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Induced macroscopic polarization
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Polarizability under external perturbations
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Spontaneous macroscopic polarization
Ferroelectrics are materials with nonzero macroscopic polarization in the  
absence of externally applied electric fields.

Ferroelectrics have noncentrosymmetric crystal structure.

Direction of the polarization can be reversed by applying a field.

Many perovskites are ferroelectrics, e.g. BaTiO3, PbTiO3 and KNbO3.

Theory of Polarization: A Modern Approach 39

Fig. 4. Tetragonal structure of PbTiO3: solid, shaded, and empty circles represent
Pb, Ti, and O atoms, respectively. The arrows indicate the actual magnitude of the
atomic displacements, where the origin has been kept at the Pb site (the Ti dis-
placements are barely visible). Two enantiomorphous structures, with polarization
along [001], are shown here. Application of a large enough electric field (coercive
field) switches between the two and reverses the polarization

Fig. 5. A typical hysteresis loop; the magnitude of the
spontaneous polarization is also shown (vertical dashed
segment). Notice that spontaneous polarization is a
zero-field property

ature is tetragonal. There are six enantiomorphous broken-symmetry struc-
tures; two of them, having opposite nuclear displacements and opposite values
of P , are shown in Fig. 4.

A typical measurement of the spontaneous polarization, performed
through polarization reversal, is schematically shown in Fig. 5. The hysteresis
cycle is in fact the primary experimental output. The transition between the
two enantiomorphous FE structures A and B of Fig. 4 is driven by an ap-
plied electric field; the experimental setup typically measures the integrated
macroscopic current flowing through the sample, as in (11). One half of the
difference P B − P A defines the magnitude P s of the spontaneous polariza-
tion in the vertical direction. From Fig. 5, it is clear that P s can also be
defined as the polarization difference ∆P between the broken-symmetry B
structure and the centrosymmetric structure (where the displacements are
set to zero). Notice that, while a field is needed to induce the switching in
the actual experiment, ideally one could evaluate ∆P along the vertical axis
in Fig. 5, where the macroscopic field is identically zero. We stress that the
experiment measures neither P A nor P B, but only their difference. It is only
an additional symmetry argument that allows one to infer the value of each
of them from the actual experimental data.

PbTiO3

Pb

Ti O

Modern Physics of Ferroelectrics: Essential Background 9

Fig. 3. Two different views of the unit cell of the ABO3 ideal cubic perovskite
structure. The B atom (grilled pattern) is at the center of an octahedron composed
of oxygen atoms (white pattern). The A atom (dashed pattern) has 12 oxygen first
neighbors. From [20]

Fig. 4. Another view of the ABO3 ideal cubic perovskite structure. From [20]

As is shown more clearly in Fig. 4, in the perovskite structure, the B
atom is at the center of 6 oxygen first neighbors, arranged at the corners
of a regular octahedron. The octahedra are linked at their corners into a 3-
dimensional simple-cubic network, enclosing large holes that are occupied by
A atoms. Each A atom is surrounded by 12 equidistant O atoms. The oxygens
have a lower-symmetry coordination environment: each O atom is adjacent
to 2 B atoms and 4 A atoms. The structure can also be characterized by the

ABO3 perovskite structure

Figures from Physics of Ferroelectrics: A modern perspective, Eds. Rabe, Ahn & Triscone (2007).



How to measure macroscopic polarization

Ferroelectric polarization
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Boundary conditions

Finite sample

Macroscopic polarization is 
the dipole moment/volume

Infinite crystal

…determined by the charge  
density as in molecules.
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Born-von Karman 
boundary conditions
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1Macroscopic polarization 
is a bulk quantity, but…

Charge density is not sufficient  
to calculate the polarization*

*R. Martin, Phys. Rev. B 9, 1998 (1974)



Classical theory of macroscopic polarization

Classical theory presupposes a solid to be  
a collection of polarizable units

32 Raffaele Resta and David Vanderbilt

Fig. 1. A polarized ionic crystal having the NaCl structure, as represented within
an extreme Clausius–Mossotti model. We qualitatively sketch the electronic polar-
ization charge (shaded areas indicate negative regions) in the (110) plane linearly
induced by a constant field EEE in the [111] direction as indicated by the arrow. The
anions (large circles) are assumed to be polarizable, while the cations (small cir-
cles) are not. The boundary of a Wigner–Seitz cell, centered at the anion, is also
shown (dashed line)

such an extreme model is neither a realistic nor a useful one, particularly for
FE materials.

