TDDFT in mixed quantum-classical dynamics (2) TDDFT-based non-adiabatic dynamics: the case of TSH

Ivano Tavernelli

IBM Research - Zurich

8th TDDFT SCHOOL BENASQUE 2018

1 TDDFT-based trajectory surface hopping

Nonadiabatic couplings in TDDFT

2 TDDFT-TSH: Applications

Photodissociation of Oxirane

• Oxirane - Crossing between S_1 and S_0

3 TSH with external time-dependent fields

- Local control theory
- LC of protontransfer: from gas-phase to solution

Outline

Recent review on TDDFT-based nonadiabatic dynamics

DOI: 10.1002/cphc.201200941

Trajectory-Based Nonadiabatic Dynamics with Time-

Dependent Density Functional Theory Basile F. E. Curchod, Ursula Rothlisberger, and Ivano Tavernelli*[a]

ChemPhysChem, 14, 1314 (2013)

a

1 TDDFT-based trajectory surface hopping

• Nonadiabatic couplings in TDDFT

2) TDDFT-TSH: Applicat

۲

Photodissoc.
 Oxirane - Crossing b

TSH with external time-dependent field

protontransfer: from gas-phase to so

Tully's surface hopping - On-the-fly dynamics

Tully's surface hopping

$$\begin{split} i\hbar\dot{C}_{k}^{\alpha}(t) &= \sum_{j} C_{j}^{\alpha}(t) (H_{kj} - i\hbar\dot{R}^{\alpha} \cdot \boldsymbol{d}_{kj}^{\alpha}) \\ M_{l}\ddot{R}_{l} &= -\nabla_{l} \boldsymbol{E}_{k}^{el}(\boldsymbol{R}) \\ &\sum_{l \leq k-1} \boldsymbol{g}_{jl}^{\alpha} < \zeta < \sum_{l \leq k} \boldsymbol{g}_{jl}^{\alpha} , \end{split}$$

What about the electronic structure method for on-the-fly dynamics? We need:

- Potential energy surfaces \rightarrow MR-CISD, LR-TDDFT, semiempirical, ...
- Forces on the nuclei \rightarrow MR-CISD, LR-TDDFT, semiempirical methods,
- Nonadiabatic coupling terms \rightarrow MR-CISD, LR-TDDFT (?), semiempirical methods,

Tully's surface hopping - On-the-fly dynamics

Tully's surface hopping

$$\begin{split} i\hbar\dot{C}_{k}^{\alpha}(t) &= \sum_{j} C_{j}^{\alpha}(t) (\boldsymbol{H}_{kj} - i\hbar\dot{\boldsymbol{R}}^{\alpha} \cdot \boldsymbol{d}_{kj}^{\alpha}) \\ M_{l}\ddot{\boldsymbol{R}}_{l} &= -\nabla_{l} \boldsymbol{E}_{k}^{el}(\boldsymbol{R}) \\ &\sum_{l\leq k-1} g_{jl}^{\alpha} < \zeta < \sum_{l\leq k} g_{jl}^{\alpha} \,, \end{split}$$

What about the electronic structure method for on-the-fly dynamics? We need:

- Potential energy surfaces \rightarrow MR-CISD, LR-TDDFT, semiempirical, ...
- Forces on the nuclei \rightarrow MR-CISD, LR-TDDFT, semiempirical methods,
- Nonadiabatic coupling terms \rightarrow MR-CISD, LR-TDDFT (?), semiempirical methods,

Tully's surface hopping - On-the-fly dynamics

Tully's surface hopping

$$i\hbar\dot{C}_{k}^{\alpha}(t) = \sum_{j} C_{j}^{\alpha}(t) (H_{kj} - i\hbar\dot{R}^{\alpha} \cdot d_{kj}^{\alpha})$$
$$M_{l}\ddot{R}_{l} = -\nabla_{l} E_{k}^{el}(R)$$

$$\sum_{\leq k-1} g_{jl}^{\alpha} < \zeta < \sum_{l \leq k} g_{jl}^{\alpha} ,$$

What about the electronic structure method for on-the-fly dynamics? We need:

- Potential energy surfaces \rightarrow MR-CISD, LR-TDDFT, semiempirical, ...
- Forces on the nuclei \rightarrow MR-CISD, LR-TDDFT, semiempirical methods,
- Nonadiabatic coupling terms \rightarrow MR-CISD, LR-TDDFT (?), semiempirical methods,

Nonadiabatic couplings with LR-TDDFT?

