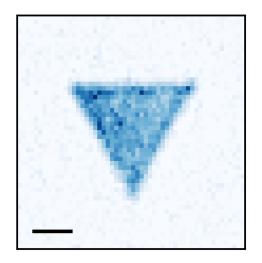
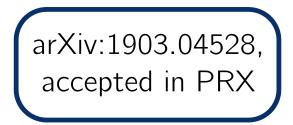


Scale-invariant dynamics and breathers of an interacting 2D Bose gas

Raphaël Saint-Jalm, Patricia C.M. Castilho, Édouard Le Cerf, Brice Bakkali-Hassani, Sylvain Nascimbène, Jean Dalibard, Jérôme Beugnon





Atomtronics meeting, 6th of May 2019, Benasque

Introduction

- Scale invariance: When a physical system and its dilation behave similarly.
- Useful in high energy physics, in statistical physics, etc.
- How do we know a physical system is scale invariant?
 - \rightarrow Look at its action $S = \int dt \mathcal{L}(\boldsymbol{q}, \boldsymbol{\dot{q}}, t)$

 \rightarrow rescale space (and time), e.g: $\boldsymbol{q} \rightarrow \boldsymbol{q}/\lambda$, $\dot{\boldsymbol{q}} \rightarrow \lambda \dot{\boldsymbol{q}}$, $t \rightarrow t/\lambda^2$.

Is S invariant?

Examples:

1. The ideal gas: $\mathcal{L} = \frac{1}{2} \sum_{i} m_i \dot{\boldsymbol{q}}_i^2$

2. N particles interacting with $U(\boldsymbol{q}_{ij}) \propto 1/\boldsymbol{q}_{ij}^2$

3. In cold atoms: Unitary Fermi gas

Consequences:

N = 1: Kepler problem.

Laplace-Runge-Lenz vector constant, closed orbits (E < 0)

Spectrum of the hydrogen atom

Introduction: the 2D Bose gas

- Weakly interacting bosons: description with a classical field $\psi(\mathbf{r}, t)$, normalization $\int d^2\mathbf{r} |\psi(\mathbf{r}, t)|^2 = 1$, density $n(\mathbf{r}, t) = N|\psi(\mathbf{r}, t)|^2$
- 2D gas: Interaction energy of N particles of mass m:

$$E_{ ext{int}} = rac{N^2 \hbar^2}{2m} ilde{g} \int \mathrm{d}^2 oldsymbol{r} \, |\psi(oldsymbol{r},t)|^4$$
,

- $\tilde{g}:$ dimensionless parameter. Description valid if $\tilde{g}\ll 1$
- Full Lagrangian:

$$\mathcal{L}[\psi] = \int \mathrm{d}^2 \mathbf{r} \, \left[i\hbar\psi^* \frac{\partial\psi}{\partial t} - \frac{N\hbar^2}{2m} |\nabla\psi|^2 - \frac{N^2\hbar^2}{2m} \tilde{g}|\psi|^4 \right]$$

• Transformation $r \to r/\lambda$, $t \to t/\lambda^2$. Then $\psi(r) \to \lambda \psi(\lambda r)$ (normalization).

We have $\mathcal{L} \to \lambda^2 \mathcal{L}$, and S is unchanged.

• Universal thermodynamics at equilibrium: Hung et al. Nature **140**, 236 (2011) Yefsah et al. PRL **107**, 130401 (2011)

Introduction: the 2D Bose gas in a harmonic trap

• Add a harmonic trap of frequency ω :

$$E_{p} = rac{1}{2} \int \mathrm{d}^{2} \boldsymbol{r} \ m \omega^{2} \boldsymbol{r}^{2} \ |\psi|^{2}$$

• Scaling transformation: $E_{\rm p} \rightarrow E_{\rm p}/\lambda^2$

No scale invariance anymore!