Experimentalists have long taken the pragmatic approach of measuring
polarization differences as a way of accessing and extracting values of the
“polarization itself”. In the early 1990s it was realized that, even at the
theoretical level, polarization differences are conceptually more fundamental
than the “absolute” polarization. This change of paradigm led to the devel-
opment of a new theoretical understanding, involving formal quantities such
as Berry phases and Wannier functions, that has come to be known as the
“modern theory of polarization”. The purpose of the present chapter is to
provide a pedagogical introduction to this theory, to give a brief introduction
to its computational implementation, and to discuss its implications for the
physical understanding of FE materials.

1.1 Fallacy of the Clausius–Mossotti Picture

Within the CM model the charge distribution of a polarized condensed system
is regarded as the superposition of localized contributions, each providing an
electric dipole. In a crystalline system the CM macroscopic polarization P CM

is defined as the sum of the dipole moments in a given cell divided by the cell
volume. We shall contrast this view with a more realistic microscopic picture
of the phenomenon of macroscopic polarization.

An extreme CM view of a simple ionic crystal having the NaCl structure
is sketched in Fig. 1. The essential point behind the CM view is that the
distribution of the induced charge is resolved into contributions that can be
ascribed to identifiable “polarization centers”. In the sketch of Fig. 1 these are
the anions, while in the most general case they may be atoms, molecules, or
even bonds. This partitioning of the polarization charge is obvious in Fig. 1,
where the individual localized contributions are drawn as nonoverlapping.
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Real materials
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Fig. 2. Induced (pseudo)charge density ρ(ind)(r) in the (110) plane linearly induced
by a constant field EEE in the [111] direction, indicated by the arrow, in crystalline
silicon. The field has unit magnitude (in a.u.) and the contours are separated by
30 charge units per cell. Shaded areas indicate regions of negative charge; circles
indicate atomic positions

But what about real materials? This is precisely the case in point: the elec-
tronic polarization charge in a crystal has a periodic continuous distribution,
which cannot be unambiguously partitioned into localized contributions.

In typical FE oxides the bonding has a mixed ionic/covalent character [4],
with a sizeable fraction of the electronic charge being shared among ions in a
delocalized manner. This fact makes any CM picture totally inadequate. In
order to emphasize this feature, we take as a paradigmatic example the ex-
treme covalent case, namely, crystalline silicon. In this material, the valence-
electron distribution essentially forms a continuous tetrahedral network, and
cannot be unambiguously decomposed into either atomic or bond contribu-
tions. We show in Fig. 2 the analog of Fig. 1 for this material, with the elec-
tronic distribution polarized by an applied field along the [111] direction. The
calculation is performed in a first-principle framework using a pseudopoten-
tial implementation of density-functional theory [5, 6]; the quantity actually
shown is the induced polarization pseudocharge of the valence electrons.

Clearly, the induced charge is delocalized throughout the cell and any
partition into localized polarization centers, as needed for establishing a CM
picture, is largely arbitrary. Looking more closely at the continuous polariza-
tion charge of Fig. 2, one notices that in the regions of the bonds parallel to
the field the induced charge indeed shows a dipolar shape. It is then tempting
to identify the CM polarization centers with these bond dipoles, but we shall
show that such an identification would be incorrect. The clamped-ion (also
called static high-frequency) dielectric tensor [7, 8] can be defined as

ε∞ = 1 + 4πχ = 1 + 4π
∂P

∂EEE , (1)

where P is the macroscopic polarization and EEE is the (screened) electric field.
One would like to replace P with P CM, i.e., the induced bond dipole per
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Anions and cations separated  
by empty interstitial regions

Figures from Resta & Vanderbilt in Physics of Ferroelectrics: A modern perspective,  
Eds. Rabe, Ahn, Triscone (2007).



Fundamental problem with the classical theory
“the [charge density in a solid] … cannot be unambiguously  

decomposed into [localized] contributions.”