Nonadiabatic coupling vectors are defined in terms of electronic wavefunctions:

$$\mathbf{d}_{kj} = \langle \Phi_k(\mathbf{R}) | \nabla_{\mathbf{R}} | \Phi_j(\mathbf{R}) \rangle = \frac{\langle \Phi_k(\mathbf{R}) | \nabla_{\mathbf{R}} \hat{\mathcal{H}}_{el} | \Phi_j(\mathbf{R}) \rangle}{E_j(\mathbf{R}) - E_k(\mathbf{R})}$$

The main challenge is to compute all these quantities as a functional of the ground state electronic density (or equivalently, of the occupied Kohn-Sham orbitals).

$$\mathbf{d}_{kj} \rightarrow \mathbf{d}_{kj}[\rho]$$

Different approaches for the calculation of $\mathbf{d}_{0i}[\rho]$ are available ¹.

Here we will use the method based on the auxiliary many-electron wavefunctions.

¹V. Chernyak and S. Mukamel, J. Chem. Phys. 112, 3572 (2000); R. Baer, Chem. Phys. Lett. 364, 75 (2002); E. Tapavicza, I. Tavernelli, and U. Rothlisberger, Phys. Rev. Lett. 98, 023001 (2007); C. P. Hu, H. Hirai, and O. Sugino, J. Chem. Phys. 127, 064103 (2007).

The density response SOS formula

In TDDFT the density response $\chi(\omega)$ is

$$\chi(\omega) = \mathbb{S}^{-1/2} (\omega^2 \mathbb{I} - \Omega(\omega))^{-1} \mathbb{S}^{-1/2}$$

with

$$\Omega_{ij\sigma,kl\tau} = \delta_{\sigma\tau} \delta_{ik} \delta_{jl} (\epsilon_{l\tau} - \epsilon_{k\sigma})^2 + 2\sqrt{(f_{i\sigma} - f_{j\sigma})(\epsilon_{j\sigma} - \epsilon_{i\sigma})} K_{ij\sigma,kl\tau} \sqrt{(f_{k\tau} - f_{l\tau})(\epsilon_{l\tau} - \epsilon_{k\tau})}$$

Using the spectral representation of the $(\omega^2\mathbb{I}-\Omega(\omega))^{-1}$, we can write

$$(\omega^2 \mathbb{I} - \Omega(\omega))^{-1} = \sum_n \frac{\boldsymbol{Z}_n \boldsymbol{Z}_n^{\dagger}}{\omega_n^2 - \omega^2}$$

where \mathbf{Z}_n are the TDDFT eigenvectors of the pseudoeigenvalue equation, $(S_{ij\sigma,kl\tau} = \frac{\delta_{ik}\delta_{jl}\delta_{\sigma\tau}}{(f_{k\sigma} - f_{l\sigma})(\epsilon_{l\sigma} - \epsilon_{k\sigma})})$

$$\mathbf{\Omega}\mathbf{Z}_n = \omega_{0n}^2\mathbf{Z}_n$$

Therefore ²

$$\chi(\omega) = \sum_{n} \frac{\mathbb{S}^{-1/2} \mathbf{Z}_{n} \mathbf{Z}_{n}^{\dagger} \mathbb{S}^{-1/2}}{\omega_{n}^{2} - \omega^{2}}$$

and finally the perturbation of any observable ($\delta {\cal O}(\omega) = \sum_{ij\sigma} o_{ij\sigma} \delta P_{ij\sigma}$)

$$\delta \mathcal{O}^{\text{TDDFT}}(\omega) = \sum_{n} \sum_{ij\sigma,kl\tau} o_{ij\sigma} \frac{(\mathbb{S}^{-1/2} \mathbf{Z}_n)_{ik\sigma} (\mathbf{Z}_n^{\dagger} \mathbb{S}^{-1/2})_{kl\tau}}{\omega_n^2 - \omega^2} v_{kl\tau}' \mathcal{E}(\omega) \,.$$

²M. E. Casida, in Recent Advances in Density Functional Methods, edited by D. P. Chong, World Scientific, Singapore (1995), JCP, 130, 124107

(2007)

