi, Kim & Gross, Phys. Rev. Lett. 113, 263004 (2014);
RR, Tandetzky & Gross, PRA 93, 042108 (2016)



Exact molecular geometric phase

Gidopoulos & Gross and Min et al. posed the following question:

Is the molecular Berry phase an artitact of the

Born-Oppenheimer approximation?

In a 2D Shin-Metiu model, they found that the molecular geometric phase,
which was 7 in the Born-Oppenheimer approximation, vanished in a

numerically exact calculation.
IMin Abedi Kim Gross, PRL 113, 263004 (2014)]

s it always zero? — No, in dynamical Jahn-Teller systems where the
Born-Oppenheimer molecular geometric phase has been observed,

the exact molecular geometric phase is nonzero.
[RR Tandetsky Gross, PRA 93, 042108 (2016)]

Gidopoulos & Gross, Phil. Trans. Roy. Soc. A 372, 20130059 (2014); Min, Abedi, Kim & Gross, Phys. Rev. Lett. 113, 263004 (2014)



Model pseudorotating triatomic molecule

Electrons: tight-binding approximation

assuming one s-like electron per atom
Nuclei: normal mode coordinates (Q1, Q2, @s3)
DENEECEN

H=-> (thns1(R)cl,Cnito + Hoe.) + Ty + Voo + Ve

no

) R (1 d _ d 1 d? . K
— Vnn = —Q~
(@ QYaQ T @2 dn2)’ “ o2

(Q2,Q3) = (Q,n)

T, —
6 M

g
t, (R =ty + —=(IR,.; — R,| — V3R

Allen, Abanov & RR, Phys. Rev. A 71, 043203 (2005); RR, Tandetzky, Gross, PRA 93, 042108 (2016)



Electronic states and coupling

Single-particle orbitals

1
b = ﬁ(l, 1,1) Te4 V==Y  (tanr1(R)cyeni10 + H.c.)
_ L i2m/3 —i2n/3 4 "
¢-|— \/g(e , € ) ) ) A h2v2 K ,
Tn + Vnn — + _Q
— L(e—ﬂw/?) oi27/3 1) 2M 2
- \/g Y Y
3-electron Hilbert space, S =1/2, 5, =1/2 Quasi-isotropic regime
(T¢) state 1% g
3, ) =1110) to > h 7 > oK
[b) = 01H>
c) = ¢LOT>
3t
T g -t K
hi/ — = vibrational frequency
0 o= ow M
1y =1110) .
0 \{5( ) 2K stabilization energy
E(OMH HITT ) —|HT>)




Symmetries of the model

Schrodinger equation solved by exact diagonalization in
an electron-nuclear product basis |a) ® |nm)

(@nlnm) = pum(Q)e™  pum(Q) ~ Laguerre polynomials

Three-told rotational symmetry Nuclear density and £(Q-, Q3)
215
Gy = Cu.Cr, Sy

Chi 152531 -
Canx(Q,n) = x(Q,n + 27/3)

Irreducible representations

E and A Q2 Q>
Ground state is two-fold complex state V) Ca| W) = ™3,
degenerate with £ symmetry ,
h eV eV
M=100—— ¢=07~— K =1.00>-
e/ A2 2

RR, Tandetzky & Gross, PRA 93, 042108 (2016)




Geometric phase and Berry curvature

(€)= / / B.dS
/ / B, dQ2dQ;

/Tt
1.0

0.8

0.6

0.4

0.2

02 04 06 08 10 12 14
RR, Tandetzky & Gross, PRA 93, 042108 (2016)

Berry curvature

dPr dCI)R>
dQ2 | dQs

of current-carrying state |V )

|’-\
20

BJ_—QIH1<

10



Topological invariant vs geometric phase

Infinitesimal Aharonov-Bohm flux tube Smeared-out flux tube
in Born-Oppenheimer approximation INn exact factorization

Conical intersections of real Characteristic width
Hamiltonians have codimension 2 /2

= line or “seam” in 3D gM?1/2




Distinguishing the Born-Oppenheimer and
exact molecular geometric phases

Since v(C) is a path-dependent quantity and we cannot force the

nuclei to follow a specific path R(t), we do not know how to
measure ~(C') directly.

Actually, the expectation value of any electronic observable is a
x(R)|*-weighted average:

(0[O e | W) = / (R (@] Ouecl ) dR

However, we can infer the difference between v(C) and v2°(C)
through the response of the system to external perturbations,

such as magnetic fields and strain, or to additional interactions,
such as spin-orbit, hyperfine and nuclear quadrupole interactions.”

*F S. Ham, Int. J. Quant. Chem. 5, 191 (1971)



Ham effect

Jahn-Teller models describe the coupling of electronic and vibrational
states of given symmetry.

The symmetry of the electrons in the absence of electronic-vibrational
coupling Is determined by the nuclear geometry, e.g. the molecular
geometry or the local crystal field of a transition metal in a bulk crystal.

Symmetry determines how a perturbation V couples to the system.

When the electronic-vibrational coupling is turned back on, the purely

electronic eigenstates, say |u) and |g), transform into electronic-
vibrational (vibronic) states |¥,) and |V ).

Therefore, the form of the perturbation V remains the same but the
parameters are renormalized — this is called the Ham etfect.

*F. S. Ham, Phys. Rev. 166, 307 (1968)



Ham reduction factors

For example, a triatomic molecule with Dzn symmetry can be described
by an I ® e Jahn-Teller model.

E ® e means that the electronic states belong to a twofold degenerate
irreducible representation E of the Dan point group and that the
vibrational modes belong to the same E representation (lower case

IS used to distinguish vibrational states from electronic states).

For the E electronic states, a generic perturbation is
V=Vol+V-&
For vibronic states, this becomes

V = Vol + qVi61 + pVaba + qVs0

<\Iju’&2’qj9> and g = <\Iju’(}1mjg> _ <\Iju‘(}3mju>

with reduction factors p = (u|63lg) (u|61]g) (u|os|u)



Ham reduction factors

Ham reduction factors p and g can be expressed in terms of v(C)

(@)

T

p=27T/O dQQIx(Q)|* |1

p varies between 0 and 1, and approaches 0 in the limit M — oo

Deviations between ~(Q) and 429(Q) lead to p # 0

Quenching of the perturbation is incomplete due to nonadiabatic effects

RR, Proetto & Gross, PRA 96, 062503 (2017)



Recap

Geometric phases arise from the nontrivial twisting of an angular
variable (internal or external) as parameters are varied along a path

Molecular geometric phase is a special case of Berry phase where
the parameters are nuclear coordinates R(t) = {R1,Ra, ...}

Exact factorization scheme leads to the definition of an exact
molecular geometric phase that takes into account the full guantum
mechanical motion of the nuclei

Nonadiabatic effects change the topological Longuet-Higgins phase
iINnto a geometric quantity that deviates from exactly O and 7

Deviations from the Born-Oppenheimer result can be inferred from
Ham reduction factors, describing the guenching of external
perturbations by electronic-vibrational coupling