Quotation and figures from Resta & Vanderbilt in Physics of Ferroelectrics: A modern perspective,  
Eds. Rabe, Ahn, Triscone (2007).

Incorrect definition of the macroscopic bulk polarization:

Theory of Polarization: A Modern Approach 33

Fig. 2. Induced (pseudo)charge density ρ(ind)(r) in the (110) plane linearly induced
by a constant field EEE in the [111] direction, indicated by the arrow, in crystalline
silicon. The field has unit magnitude (in a.u.) and the contours are separated by
30 charge units per cell. Shaded areas indicate regions of negative charge; circles
indicate atomic positions

But what about real materials? This is precisely the case in point: the elec-
tronic polarization charge in a crystal has a periodic continuous distribution,
which cannot be unambiguously partitioned into localized contributions.

In typical FE oxides the bonding has a mixed ionic/covalent character [4],
with a sizeable fraction of the electronic charge being shared among ions in a
delocalized manner. This fact makes any CM picture totally inadequate. In
order to emphasize this feature, we take as a paradigmatic example the ex-
treme covalent case, namely, crystalline silicon. In this material, the valence-
electron distribution essentially forms a continuous tetrahedral network, and
cannot be unambiguously decomposed into either atomic or bond contribu-
tions. We show in Fig. 2 the analog of Fig. 1 for this material, with the elec-
tronic distribution polarized by an applied field along the [111] direction. The
calculation is performed in a first-principle framework using a pseudopoten-
tial implementation of density-functional theory [5, 6]; the quantity actually
shown is the induced polarization pseudocharge of the valence electrons.

Clearly, the induced charge is delocalized throughout the cell and any
partition into localized polarization centers, as needed for establishing a CM
picture, is largely arbitrary. Looking more closely at the continuous polariza-
tion charge of Fig. 2, one notices that in the regions of the bonds parallel to
the field the induced charge indeed shows a dipolar shape. It is then tempting
to identify the CM polarization centers with these bond dipoles, but we shall
show that such an identification would be incorrect. The clamped-ion (also
called static high-frequency) dielectric tensor [7, 8] can be defined as

ε∞ = 1 + 4πχ = 1 + 4π
∂P

∂EEE , (1)

where P is the macroscopic polarization and EEE is the (screened) electric field.
One would like to replace P with P CM, i.e., the induced bond dipole per
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by a constant field EEE in the [111] direction, indicated by the arrow, in crystalline
silicon. The field has unit magnitude (in a.u.) and the contours are separated by
30 charge units per cell. Shaded areas indicate regions of negative charge; circles
indicate atomic positions

But what about real materials? This is precisely the case in point: the elec-
tronic polarization charge in a crystal has a periodic continuous distribution,
which cannot be unambiguously partitioned into localized contributions.

In typical FE oxides the bonding has a mixed ionic/covalent character [4],
with a sizeable fraction of the electronic charge being shared among ions in a
delocalized manner. This fact makes any CM picture totally inadequate. In
order to emphasize this feature, we take as a paradigmatic example the ex-
treme covalent case, namely, crystalline silicon. In this material, the valence-
electron distribution essentially forms a continuous tetrahedral network, and
cannot be unambiguously decomposed into either atomic or bond contribu-
tions. We show in Fig. 2 the analog of Fig. 1 for this material, with the elec-
tronic distribution polarized by an applied field along the [111] direction. The
calculation is performed in a first-principle framework using a pseudopoten-
tial implementation of density-functional theory [5, 6]; the quantity actually
shown is the induced polarization pseudocharge of the valence electrons.

Clearly, the induced charge is delocalized throughout the cell and any
partition into localized polarization centers, as needed for establishing a CM
picture, is largely arbitrary. Looking more closely at the continuous polariza-
tion charge of Fig. 2, one notices that in the regions of the bonds parallel to
the field the induced charge indeed shows a dipolar shape. It is then tempting
to identify the CM polarization centers with these bond dipoles, but we shall
show that such an identification would be incorrect. The clamped-ion (also
called static high-frequency) dielectric tensor [7, 8] can be defined as
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Fig. 2. Induced (pseudo)charge density ρ(ind)(r) in the (110) plane linearly induced
by a constant field EEE in the [111] direction, indicated by the arrow, in crystalline
silicon. The field has unit magnitude (in a.u.) and the contours are separated by
30 charge units per cell. Shaded areas indicate regions of negative charge; circles
indicate atomic positions

But what about real materials? This is precisely the case in point: the elec-
tronic polarization charge in a crystal has a periodic continuous distribution,
which cannot be unambiguously partitioned into localized contributions.

