TDDFT in mixed quantum-classical dynamics

(2) TDDFT-based non-adiabatic dynamics: the case of TSH

Ivano Tavernelli

IBM Research - Zurich

8th TDDFT SCHOOL
BENASQUE 2018
1. TDDFT-based trajectory surface hopping
 - Nonadiabatic couplings in TDDFT

2. TDDFT-TSH: Applications
 - Photodissociation of Oxirane
 - Oxirane - Crossing between S_1 and S_0

3. TSH with external time-dependent fields
 - Local control theory
 - LC of protontransfer: from gas-phase to solution
Recent review on TDDFT-based nonadiabatic dynamics

1. **TDDFT-based trajectory surface hopping**
 - Nonadiabatic couplings in TDDFT

2. **TDDFT-TSH: Applications**
 - Photodissociation of Oxirane
 - Oxirane - Crossing between S_1 and S_0

3. **TSH with external time-dependent fields**
 - Local control theory
 - LC of protontransfer: from gas-phase to solution
Tully’s surface hopping - On-the-fly dynamics

\[i\hbar \dot{C}_k^\alpha (t) = \sum_j C_j^\alpha (t) (H_{kj} - i\hbar \dot{R}_k^\alpha \cdot d_{kj}^\alpha) \]

\[M_l \ddot{R}_l = -\nabla_l E_k^e (R) \]

\[\sum_{l \leq k-1} g_{jl}^\alpha < \zeta < \sum_{l \leq k} g_{jl}^\alpha , \]

What about the electronic structure method for on-the-fly dynamics? We need:

- Potential energy surfaces → MR-CISD, LR-TDDFT, semiempirical, ...
- Forces on the nuclei → MR-CISD, LR-TDDFT, semiempirical methods, ...
- Nonadiabatic coupling terms → MR-CISD, LR-TDDFT (?), semiempirical methods, ...
Tully’s surface hopping - On-the-fly dynamics

Tully’s surface hopping

\[i\hbar \dot{C}_k^\alpha(t) = \sum_j C_j^\alpha(t)(H_{kj} - i\hbar \dot{R}_k^\alpha \cdot d_{kj}^\alpha) \]

\[M_l \ddot{R}_l = -\nabla_l E_{el}^k(R) \]

\[\sum_{l \leq k-1} g_{jl}^\alpha < \zeta < \sum_{l \leq k} g_{jl}^\alpha, \]

What about the electronic structure method for on-the-fly dynamics? We need:

- Potential energy surfaces → MR-CISD, LR-TDDFT, semiempirical, ...
- Forces on the nuclei → MR-CISD, LR-TDDFT, semiempirical methods, ...
- Nonadiabatic coupling terms → MR-CISD, LR-TDDFT (?), semiempirical methods, ...

TDDFT in mixed quantum-classical dynamics
Tully’s surface hopping - On-the-fly dynamics

\[i\hbar \dot{C}_k^\alpha (t) = \sum_j C_j^\alpha (t) (H_{kj} - i\hbar \dot{R}_k^\alpha \cdot d_{kj}^\alpha) \]

\[M_I \ddot{R}_I = -\nabla I E_{k}^{el}(R) \]

\[\sum_{l \leq k-1} g_{ji}^\alpha < \zeta < \sum_{l \leq k} g_{ji}^\alpha , \]

What about the electronic structure method for on-the-fly dynamics? We need:

- **Potential energy surfaces** → MR-CISD, LR-TDDFT, semiempirical, ...
- **Forces on the nuclei** → MR-CISD, LR-TDDFT, semiempirical methods, ...
- **Nonadiabatic coupling terms** → MR-CISD, LR-TDDFT (?), semiempirical methods, ...

TDDFT in mixed quantum-classical dynamics
Nonadiabatic coupling vectors are defined in terms of electronic wavefunctions:

\[d_{kj} = \langle \Phi_k(R) | \nabla_R | \Phi_j(R) \rangle = \frac{\langle \Phi_k(R) | \nabla_R \hat{H}_{el} | \Phi_j(R) \rangle}{E_j(R) - E_k(R)} \]

The main challenge is to compute all these quantities as a functional of the ground state electronic density (or equivalently, of the occupied Kohn-Sham orbitals).

\[d_{kj} \rightarrow d_{kj}[\rho] \]

Different approaches for the calculation of \(d_{0j}[\rho] \) are available.\(^1\)

Here we will use the method based on the auxiliary many-electron wavefunctions.