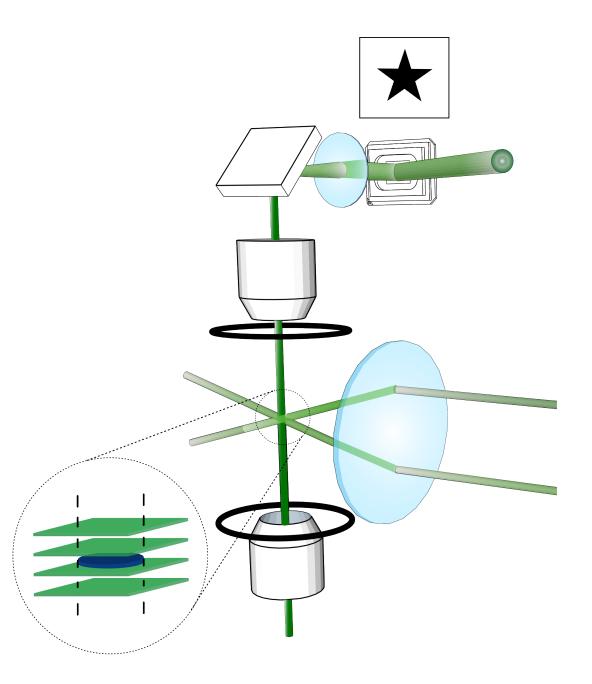
However:

- Some transformations keep the action invariant.
- Interesting consequences on the dynamics of the gas: breathing mode at 2ω Pitaevskii and Rosch, PRA 55, R853 (1997) Chevy et al., PRL 88, 250402 (2001) Vogt et al., PRL 108, 070404 (2012)

Experimental setup

- 2D confinement: $\omega_z = 2\pi \cdot 4 \text{ kHz}$
- Repulsive walls:
 - \rightarrow uniform gas
 - ightarrow arbitrary shape

- Internal state: F=1, m=0.
- Harmonic trap: with a magnetic field
- At t = 0, transfer to F=1, m=-1 $\rightarrow \omega \approx 2\pi \cdot 20 \text{ Hz}$



Goal of this talk: Investigate the symmetries of this system with clouds far out-of-equilibrium in the harmonic trap.

Outline of this talk

Introduction

- **1** Symmetry group of the 2D Bose gas
- **2** Linking evolutions of different clouds
- **3** Breathers of the Gross–Pitaevskii equation
 - Conclusion and outlook

Outline of this talk

Introduction

- **1** Symmetry group of the 2D Bose gas
- **2** Linking evolutions of different clouds
- **3** Breathers of the Gross–Pitaevskii equation
 - Conclusion and outlook

SO(2,1) symmetry

Gross–Pitaevskii equation (GPE) of a free cloud:

$$i\hbar \frac{\partial \psi}{\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \psi + \frac{\hbar^2}{m} \tilde{g} N |\psi|^2 \psi.$$

Three types of interesting transformations:

- A time translation: $r, t \rightarrow r, t+\beta$
- A scaling transformation:
- An "expansion":

$$m{r}$$
, t $ightarrow$ $m{r}/\lambda$, t/λ^2

$$r, t \rightarrow r/(\gamma t+1), t/(\gamma t+1)$$

Combine them:

$$\left\{egin{array}{ccc} r \ t \end{array}
ight.
ight.$$

Matrix $\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in SL(2,\mathbb{R}).$

Infinitesimal generators: $L_1 = \frac{i}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $L_2 = \frac{i}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and $L_3 = \frac{i}{2} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$

 $[L_1, L_2] = -iL_3, \quad [L_2, L_3] = iL_1, \quad [L_3, L_1] = iL_2 \longrightarrow SO(2, 1)$

SO(2,1) symmetry: with a harmonic trap

• GPE:

$$i\hbar\frac{\partial\psi}{\partial t} = -\frac{\hbar^2}{2m}\nabla^2\psi + \frac{\hbar^2}{m}\tilde{g}N|\psi|^2\psi + \frac{1}{2}m\omega^2r^2\psi.$$