In typical FE oxides the bonding has a mixed ionic/covalent character [4],
with a sizeable fraction of the electronic charge being shared among ions in a
delocalized manner. This fact makes any CM picture totally inadequate. In
order to emphasize this feature, we take as a paradigmatic example the ex-
treme covalent case, namely, crystalline silicon. In this material, the valence-
electron distribution essentially forms a continuous tetrahedral network, and
cannot be unambiguously decomposed into either atomic or bond contribu-
tions. We show in Fig. 2 the analog of Fig. 1 for this material, with the elec-
tronic distribution polarized by an applied field along the [111] direction. The
calculation is performed in a first-principle framework using a pseudopoten-
tial implementation of density-functional theory [5, 6]; the quantity actually
shown is the induced polarization pseudocharge of the valence electrons.

Clearly, the induced charge is delocalized throughout the cell and any
partition into localized polarization centers, as needed for establishing a CM
picture, is largely arbitrary. Looking more closely at the continuous polariza-
tion charge of Fig. 2, one notices that in the regions of the bonds parallel to
the field the induced charge indeed shows a dipolar shape. It is then tempting
to identify the CM polarization centers with these bond dipoles, but we shall
show that such an identification would be incorrect. The clamped-ion (also
called static high-frequency) dielectric tensor [7, 8] can be defined as

ε∞ = 1 + 4πχ = 1 + 4π
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where P is the macroscopic polarization and EEE is the (screened) electric field.
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Definition of macroscopic polarization

Experiments actually measure changes in the polarization when  
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Therefore, Resta proposed the definition

R. Resta, Ferrelectrics 136, 51 (1992)

Properties:  
(i)  intensive bulk quantity, insensitive to surface 
(ii)  has nothing to do with the charge density 
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Change in macroscopic polarization

Martin & Ortiz, Phys. Rev. B 49, 14202 (1994)
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Kohn-Sham electronic band structure of BaTiO3

Argonne National Laboratory

�P = �e lim

N,L!1
N/L=const.

Z
1

0

d�

Z
⇡/L

�⇡/L

dk

2⇡
2Imh@

k

�|@
�

�i,

�(r
1

�
1

, . . . , r
N

�
N

)

ˆH =

NX

i=1

p̂2
i

2m
+

ˆV
ee

+

ˆV
ext

(�)


p2

2m
+ v

ext

(r) + v
h

(r) + v
xc

(r)

�
 
nk(r) = ✏

nk nk(r)

ˆH
k

=

NX

i=1

(p̂
i

+ h̄k)2

2m
+

ˆV
ee

+

ˆV
ext

(�)

|�i

�(r
1

�
1

, . . . , r
N

�
N

) = e�ik(r1+···+rN )

 (r
1

�
1

, . . . , r
N

�
N

)

�P = lim

N,L!1
N/L=const.

� e

2⇡

Z
1

0

d�

Z
⇡/L

�⇡/L

dk 2Imh@
k

�|@
�

�i

= lim

N,L!1
N/L=const.

e

2⇡

Z
⇡/L

�⇡/L

dk ih�|@
k

�i

�P = lim

N,L!1
N/L=const.

e

Z
⇡/L

�⇡/L

dk

2⇡

h
ih�|@

k

�i|
�=1

� ih�|@
k

�i|
�=0

i

ˆH =

X

n�

h
✏
n

c†
n�

c
n�

+ t
nn+1

(c†
n�

c
n+1�

+ c†
n+1�

c
n�

) + Uc†
n"cn"c

†
n#cn#

i

✏
2n

= ��
✏
2n+1

= +�

t
2n,2n+1

= t
0

� ↵⇠ =: t�

✏
2n+1

= t
0

+ ↵⇠ =: t
+

3

Kohn-Sham equations

Bloch function for band n and wavevector k
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Geometric phase formula: mean-field case



To first order in   , time dependent perturbation theory gives 
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Wannier function centers

Defining Wannier functions as

and using

one finds
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Limitations of the mean-field formula
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It is not valid for insulating materials for which the Kohn-Sham band  
structure is metallic,* e.g. Mott insulators, and can be expected to have 
significant errors in strongly-correlated materials.