The density response SOS formula

In TDDFT the density response \(\chi(\omega) \) is

\[
\chi(\omega) = S^{-1/2}(\omega^2 \mathbb{I} - \Omega(\omega))^{-1}S^{-1/2}
\]

with

\[
\Omega_{ij,kl\tau} = \delta_{\sigma \tau} \delta_{ik} \delta_{jl}(\epsilon_{l\tau} - \epsilon_{k\sigma})^2 + 2\sqrt{(f_{i\sigma} - f_{j\sigma})(\epsilon_{j\sigma} - \epsilon_{i\sigma})}K_{ij,kl\tau} \sqrt{(f_{k\tau} - f_{l\tau})(\epsilon_{l\tau} - \epsilon_{k\tau})}
\]

Using the spectral representation of the \((\omega^2 \mathbb{I} - \Omega(\omega))^{-1}\), we can write

\[
(\omega^2 \mathbb{I} - \Omega(\omega))^{-1} = \sum_n \frac{Z_n Z_n^\dagger}{\omega_n^2 - \omega^2}
\]

where \(Z_n \) are the TDDFT eigenvectors of the pseudoeigenvalue equation, \((S_{ij,kl\tau} = \frac{\delta_{ik} \delta_{jl} \delta_{\sigma \tau}}{(f_{k\sigma} - f_{l\sigma})(\epsilon_{l\sigma} - \epsilon_{k\sigma})})\)

\[
\Omega Z_n = \omega_0^2 Z_n,
\]

Therefore

\[
\chi(\omega) = \sum_n \frac{S^{-1/2} Z_n Z_n^\dagger S^{-1/2}}{\omega_n^2 - \omega^2}
\]

and finally the perturbation of any observable \((\delta \mathcal{O}(\omega) = \sum_{ij,kl\tau} o_{ij\sigma} \delta P_{ij\sigma})\)

\[
\delta \mathcal{O}^{TDDFT}(\omega) = \sum_n \sum_{ij,kl\tau} o_{ij\sigma} \frac{(S^{-1/2} Z_n)_{ik\sigma} (Z_n^\dagger S^{-1/2})_{kl\tau}}{\omega_n^2 - \omega^2} \nu_{kl\tau} E(\omega).
\]

In MBPT the density response $\chi(\omega)$ is

$$\delta O^{MBPT}(\omega) = \sum_n \frac{2\omega_i 0 \langle \Psi_0 | \hat{O} | \Psi_n \rangle \langle \Psi_n | \hat{\nabla} E(\omega) | \Psi_0 \rangle}{\omega_{n0}^2 - \omega^2}$$

Equating $\delta O^{TDDFT}(\omega)$ with $\delta O^{MBPT}(\omega)$ residue-by-residue,

$$\langle \Psi_0 | \hat{O} | \Psi_n \rangle = \sum_{ij\sigma} \frac{1}{\sqrt{\omega_n}} o_{ij\sigma} (S^{-1/2} Z_n)_{ij\sigma}$$

For any one-body operator, \hat{O}, a mapping between MBPT and TDDFT quantities gives (for the moment, we only consider transitions from the ground state Ψ_0)

$$O^\dagger S^{-1/2} Z_n = \omega_{0n}^{1/2} \langle \Psi_0 | \hat{O} | \Psi_n \rangle$$

where the operator $\hat{O} = \sum_{i\sigma} o_{i\sigma} \hat{a}_{i\sigma}^\dagger \hat{a}_{i\sigma}$ has components $o_{i\sigma} = \langle \phi_{i\sigma} | \hat{O} | \psi_{a\sigma} \rangle$ with $\omega_{0n} = E_n - E_0$. All matrices and vectors are given in the basis of KS orbitals $\{\phi_{i\sigma}\}$ with corresponding occupations $f_{i\sigma}$ and orbital energies $\epsilon_{i\sigma}$.