• Transformations:

$$\begin{cases} \mathbf{r} \\ \eta = \tan(\omega t) \end{cases} \rightarrow \begin{cases} \mathbf{r}/\lambda(t) \\ \eta' = (\alpha \eta + \beta)/(\gamma \eta + \delta) \end{cases}, \qquad \alpha \delta - \beta \gamma = 1 \end{cases}$$

 $\lambda(t) = \left[(\alpha \sin(\omega t) + \beta \cos(\omega t))^2 + (\gamma \sin(\omega t) + \delta \cos(\omega t))^2 \right]^{1/2}$

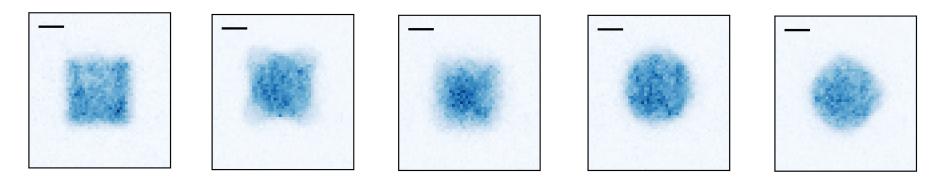
The symmetry group is still SO(2,1).

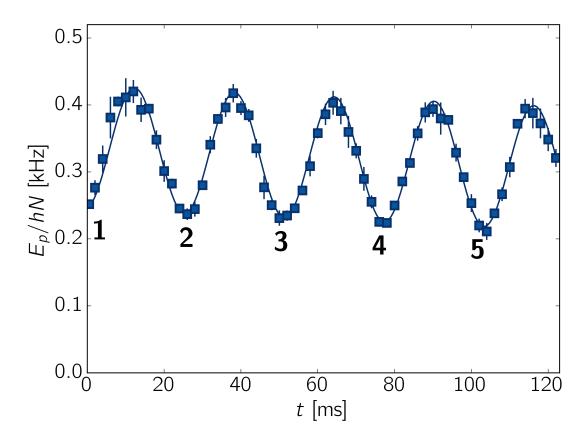
• A strong consequence: $E_{\rm p} \propto \sin(2\omega t)$

ightarrow Breathing mode at 2ω

We can test this on the experiment.

Periodic potential energy





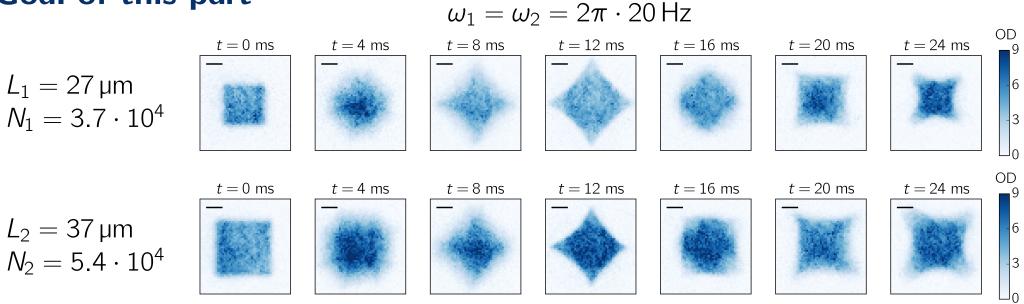
$$\omega_{\mathsf{fit}} = 2\pi\cdot 38.5(1)\,\mathsf{Hz}$$
 $\omega = 2\pi\cdot 19.3(1)\,\mathsf{Hz}$