*Gonze, Ghosez & Godby, Phys. Rev. Lett. 74, 4035 (1995); ibid. 78, 294 (1997)

Density-polarization functional theory, where the exchange-correlation  
functional depends on the macroscopic polarization in addition to the  
density, has been proposed to overcome this issue.*
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When using the Kohn-Sham Bloch orbitals                            , the 
mean-field formula

is not guaranteed to give the correct macroscopic polarization even  
when the exact       is used.
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Geometric phase formula: interacting case

Based on Thouless’s charge pumping formula,* Ortiz and Martin proposed†

*D. J. Thouless, PRB 27, 6083 (1983); Q. Niu and D. J. Thouless, J. Phys. A: Math. Gen. 17, 2453 (1984). 
†G. Ortiz and R. M. Martin, PRB 49, 14202 (1994).

is related to the ground state of the original Hamiltonian via
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where                            is the ground state of the “twisted” Hamiltonian
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Twisted boundary conditions
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Geometric phase formula: interacting case



Reduced geometric phase formula

*RR & Pankratov, PRA 81, 042519 (2010); PRA 83, 052510 (2011);  
 RR PRA 86, 022117 (2012)
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natural orbital geometric phases*
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†RR & Gross, arxiv:1709.03372
#Related work for molecules by Giesbertz  
Gritsenko Baerends PRL 105, 013002 (2010)



One-body reduced density matrix

Properties:  
(i)  approximates the Ortiz-Martin formula 
(ii)  accounts for quantum fluctuations through the  
(iii)  reduces to King-Smith-Vanderbilt in noninteracting limit 
(iv)  exact in certain cases
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Reduced geometric phase formula



Applications to the band insulator - Mott insulator transition in the Rice-
Mele-Hubbard model in 1D and 2D.*

*R. Resta and S. Sorella, PRL 74, 4738 (1995); 
 G. Ortiz, P. Ordejon, R. M. Martin and G. Chiappe, PRB 54, 13515 (1996); 
 N. Gidopoulos, S. Sorella and E. Tosatti, Eur. Phys. J. B 14, 217 (2000).

RKMRRin.~In

larization. That calculation showed that, even
though the valence ofTi is 4+ and the d state
has no electrons (d0) in the purely ionic
picture, the actual valence of Ti is less than
3+ with the d' configuration because of dp
hybridization (6). Recent photoemission stud-
ies support this view (7, 8). A calculation on
KNb03 and KTaO3 (9) also suggests strong
hybridization. Thus, there is a distinct possi-
bility that the electron correlation is impor-
tant in these solids.
We start with a simple tight-binding

model for a binary compound, AB, with an
average of one electron per site. We think
of A as a transition metal element (Ti) and
B as oxygen. We assume that (i) the differ-
ence in site energy, A = EA - EB, is
positive to model the relative energy levels
of Ti and 0, (ii) the electron hopping is
only between the nearest neighbors, AB,
and (iii) the electron correlation is de-
scribed by the on-site Hubbard term with
UA and UB the local correlation energies,
which are significant and comparable in
magnitude with A. The Hamiltonian of the
system is

+ c=tC,gBj Ai,a + CA,i,aH =iXCA.i,aCB~J~a + I& A

i,jS7 i~cO

+ UAfnAi, T nA,i, o

i+ UBTInBJ, fnB~j, 1 + H.C. (1)

where t is the transfer matrix between sites
A and B, i and j are nearest neighbors, c+
and c are the electron creation and annihi-
lation operators, respectively, n = c+c, r
denotes spin (4t), H.C. stands for Hermite
conjugate, and we assume EB = 0. When A
is much larger than t, UA, and UB, there
are two electrons at each B site and no
electrons at the A site. We assume that in
this state, the ionic limit, the compound is
chemically described as A2`B2, in an
obvious association with a transition metal
oxide, M2+O2-.