$^3 \sum_{i\sigma} \text{ stands for } \sum_{i=1}^{N} \sum_{a=1}^{\infty} \sum_{\sigma \in \{\alpha, \beta\}}.$
The auxiliary wavefunction

For practical purposes we introduce the auxiliary linear-response many-electron wavefunctions as a linear combination of singly excited Slater determinants

$$\tilde{\Phi}_k[\{\phi.\}] = \sum_{i\alpha\sigma} c_{i\alpha\sigma}^k \hat{a}_a^\dagger \hat{a}_{i\sigma} \tilde{\Phi}_0[\{\phi.\}],$$

with

$$c_{i\alpha\sigma}^k \equiv \sqrt{\frac{S_{i\alpha\sigma}^{-1}}{\omega_0} e_{i\alpha\sigma}^k}$$

where $\tilde{\Phi}_0[\{\phi.\}]$ is the Slater determinant of all occupied KS orbitals $\{\phi_{i\sigma}\}_{i=1}^N$, which, at a turn, are promoted into a virtual (unoccupied) orbitals, $\psi_{a\sigma}$.

We therefore have (in linear response!)

$$\langle \Psi_0 | \hat{O} | \Psi_n \rangle = \langle \tilde{\Phi}_0 | \hat{O} | \tilde{\Phi}_n \rangle$$

Nonadiabatic couplings

- The **nonadiabatic coupling elements** at the mid step $t + \delta t/2$ of a LR-TDDFT AIMD can therefore be calculated as

\[
\dot{\mathbf{R}} \cdot \mathbf{d}_{0k}|_{t+\delta t/2}[\{\phi,\}]=\left\langle \tilde{\Phi}_0(r; R(t)) \left| \nabla_R \left| \tilde{\Phi}_k(r; R(t)) \right\rangle \cdot \dot{\mathbf{R}} = \left\langle \tilde{\Phi}_0(r; R(t)) \left| \frac{\partial}{\partial t} \left| \tilde{\Phi}_k(r; R(t)) \right\rangle \right. \right| \\
\approx \frac{1}{2\delta t} \left[\left\langle \tilde{\Phi}_0(r; R(t)) \left| \tilde{\Phi}_k(r; R(t+\delta t)) \right\rangle - \left\langle \tilde{\Phi}_0(r; R(t+\delta t)) \left| \tilde{\Phi}_k(r; R(t)) \right\rangle \right. \right] \]

- The **nonadiabatic coupling vectors** between **pairs of excites states** (second order response)

\[
\mathbf{d}_{kj}[\{\phi,\}]=\frac{\left\langle \tilde{\Phi}_k(R) \left| \nabla_R \hat{H}_{el} \left| \tilde{\Phi}_j(R) \right\rangle \right. \right|}{E_j(R) - E_k(R)}
\]

- Auxiliary many-electron wavefunctions give exact couplings between ground state and any (singly) excited state.
- Auxiliary many-electron wavefunctions give **high quality** couplings between pairs of (singly) excited states ("exact" in the TDA and up to $O(\delta \rho^3)$ in full response).
As always, the quality of the nonadiabatic couplings will depend on the xc-functional used...

\[d_{kj}[\{\phi.\}] = \langle \tilde{\phi}_k(R) | \nabla R | \tilde{\phi}_j(R) \rangle \]

Protonated formaldimine: nonadiabatic coupling vectors \(d_{01} \) with LR-TDDFT/TDA.
Nonadiabatic couplings - examples

As always, the quality of the nonadiabatic couplings will depend on the \(\textit{xc} \)-functional used...

\[
d_{kj}[\{\phi.\}] = \langle \tilde{\Phi}_k(R) | \nabla_R | \tilde{\Phi}_j(R) \rangle
\]

Protonated formaldimine: nonadiabatic coupling vectors \(d_{12} \) with LR-TDDFT/TDA.
1. TDDFT-based trajectory surface hopping
 - Nonadiabatic couplings in TDDFT

2. TDDFT-TSH: Applications
 - Photodissociation of Oxirane
 - Oxirane - Crossing between S_1 and S_0

3. TSH with external time-dependent fields
 - Local control theory
 - LC of protontransfer: from gas-phase to solution

TDDFT in mixed quantum-classical dynamics
Protonated formaldimine

The protonated formaldimine is a model compound for the study of isomerization in rhodopsin chromophore retinal.

In addition to the ground state (GS), two excited electronic states are of interest:

1. $S_1: \sigma \rightarrow \pi^*$ (low oscillator strength)
2. $S_2: \pi \rightarrow \pi^*$ (high oscillator strength)
Protonated formaldimine

Computational details
- Isolated system
- LR-TDDFT/PBE/TDA
- SH-AIMD
- 50 trajectories (NVT) each of ~100 fs.