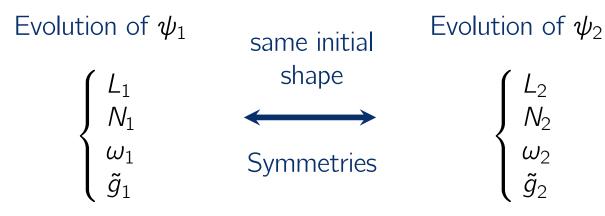
Outline of this talk

Introduction

- **1** Symmetry group of the 2D Bose gas
- **2** Linking evolutions of different clouds
- **3** Breathers of the Gross–Pitaevskii equation
 - Conclusion and outlook

Goal of this part





Three parameters: $\delta = L_2/L_1$, $\mu = (\tilde{g}_2 N_2/\tilde{g}_1 N_1)^{1/2}$, $\zeta = \omega_2/\omega_1$

Evolution of clouds with the same $\tilde{g}N$

 $\omega_1 \qquad \qquad \omega_2 = \omega_1$

• GPE:

$$i\hbar\frac{\partial\psi}{\partial t} = -\frac{\hbar^2}{2m}\nabla^2\psi + \frac{\hbar^2}{m}\tilde{g}N|\psi|^2\psi + \frac{1}{2}m\omega^2r^2\psi.$$

- Evolution of a dilation: Apply a SO(2,1) transformation to a solution $\psi(r, t)$:
 - $\psi(\mathbf{r}, t) \rightarrow \lambda(t) \psi(\lambda(t)\mathbf{r}, \tau)$ $\lambda(t) = \left[\delta^2 \cos^2(\omega t) + \frac{1}{\delta^2} \sin^2(\omega t)\right]^{-1/2}$ $\delta^2 \tan(\omega \tau) = \tan(\omega t)$ $L_1 \qquad L_2 = \delta L_1$ Choice $\beta = \gamma = 0$: cloud at rest at t = 0.

Evolution with a different
$$\omega$$
: Apply a simple scaling transformation to $\psi(\mathbf{r}, t)$:

$$\psi(\mathbf{r}, t)
ightarrow \lambda \psi(\lambda \mathbf{r}, \lambda^{2} t)$$
 $L_{1} \qquad L_{2} = L_{1}/\lambda$
 $\omega_{1} \qquad \omega_{2} = \omega_{1}/\lambda^{2}$

• Know $\psi(r, t) \rightarrow$ know the evolution of any dilation in a trap of any frequency

Evolution of clouds with different $\tilde{g}N$'s

• Only in the hydrodynamic regime: Translate GPE in terms of

$$n(\mathbf{r}) = N|\psi(\mathbf{r})|^2$$
 $\mathbf{v}(\mathbf{r}) = \frac{\hbar}{m} \frac{\operatorname{Im}(\psi^*(\mathbf{r})\nabla\psi(\mathbf{r}))}{n(\mathbf{r})}$:

$$\frac{\partial n}{\partial t} + \nabla \cdot (n\mathbf{v}) = 0$$

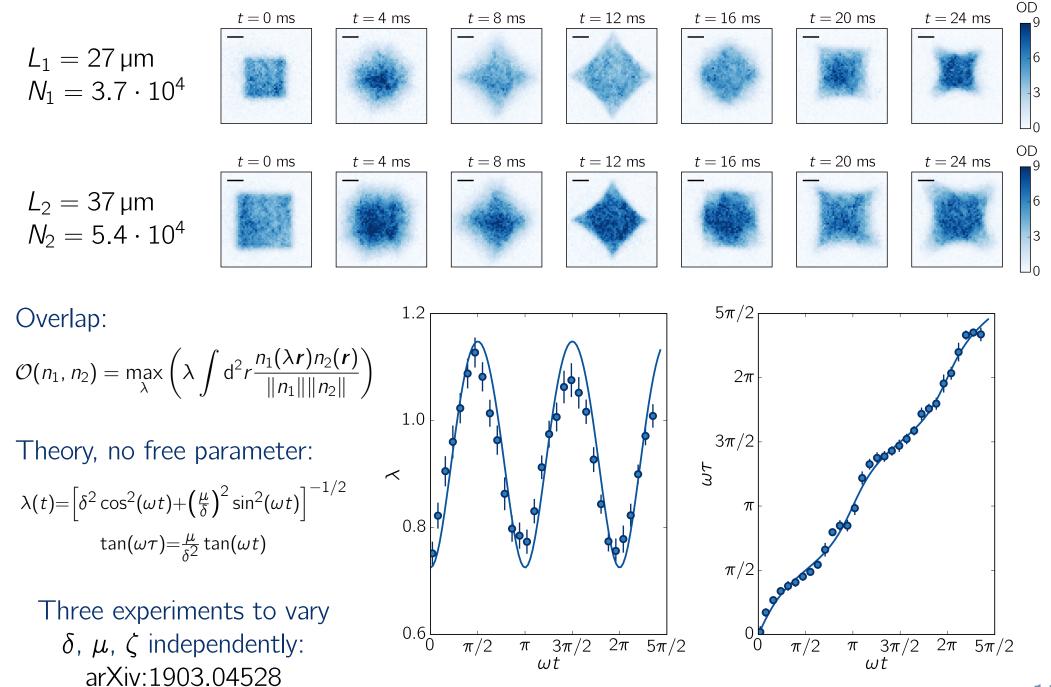
$$\frac{\partial \mathbf{v}}{\partial t} + \nabla \left(\frac{1}{2}m\mathbf{v}^2 + \frac{\hbar^2}{m}\tilde{g}n + \frac{1}{2}m\omega^2\mathbf{r}^2 - \frac{\hbar^2}{2m}\frac{\nabla^2\sqrt{n}}{\sqrt{n}}\right) = 0$$

Healing length
 $\xi \ll L$

• Invariant under $\mathbf{r} \to \mathbf{r}$, $t \to t/\mu$, $\tilde{g}n \to \mu^2 \tilde{g}n$, $\mathbf{v} \to \mu \mathbf{v}$, $\omega \to \mu \omega$.

Summary: Link evolution $\psi(\mathbf{r}, t)$ (size L_1 , N_1 , ω_1 , \tilde{g}_1) with evolution of: (1) any dilation of ψ with size $L_2 = \delta L_1$ (2) in any trap frequency $\omega_2 = \zeta \omega_1$ (3) with any atom number N_2 and parameter \tilde{g}_2 , with $\tilde{g}_2 N_2 = \mu^2 \tilde{g}_1 N_1$ $\lambda(t) = \left[\delta^2 \cos^2(\omega_2 t) + \left(\frac{\mu}{\delta \zeta}\right)^2 \sin^2(\omega_2 t) \right]^{-1/2} \quad \tan(\omega_1 \tau) = \frac{\mu}{\zeta \delta^2} \tan(\omega_2 t)$

On the experiment



Outline of this talk

Introduction

1 Symmetry group of the 2D Bose gas

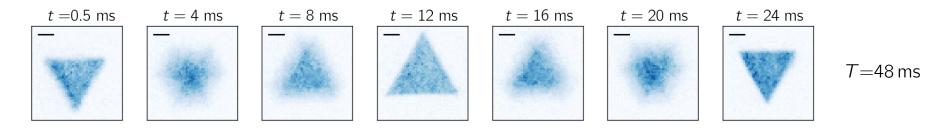
2 Linking evolutions of different clouds

3 Breathers of the Gross–Pitaevskii equation

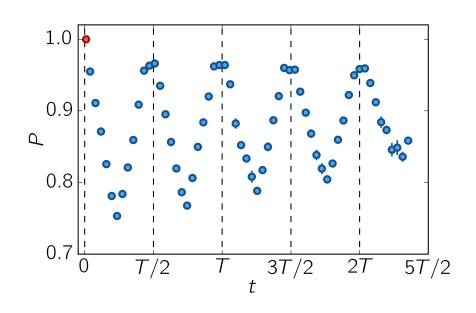
Conclusion and outlook

Periodic evolution of a wave function

- Wave function ψ in a harmonic trap: not necessarily periodic.
- A triangle seems to be periodic, period $T/2 \rightarrow$ breather of the GPE