In MBPT the density response $\chi(\omega)$ is

$$\delta \mathcal{O}^{MBPT}(\omega) = \sum_{n} \frac{2\omega_{i0} \langle \Psi_0 | \hat{\mathcal{O}} | \Psi_n \rangle \langle \Psi_n | \hat{v}' E(\omega) | \Psi_0 \rangle}{\omega_{n0}^2 - \omega^2}$$

Equating $\delta \mathcal{O}^{TDDFT}(\omega)$ with $\delta \mathcal{O}^{MBPT}(\omega)$ residue-by-residue,

$$\langle \Psi_0 | \hat{\mathcal{O}} | \Psi_n
angle = \sum_{ij\sigma}^{(f_{i\sigma} - f_{j\sigma}) > 0} \frac{1}{\sqrt{\omega_n}} o_{ij\sigma} (\mathbb{S}^{-1/2} \mathbf{Z}_n)_{ij\sigma}$$

For any one-body operator, \hat{O} , a mapping between MBPT and TDDFT quantities gives (for the moment, we only consider transitions from the ground state Ψ_0)

$$\mathbf{O}^{\dagger} \mathbb{S}^{-1/2} \mathbf{Z}_n = \omega_{0n}^{1/2} \langle \Psi_0 | \hat{\mathcal{O}} | \Psi_n \rangle$$

where the operator $\hat{\mathcal{O}} = \sum_{ia\sigma} o_{ia\sigma} \hat{a}^{\dagger}_{i\sigma} \hat{a}_{a\sigma}$ has components $o_{ia\sigma} = \langle \phi_{i\sigma} | \hat{\mathcal{O}} | \psi_{a\sigma} \rangle^3$ with $\omega_{0n} = E_n - E_0$. All matrices and vectors are given in the basis of KS orbitals $\{\phi_{i\sigma}\}$ with corresponding occupations $f_{i\sigma}$ and orbital energies $\epsilon_{i\sigma}$.

$${}^{3}\sum_{ia\sigma}$$
 stands for $\sum_{i=1}^{N}\sum_{a=1}^{\infty}\sum_{\sigma\in\{\alpha,\beta\}}$.

Nonadiabatic couplings in TDDFT

The auxiliary wavefunction

For practical purposes we introduce the auxiliary linear-response many-electron wavefunctions ⁴ as a linear combination of singly excited Slater determinants

$$\tilde{\Phi}_{k}[\{\phi_{\cdot}\}] = \sum_{ia\sigma} c_{ia\sigma}^{k} \, \hat{a}_{a\sigma}^{\dagger} \, \hat{a}_{i\sigma} \, \tilde{\Phi}_{0}[\{\phi_{\cdot}\}] \,,$$

with

$$c_{ia\sigma}^{k}\equiv\sqrt{rac{S_{ia\sigma}^{-1}}{\omega_{0k}}}e_{ia\sigma}^{k}$$

where $\tilde{\Phi}_0[\{\phi_i\}]$ is the Slater determinant of all occupied KS orbitals $\{\phi_{i\sigma}\}_{i=1}^N$, which, at a turn, are promoted into a virtual (unoccupied) orbitals, $\psi_{a\sigma}$.

We therefore have (in linear response!)

 $\langle \Psi_0 | \hat{\mathcal{O}} | \Psi_n \rangle = \langle \tilde{\Phi}_0 | \hat{\mathcal{O}} | \tilde{\Phi}_n \rangle$

⁴ JCP, 130, 124107 (2007), JCP, 131, 196101 (2009).

Nonadiabatic couplings

• The nonadiabatic coupling elements at the mid step $t + \delta t/2$ of a LR-TDDFT AIMD can therefore be calculated as