Because A was chosen to be positive, the
upper Hubbard band of A is always nearly
empty. Consequently, the value of UA has
little effect on electron occupation as long
as it is reasonably large. If we assume that t
is small compared with UA, UB, and A, it is
immediately obvious that when UB > A,
the system is a Mott-Hubbard type insula-
tor, in the sense that the electron correla-
tion is dominant with nearly one electron
at each site. On the other hand, if UB is
smaller, the system is an ionic insulator
with nearly two electrons on each B site
(Fig. 1). Therefore, by modifying the value
of UB or-A, one can induce a major charge
transfer between A and B. Indeed, a very
similar phenomenon of crossover from a
neutral insulator to an ionic solid was ob-

1308

served for low-dimensional organic systems
(10), and there is a theory describing this
transition (11).

The role of the transfer matrix t is merely
to modify this balance quantitatively as
long as the lattice is perfectly periodic.
However, when the lattice is deformed,
there is a qualitative change in the phe-
nomena. The lattice deformation can result
in the change of both t and A; the latter is
attributable to the change in the Madelung
energy. When the state of the system is
between a Mott insulator and an ionic
insulator, lattice deformation can trigger
substantial charge transfer from one atom to
the other. This is the basis of the strong
electron-lattice interaction instigated by
the strong electron correlation.

To illustrate this point, we carried out a
many-electron calculation on the Hamilto-
nian (Eq. 1) for a one-dimensional ring
made of4A and 4B sites and eight electrons.
(As for the parameters in Eq. 1, we chose
dimensionless values which would be reason-
able in the unit of electron volt to describe
the light transition metal oxides.) The
many-body Hamiltonian was exactly diago-
nalized by the modified Lanczos method (12)
for the basis set of 48 = 65,536 states. The
results obtained for the smaller system of 3A
and 3B sites were similar, indicating that the
relatively small size of the model does not
significantly affect the conclusion, particu-
larly because the system is insulating. Cal-
culations on a larger system are computa-
tionally inhibiting at present.

For fixed values of t and A, the average
number of electrons occupying the A site,
NA, jumps from about 0.6 to about 0.8 as
the value of UB is increased (Fig. 2). Clear-
ly, the system is making an abrupt transi-
tion from an ionic insulator with some
covalency to the Mott insulator. The ionic-
covalent band state, which may be approx-
imated by a single electron band, abruptly
changes to the Mott-Hubbard state. Close
to this transition, it is difficult to achieve
convergence of the calculation because two
eigenstates are nearly degenerate. The
abruptness of the transition is not at all
eased by the increase in the value of t. The
effect of t is merely to modify the crossover
point. In general, the transfer t works
against the correlation energy U, so that
when t is increased, the crossover occurs at
larger values of UB. There is a small differ-
ence in the position of the crossover point
between the larger 4A + 4B system and the
smaller 3A + 3B system (Fig. 2), but the
overall behavior does not depend on the
size of the system. This jump must be
essentially the same as the one observed for
organic materials (10, 1 1).
We then modified the lattice by assum-

ing a Brillouin-zone boundary phonon, thus
introducing dimerization. The system is
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A
ionic insulator (A> UB)

EA + UA

EA
A:

BI U
1 + B

B
Mott insulator (A < UB)

-I-I
A

4

UB

-1
Asite Bsite Asite Bsite

Fig. 1. Electronic-level scheme of the com-
pound AB with the difference in the single-site
energy, A, and the local correlation energies,
UAand UB. (A) WhenA > UB, the system is an
ionic insulator, whereas (B) if A < UB, it is a
Mott-Hubbard insulator.

now a chain of AB molecules (AB-AB-AB-
... ). To represent the effect of this dimer-
ization, we changed the value of t altemat-
ingly by ±+t (13). However, we kept A
constant for the sake of simplicity. This
caused a decrease in the ground-state ener-
gy, which is quadratic in At for small values
of At. The effect is present even when UA
and UB are zero because dimerization in-
creases the band gap between the occupied
and unoccupied bands. This instability
against dimerization in the case of A = UA
= UB = 0 is the well-known Peierls insta-
bility. Because we did not include the
atom-atom repulsion, the ground-state en-
ergy is maximum at At = 0. When the
repulsion is included, the total energy has a
minimum or minima. If the repulsion is
stronger than the decrease in the band
energy, dimerization does not occur. But if
it is weaker, the total energy is minimum at
a finite value of At. Because the state with
-At will be symmetrically related, the
ground state will be doubly degenerate,
resulting in the double-well state.