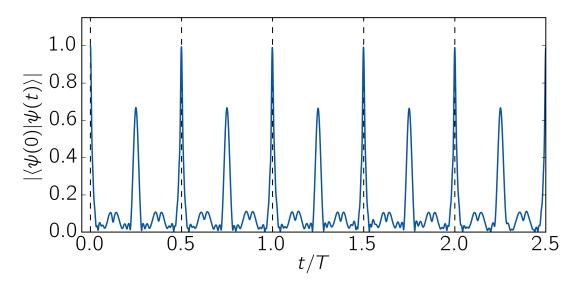
• Overlap of the images: $P = \frac{\int d^2 r n(\mathbf{r}, 0) n(\mathbf{r}, t)}{\|n(\mathbf{r}, 0)\| \|n(\mathbf{r}, t)\|}$



Numerical simulations

• Grid size $N_s \times N_s$ with $N_s = 128$, healing length $\xi = 0.5\ell$

• Overlap between the wave functions: $|\langle \psi(0)|\psi(t)
angle|$

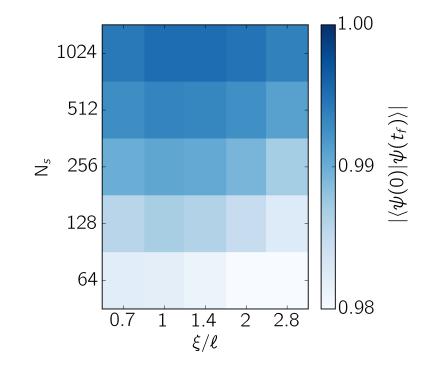


- No analytical proof of periodicity
- Finite-size scaling on the numerical simulations

Finite-size scaling

- Two choices to improve a simulation:
 - (a) Increase N_s (reduce pixel size ℓ) and keep ξ the same
 - (b) Reduce ξ : more in the Thomas-Fermi regime

Overlap between $\psi(0)$ and $\psi(T/2)$:



- Best overlap here: > 0.995
- Other shapes? Square, pentagon, hexagon, star, etc. not periodic But a disk-shaped cloud also seems to evolve periodically.

Conclusion

• Dynamical symmetries of the 2D Bose gas: Vary L, N, \tilde{g} , $\omega \rightarrow$ same universal dynamics

• Breathers of the GPE: this dynamics is periodic

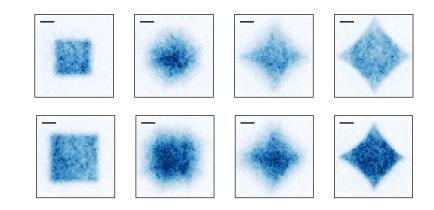
• Open questions:

- \rightarrow Periodic only with contact interactions?
- \rightarrow Resilient to quantum anomaly (increase \tilde{g})?

Olshanii et al. PRL, **105**, 095302 (2010) Holten et al. PRL, **121**, 120401 (2018)

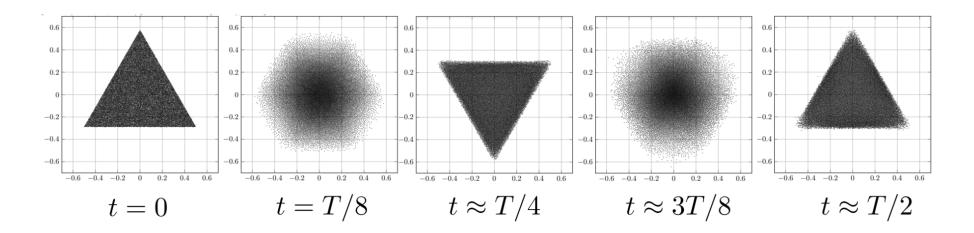
- \rightarrow Effect of temperature?
- \rightarrow Breathers for unitary Fermi gas in 3D?