$$\begin{split} \dot{\boldsymbol{\mathcal{R}}} \cdot \boldsymbol{d}_{0k}|_{t+\delta t/2}[\{\phi_{\cdot}\}] &= \left\langle \tilde{\Phi}_{0}(\boldsymbol{r};\boldsymbol{\mathcal{R}}(t)) \left| \nabla_{\boldsymbol{\mathcal{R}}} \right| \tilde{\Phi}_{k}(\boldsymbol{r};\boldsymbol{\mathcal{R}}(t)) \right\rangle \cdot \dot{\boldsymbol{\mathcal{R}}} = \left\langle \tilde{\Phi}_{0}(\boldsymbol{r};\boldsymbol{\mathcal{R}}(t)) \left| \frac{\partial}{\partial t} \right| \tilde{\Phi}_{k}(\boldsymbol{r};\boldsymbol{\mathcal{R}}(t)) \right\rangle \\ &\simeq \frac{1}{2\delta t} \left[\left\langle \tilde{\Phi}_{0}(\boldsymbol{r};\boldsymbol{\mathcal{R}}(t)) \right| \tilde{\Phi}_{k}(\boldsymbol{r};\boldsymbol{\mathcal{R}}(t+\delta t)) \right\rangle - \left\langle \tilde{\Phi}_{0}(\boldsymbol{r};\boldsymbol{\mathcal{R}}(t+\delta t)) \right| \tilde{\Phi}_{k}(\boldsymbol{r};\boldsymbol{\mathcal{R}}(t)) \right\rangle \right] \end{split}$$

• The nonadiabatic coupling vectors between pairs of excites states (second order response)

$$\mathbf{d}_{kj}[\{\phi_{\cdot}\}] = \frac{\langle \tilde{\Phi}_{k}(\boldsymbol{R}) | \nabla_{\boldsymbol{R}} \hat{\mathcal{H}}_{el} | \tilde{\Phi}_{j}(\boldsymbol{R}) \rangle}{E_{j}(\boldsymbol{R}) - E_{k}(\boldsymbol{R})}$$

- Auxiliary many-electron wavefunctions give exact couplings between ground state and any (singly) excited state.
- Auxiliary many-electron wavefunctions give *high quality* couplings between pairs of (singly) excited states ("exact" in the TDA and up to $\mathcal{O}(\delta\rho^3)$ in full response).

Nonadiabatic couplings - examples

As always, the quality of the nonadiabatic couplings will depend on the xc-functional used...

 $\mathbf{d}_{kj}[\{\phi_{\cdot}\}] = \langle \tilde{\Phi}_k(\mathbf{R}) | \nabla_{\mathbf{R}} | \tilde{\Phi}_j(\mathbf{R}) \rangle$

Protonated formaldimine: nonadiabatic coupling vectors \mathbf{d}_{01} with LR-TDDFT/TDA.

Nonadiabatic couplings - examples

As always, the quality of the nonadiabatic couplings will depend on the xc-functional used...

 $\mathbf{d}_{kj}[\{\phi_{\cdot}\}] = \langle \tilde{\Phi}_k(\mathbf{R}) | \nabla_{\mathbf{R}} | \tilde{\Phi}_j(\mathbf{R}) \rangle$

Protonated formaldimine: nonadiabatic coupling vectors d_{12} with LR-TDDFT/TDA.

TDDFT-based trajectory surface hopping
 Nonactivatic condings in TDDFT

2 TDDFT-TSH: Applications

Photodissociation of Oxirane
Oxirane - Crossing between S₁ and S₀

protontransfer: from gas-phase to so

The protonated formaldimine is a model compound for the study of isomerization in rhodopsin chromophore retinal.

In addition to the ground state (GS), two excited electronic states are of interest:

- **1** S_1 : $\sigma \to \pi^*$ (low oscillator strength)
- 2 S_2 : $\pi \to \pi^*$ (high oscillator strength)

Computational details

- Isolated system
- LR-TDDFT/PBE/TDA
- SH-AIMD
- 50 trajectories (NVT) each of \sim 100 fs.

PRL, 98, 023001 (2007); THEOCHEM, 914, 22 (2009).

Protonated formaldimine as a model compound for the study of the isomerization of retinal.

Photo-excitation promotes the system mainly into S_2 .

Relaxation involves at least 3 states: S_0 (GS), S_1 and S_2 .

[E. Tapavicza, I. T., U. Rothlisberger, PRL, 98, 023001 (2007); THEOCHEM, 914, 22 (2009)]

Typical trajectory

PRL, 98, 023001 (2007); THEOCHEM, 914, 22 (2009).

Nonadiabatic couplings $\sigma_{kj} = \dot{\boldsymbol{R}}^{\alpha} \cdot \boldsymbol{d}_{ki}^{\alpha}$

States population

PRL, 98, 023001 (2007); THEOCHEM, 914, 22 (2009).

States population - Average over many trajectories.

Dashed line = CASSCF result.