The effect of electron correlation on the
decrease in the ground-state energy is evi-
dent in a plot of the change in the ground-
state energy AE(UB) for a fixed value of At

1 i,....,,,.,...,

0.8 0.6 - ,_" ~~~t= 0.5
t= 1.004t .. | . * = 1...

0.4
2 3 4 5

UB

Fig. 2. Dependence of NA on UB for A = 2 and
UA = 5 for various values of t. Results are
shown for both the 4A + 4B system (solid lines)
and the 3A + 3B system (dashed line).
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FIG. 1. Static charge of the cation as a function of the
Hubbard U. (a) Centrosymmetric structure (triangles) and
distorted structure (circles) below the transition. (b) Different
computations for the symmetric structure at the transition point
Uc. Empty triangles: 10 k points. Filled triangles: 100 k
points. Empty circles: 30 k points, displaced such as to avoidk=0.

conditions on each electronic variable, and then taking the
average over the boundary conditions (alias over the su-
percell quasimomenta k), as in Ref. [7]. This ensures that
the U 0 limit is numerically equal to the fully con-
verged thermodynamic limit of the noninteracting calcu-
lation. Typically we have used 30 k points, corresponding
to 120 k points in the unfolded Brillouin zone of the non-
interacting system. The numerical diagonalization was
performed via the Lanczos algorithm, which provided the
ground-state electronic wave functions 'Ito(k) with an en-
ergy tolerance close to the machine accuracy (10 '~to),
with less than 100 Lanczos iterations in all cases. In or-
der to reduce the problem size we have explicitly used the
conservation of the number of spin-up Nt and spin-down
N~ particles. The subspace with N~ = N~ = 4, where the
ground state lies, contains only 4900 elements, thus allow-
ing a large reduction of the full Hilbert space (amount-
ing to 4s = 65536 elements). Use of the center-of-mass
translation symmetry is also possible, but becomes useful
only for larger systems. In an insulating system such as
the present one the size effects are small, and further mini-
mized by k averaging [7]. For a few parameter values we
have indeed performed 12-site calculations, and checked
that the results agree with the 8-site ones to within l%%uo, at
least for the quantities studied here.
We study the dynamical charge transported along the

chain by a relative displacement $ of the two sublattices:
a typical magnitude of interest (as for ferroelectrics) is
gF = 0.05a, where a is the lattice constant. Sublattice
displacements asymmetrically affect the hopping matrix
elements. We assume the other parameters fixed, while
for the t variation we assume the simple Su-Schrieffer-
Heeger [8] linear dependence t = to ~ 2ng. In choosing
the electron-phonon coupling n we are guided again by
what would be a realistic value for describing (at U = 0) a

ferroelectric perovskite, i.e., na = 10 eV. We stress once
more that we use a ferroelectric perovskite only as a guide
to choosing a reasonable parameter set, while at U 4 0
our Hamiltonian aims at modeling an unspecified insulator
having mixed ionic-covalent character, not a ferroelectric
perovskite.
The tight-binding noninteracting Hamiltonian is trivi-

ally diagonalized as

s(k1 = kt6s + 4scccs ka/2 + 16(at)ss1c ka/2. /2)
The band structure is quadratic in g, hence the (linear)
deformation potential vanishes in the centrosymmetric
structure. Nonetheless, the band shift induced by a
displacement of magnitude gF is rather large (about
—0.8 eV at the zone boundary). Again, this is typical for
the mean-field bands of a mixed ionic/covalent insulator
[see e.g., Fig. 1(a) in Ref. [4]].
The static charges are somewhat reduced by the distor-