PRL, 98, 023001 (2007); THEOCHEM, 914, 22 (2009).
Protonated formaldimine as a model compound for the study of the isomerization of retinal.

Photo-excitation promotes the system mainly into S_2.

Relaxation involves at least 3 states: S_0 (GS), S_1 and S_2.

[E. Tapavicza, I. T., U. Rothlisberger, PRL, 98, 023001 (2007); THEOCHEM, 914, 22 (2009)]
Protonated formaldimine

Typical trajectory

PRL, 98, 023001 (2007); THEOCHEM, 914, 22 (2009).
Protonated formaldimine

Nonadiabatic couplings $\sigma_{kj} = \dot{R}^\alpha \cdot d^\alpha_{kj}$

PRL, 98, 023001 (2007); THEOCHEM, 914, 22 (2009).
Protonated formaldimine

States population

PRL, 98, 023001 (2007); THEOCHEM, 914, 22 (2009).
Protonated formaldimine

States population - **Average over many trajectories**.
Dashed line = CASSCF result.
Protonated formaldimine

Geometrical modifications
Protonated formaldimine

Comparison with experiment and model calculations

- In addition to the isomerization channel, intra-molecular proton transfer reactions was observed (formation of CH$_3$NH$^+$).
- H$_2$ abstraction is also observed in some cases.
- Structures and life times are in good agreement with reference calculations performed using high level wavefunction based methods.
Oxirane

Oxirane has interesting non-radiative decay channels, during which ring opening and dissociation can occur.

Figure: Mechanism proposed by Gomer and Noyes
Oxirane

Oxirane has interesting non-radiative decay channels, during which ring opening and dissociation can occur.

Computational details

- Isolated system
- LR-TDDFT/PBE/TDA
- SH-AIMD
- 30 trajectories (NVT) each of ~100 fs.

JCP, 129, 124108 (2009).
Oxirane

Oxirane has interesting non-radiative decay channels, during which ring opening and dissociation can occur.

JCP, 129, 124108 (2009).
The photophysics of solvated Ruthenium(II) tris-bipyridine

\[\text{[Ru(bpy)\textsubscript{3}]2+} \] dye: photophysics

\[^1\text{MLCT} \]

\[^1\text{GS} \]

\[\text{MC (dd)} \]

\[^3\text{MLCT} \]

\[\text{[Ru(bpy)\textsubscript{3}]2+} \] dye: Solvent structure

\[\text{[Ru(bpy)\textsubscript{3}]2+} \] dye: Singlet state dynamics

\[\text{[Ru(bpy)\textsubscript{3}]2+} \] dye: triplet state dynamics

\[\text{[Ru(bpy)\textsubscript{3}]2+} \] dye: triplet state dynamics

Tarjectory-based quantum and mixed QM-CL solutions

We can “derive” the following trajectory-based solutions:

- **Nonadiabatic Ehrenfest dynamics**

- **Adiabatic Born-Oppenheimer MD equations**

- **Nonadiabatic Bohmian Dynamics (NABDY)**

- **Nonadiabatic Trajectory Surface Hopping (TSH) dynamics**

- **Time dependent potential energy surface approach**
 based on the *exact decomposition*: \(\Psi(r, R, t) = \Omega(R, t)\Phi(r, t) \).
1. TDDFT-based trajectory surface hopping
 - Nonadiabatic couplings in TDDFT

2. TDDFT-TSH: Applications
 - Photodissociation of Oxirane
 - Oxirane - Crossing between S_1 and S_0

3. TSH with external time-dependent fields
 - Local control theory
 - LC of proton transfer: from gas-phase to solution
Addition of an external field within the equations of motion of TSH:

Strategy

The idea is to induce electronic excitations through the direct interaction with the time-dependent (td) electric field instead of “artificially” promote the system into one of its excited states. **Method**: extended TSH nonadiabatic dynamics.

Short summary of the theory

The interaction Hamiltonian between the electrons and the td electric field is

\[\hat{H}_{\text{int}} = -\frac{e}{2m_e c} \sum_i A(r_i, t) \cdot \hat{p}_i \]

where \(A(r, t) \) is the (classical) vector potential of the electromagnetic field, \(\hat{p}_i \) is the momentum operator of electron \(i \), \(e \) is the electron charge, \(m_e \) is the electron mass, and \(c \) is the speed of light.