Geometrical modifications

Comparison with experiment and model calculations

- In addition to the isomerization channel, intra-molecular proton transfer reactions was observed (formation of CH₃NH⁺).
- H₂ abstraction is also observed in some cases.
- Structures and life times are in good agreement with reference calculations performed using high level wavefunction based methods.

Oxirane

Oxirane has interesting non-radiative decay channels, during which ring opening and dissociation can occur.

Figure: Mechanism proposed by Gomer and Noyes

Oxirane

Oxirane has interesting non-radiative decay channels, during which ring opening and dissociation can occur.

Computational details

- Isolated system
- LR-TDDFT/PBE/TDA
- SH-AIMD
- 30 trajectories (NVT) each of ~ 100 fs.

JCP, 129, 124108 (2009).

Oxirane

Oxirane has interesting non-radiative decay channels, during which ring opening and dissociation can occur.

JCP, 129, 124108 (2009).

The photophysics of solvated Ruthenium(II) tris-bipyridine

 $[\mathsf{Ru}(\mathsf{bpy})_3)]^{2+}$ dye: photophysics

[M.E. Moret, I.T., U. Rothlisberger, JPC B, 113, 7737 (2009); IT, B.

Curchod, U. Rothlisberger, Chem. Phys., 391, 101 (2011)]

 $[\mathsf{Ru}(\mathsf{bpy})_3)]^{2+}$ dye: Singlet state dynamics

 $[Ru(bpy)_3)]^{2+}$ dye: triplet state dynamics

Tarjectory-based quantum and mixed QM-CL solutions

We can "derive" the following trajectory-based solutions:

- Nonadiabatic Ehrenfest dynamics dynamics
 - I. Tavernelli et al., Mol. Phys., 103, 963981 (2005).

• Adiabatic Born-Oppenheimer MD equations

- Nonadiabatic Bohmian Dynamics (NABDY)
 - B. Curchod, IT, U. Rothlisberger, PCCP, 13, 32313236 (2011)
- Nonadiabatic Trajectory Surface Hopping (TSH) dynamics [ROKS: N. L. Doltsinis, D. Marx, *PRL*, 88, 166402 (2002)]
 C. F. Craig, W. R. Duncan, and O. V. Prezhdo, *PRL*, 95, 163001 (2005)
 E. Tapavicza, I. Tavernelli, U. Rothlisberger, *PRL*, 98, 023001 (2007)
- Time dependent potential energy surface approach based on the exact decomposition: Ψ(r, R, t) = Ω(R, t)Φ(r, t).
 A. Abedi, N. T. Maitra, E. K. U. Gross, *PRL*, 105, 123002 (2010)

TDDFT-based trajectory surface hopping

• Nonaccepatic couplings in TDDFT

2 TDDFT-TSH: Applicati

Photodissoc.
 Oxirane - Crossing

3 TSH with external time-dependent fields

- Local control theory
- LC of protontransfer: from gas-phase to solution

TSH with external time-dependent fields

Addition of an external field within the equations of motion of TSH:

Startegy

The idea is to induce electronic excitations through the direct interaction with the time-dependent (td) electric field instead of "artificially" promote the system into one of its excited states. **Method**: extended TSH nonadiabatic dynamics.

IT, B. Curchod, U. Rothlisberger, Phys. Rec. A 81, 052508 (2010)

TSH with external time-dependent fields

Short summary of the theory

The interaction Hamiltonian between the electrons and the td electric field is

$$\hat{H}_{int} = -rac{e}{2m_ec}\sum_i oldsymbol{A}(oldsymbol{r}_i,t)\cdot\hat{oldsymbol{p}}_i$$

where $A(\mathbf{r}, t)$ is the (classical) vector potential of the electromagnetic field, $\hat{\mathbf{p}}_i$ is the momentum operator of electron *i*, *e* is the electron charge, m_e is the electron mass, and *c* is the speed of light.

Remark

We are in the *dipole approximation* and therefore we do not need TDCDFT.