tion, as shown in Fig. 1(a), circles. When U is increased
to large values, the system undergoes an interesting tran-
sition, from a band insulator to a Mott insulator, first dis-
covered by Egami, Ishihara, and Tachiki, who studied an
identical Hamiltonian for a somewhat different parameter
range [5]. They identified the transition as a discontinu-
ous drop in the static ionic charges of the centrosymmetric
structure, while the charges of the distorted structure were
found continuous as a function of U. With our parameter
values, we find a qualitatively identical discontinuity at
Uc = 2.27tp. However, this is not all. The discontinuity
is present when only k = 0 wave functions are used, as
in Ref. [5], while it disappears as k-point convergence is
approached. A careful analysis is displayed in Fig. 1(b),
which incidentally proves the effectiveness of the k aver-
age [7] in getting rid of spurious finite-size effects. The
apparent discontinuity is due to a level crossing which
occurs at k = 0 and not at k 0 0, as discussed below.
We have explicitly verified that the computed disconti-
nuity is inversely proportional to the number of k points
used. Furthermore, the discontinuity disappears even with
a coarse mesh if the mesh is displaced on the k axis in or-
der to avoid the k = 0 singular point: this is also shown
in Fig. 1(b), open circles.
We are interested in the macroscopic polarization AP

induced by a zone-center optical phonon, when the sites
are continuously displaced from the centrosymmetric
structure (g = 0) to a broken-symmetry one, up to g =
$F. We therefore need to evaluate how much charge is
transported along the chain during a relative displacement
of the two sublattices, in a vanishing electric field [1];
if we choose to keep the origin fixed on a cationic
site, the transport is purely electronic. The electronic
charge transport is best evaluated as a geometric quantum
phase, as first shown —for the explicitly correlated case-
by Ortiz and Martin [6]. The rationale behind the
geometric phase approach is that the dynamical charge
is a quantum-mechanical current —hence a phase of the
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by electron-electron interaction, as long as its strength re-
mains moderate. At higher strength, the system undergoes
a transition from a band insulator to a Mott-like insulator.
At the transition point, charge transport is discontinuous,
and even reverses its sign for a given sublattice displace-
ment. In the highly correlated regime the cation transports
a negative dynamical charge, and the anion a positive one.
We are grateful to E. Tosatti for many helpful discus-

sions and for a critical reading of the manuscript. Part
of this work was performed while the authors were at
the Institute for Theoretical Physics, University of Cal-
ifornia at Santa Barbara. The research was supported
in part by the National Science Foundation under Grant
No. PHY89-04035.

FIG. 3. Average dynamical charge of the cation as a function
of the Hubbard U, for different values of the displacement g.
In order of increasing value of the discontinuity at Uc, the
curves represent g = gF = 0.05a, g = 0.035a, g = 0.0245a,
s = 0.014a, and g = 0.0035a.

charge: the figure then indicates that at U = Uc an
infinitesimal sublattice displacement (starting from the
symmetric structure) induces a finite charge transport,
hence an infinite Z'. At finite s values instead the
polarization, Eq. (4), has a finite and large discontinuity
at Uc. Notice that the Zak phase of the distorted structure
is continuous as a function of U, and therefore both
the divergence and the discontinuity of the dynamical
charges must be traced back to the discontinuity of the
centrosymmetric (s = 0) Zak phase in Eq. (4).
In conclusion, we have investigated here the effect of

electron-electron interaction in the macroscopic polariza-
tion of a mixed ionic/covalent insulator, by means of an
explicit model Hamiltonian, and exploiting the geomet-
ric phase approach. The very large polarization and dy-
namical charges of such an insulator are further enhanced
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Definition of Born charge



• Charge density does not uniquely determine the macroscopic 
polarization in infinite crystals (periodic boundary conditions)  

• Macroscopic polarization is related to the adiabatic current flowing 
through a unit cell and can be expressed as a geometric phase 

• Mean-field formula gives the polarization as the geometric phase 
of the Kohn-Sham Bloch functions across the Brillouin zone 

• Interacting formula gives the polarization as the geometric phase 
of the many-body wavefunction w.r.t. twisted boundary conditions 

• Reduced geometric phase formula simplies the full interacting 
formula, while retaining the most important correlation effects

Summary