Remark

We are in the dipole approximation and therefore we do not need TDCDFT.

It can be shown (Phys. Rev. A 81 052508 (2010)) that through the coupling with the td electric field, Tully’s propagation equations acquire an additional term

\[i\hbar \dot{C}_j^\alpha (t) = \sum_l C_l^\alpha (t)(H_{jl} - i\hbar \dot{R}_l^\alpha \cdot d_{jl}^\alpha + i\omega_{jl} \frac{A_0}{c} \epsilon^\lambda \cdot \mu_{jl} e^{-i\omega t}) \]

with

\[i\omega_{jl} \frac{A_0(t)}{c} \cdot \mu_{jl} = \langle \Phi_j | \hat{H}_{\text{int}} | \Phi_l \rangle \]

and where \(A_0(t) = A_0 \epsilon^\lambda e^{-i\omega t} \) is the vector potential of the external td electric field,

\[\mu_{jl} = -e \langle \Phi_j | \sum_i \hat{r}_i | \Phi_l \rangle \]

is the the transition dipole vector, and \(\omega_{jl} = (E_j - E_l)/\hbar \).

Note that Tully’s hops probability should be modified accordingly.

Different excitations can be obtained, depending on the polarization vector of the laser pulse.

Electronic structure of LiF

- Ground state - Σ symmetry (GS).
- First excited state (doubly degenerate) - Π symmetry (S_1).
- Second excited state - Σ symmetry (S_2).
- Avoided crossing between GS and S_2.
Effect of an electromagnetic field - Lithium fluoride

Pulse: \(A(t) = -A_0 \epsilon^\lambda \exp\left(-\frac{(t-t_0)^2}{T^2}\right) \sin(\omega t) \)
Effect of an electromagnetic field - Lithium fluoride

$\epsilon^x = (1, 0, 0)$
Effect of an electromagnetic field - Lithium fluoride

\[\epsilon^\lambda = (1, 0, 0) \]

Effect of an electromagnetic field - Lithium fluoride

\[\epsilon^\lambda = \frac{1}{\sqrt{3}} (1, 1, 1) \]

Local control theory

Control is achieved by tuning the temporal evolution of $E(t)$ in a way to maximize the population of a target state.

Using the TSH for the total molecular wavefunction

$$\Psi^\alpha(r, R, t) = \sum_{j=1}^{\infty} C_j^\alpha(t) \Phi_J(r; R)$$

for a given trajectory α, the population time evolution simplifies to

$$\dot{P}_I(t) = -2E^\alpha(t) \sum_J \Im [C_j^\alpha* \mu_{jj} C_j^\alpha(t)]$$

It is now evident that choosing a field of the form

$$E(t) = -\lambda \sum_J \Im [C_i^\alpha(t) C_j^\alpha* \mu_{jj}]$$

will ensure that $P_I(t)$ always increases in time.

Application: Photoexcitation of LiF in the bound state S_2

B.F.E Curchod, T. Penfold, U. Rothlisberger, IT, PRA, 84, 042507 (2011)

TDDFT in mixed quantum-classical dynamics
Effect of a generic polarized pulse
LC pulse: efficient population transfer and stable excitation

TDDFT in mixed quantum-classical dynamics
Comparison with wavepacket propagation (MCTDH)

B.F.E Curchod, T. Penfold, U. Rothlisberger, IT, PRA, 84, 042507 (2011)
1 TDDFT-based trajectory surface hopping
 - Nonadiabatic couplings in TDDFT

2 TDDFT-TSH: Applications
 - Photodissociation of Oxirane
 - Oxirane - Crossing between S_1 and S_0

3 TSH with external time-dependent fields
 - Local control theory
 - LC of protontransfer: from gas-phase to solution
Local control of proton transfer: gas phase to solution

ChemPhysChem, 10, 2026 (2015)

(in preparation)
Local control of proton transfer in gas phase

Local control of proton transfer

Local control of proton transfer

TDDFT in mixed quantum-classical dynamics
Local control of proton transfer (freq. vs. time)

Local control of proton transfer. Average over 6 trajs