IT, B. Curchod, U. Rothlisberger, Phys. Rec. A 81, 052508 (2010)

External field within TSH

It can be shown (Phys. Rev. A 81 052508 (2010)) that through the coupling with the td electric field, Tully's propagation equations acquire an additional term

$$i\hbar\dot{C}^{\alpha}_{J}(t) = \sum_{I} C^{\alpha}_{I}(t)(H_{JI} - i\hbar\dot{R}^{\alpha} \cdot d^{\alpha}_{JI} + i\omega_{JI}\frac{A_{0}}{c}\epsilon^{\lambda} \cdot \mu^{\alpha}_{JI}e^{-i\omega t})$$

with

$$i\omega_{JI}rac{oldsymbol{A}_0(t)}{c}\cdotoldsymbol{\mu}_{JI}=\langle\Phi_J|\hat{H}_{int}|\Phi_I
angle$$

and where $A_0(t) = A_0 \epsilon^{\lambda} e^{-i\omega t}$ is the vector potential of the external td electric field,

$$\boldsymbol{\mu}_{JI} = -e \langle \Phi_J | \sum_i \hat{\boldsymbol{r}}_i | \Phi_I \rangle$$

is the transition dipole vector, and $\omega_{JI} = (E_J - E_I)/\hbar$.

Note that Tully's hops probability should be modified accordingly. IT, B. Curchod, U. Rothlisberger, Phys. Rec. A **81**, 052508 (2010)

Different excitations can be obtained, depending on the polarization vector of the laser pulse.

Electronic structure of LiF

Pulse: $\mathbf{A}(t) = -A_0 \epsilon^{\lambda} \exp\left(-\frac{(t-t_0)^2}{T^2}\right) \sin(\omega t)$

x-polarized pulse: $\epsilon^{\lambda} = (1, 0, 0)$

 $\epsilon^{\lambda}=(1,0,0)$

IT, B. Curchod, U. Rothlisberger, Phys. Rec. A 81, 052508 (2010)

 $\epsilon^{\lambda} = rac{1}{\sqrt{3}}(1,1,1)$

IT, B. Curchod, U. Rothlisberger, Phys. Rec. A 81, 052508 (2010)

Local control theory

Control is achieved by tuning the temporal evolution of E(t) in a way to maximize the population of a target state.

Using the TSH for the total molecular wavefunction

$$\Psi^{lpha}(\boldsymbol{r},\boldsymbol{R},t)=\sum_{J}^{\infty}C_{J}^{lpha}(t)\Phi_{J}(\boldsymbol{r};\boldsymbol{R})$$

for a given trajectory α , the population time evolution simplifies to

$$\dot{\mathcal{P}}_{l}(t) = -2\boldsymbol{E}^{\alpha}(t)\sum_{J}\Im[C_{J}^{\alpha*}\boldsymbol{\mu}_{Jl}C_{l}^{\alpha}(t)]$$

It is now evident that choosing a field of the form

$$\boldsymbol{E}(t) = -\lambda \sum_{J} \Im \left[C_{I}^{\alpha}(t) C_{J}^{\alpha *} \boldsymbol{\mu}_{IJ} \right]$$

will ensure that $\mathcal{P}_{I}(t)$ always increases in time.

T. J. Penfold, G. A. Worth, C. Meier, Phys. Chem. Chem. Phys. 12, 15616 (2010).

B.F.E Curchod, T. Penfold, U. Rothlisberger, IT, PRA, 84, 042507 (2011)

Application: Photoexcitation of LiF in the bound state S_2

B.F.E Curchod, T. Penfold, U. Rothlisberger, IT, PRA, 84, 042507 (2011)

Effect of a generic polarized pulse

LC pulse: efficient population transfer and stable excitation

Comparison with wavepacket propagation (MCTDH)

B.F.E Curchod, T. Penfold, U. Rothlisberger, IT, PRA, 84, 042507 (2011)

TDDFT-based trajectory surface hopping

Nonadiabatic couplings in TDDF1

TDDFT-TSH: Applications

Photodissociation of Oxirane

• Oxirane - Crossing between S_1 and S_0

TSH with external time-dependent fields

- Local control theory
- LC of protontransfer: from gas-phase to solution

Local control of proton transfer: gas phase to solution

ChemPhysChem, 10, 2026 (2015)

(in preparation)

Local control of proton transfer in gas phase

ChemPhysChem, 10, 2026 (2015)

Local control of proton transfer

ChemPhysChem, 10, 2026 (2015)

Local control of proton transfer

Local control of proton transfer (freq. vs. time)

ChemPhysChem, 10, 2026 (2015)

TDDFT in mixed quantum-classical dynamics

Local control of proton transfer. Average over 6 trajs

ChemPhysChem, 10, 2026 (2015)