 $\rightarrow \dots$



Conclusion

- Classical particles with interaction $\propto 1/\textbf{\textit{r}}^2$
- Numerical simulation with 20 000 particles
- Initial condition: uniform filling of a triangle, $v_i = 0$

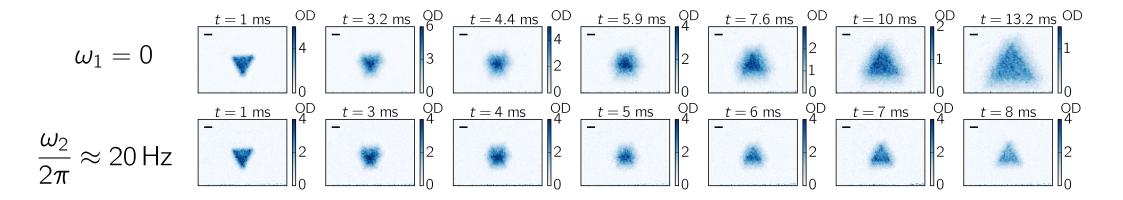


The team

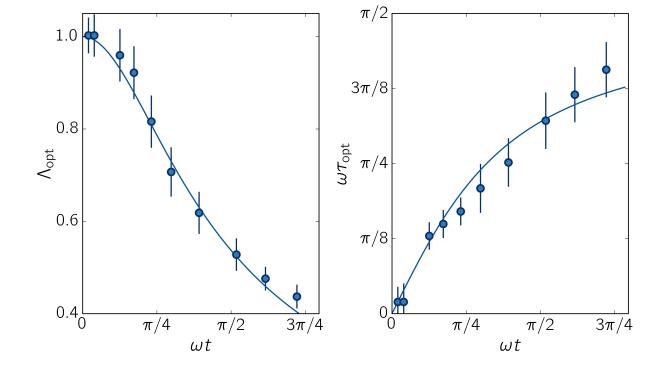
Brice

Thank you for your attention!

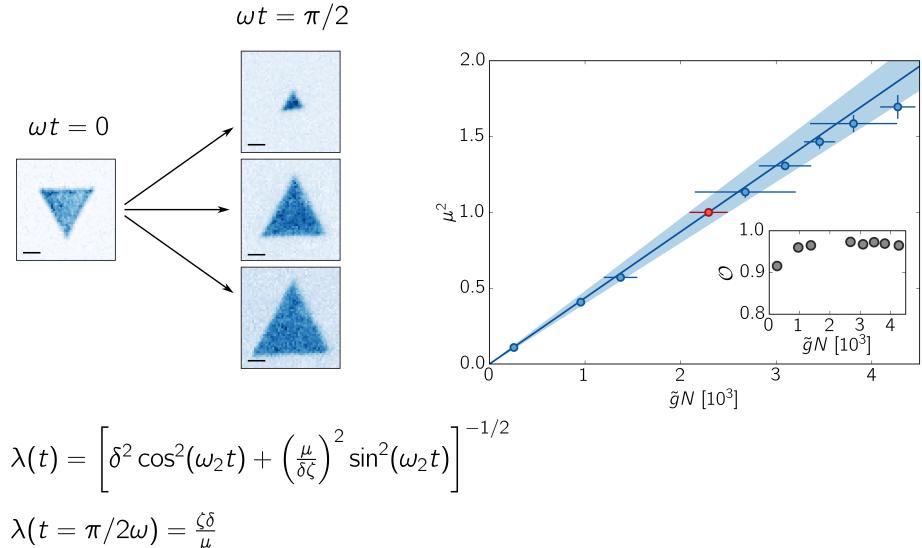
Evolution with different ω 's



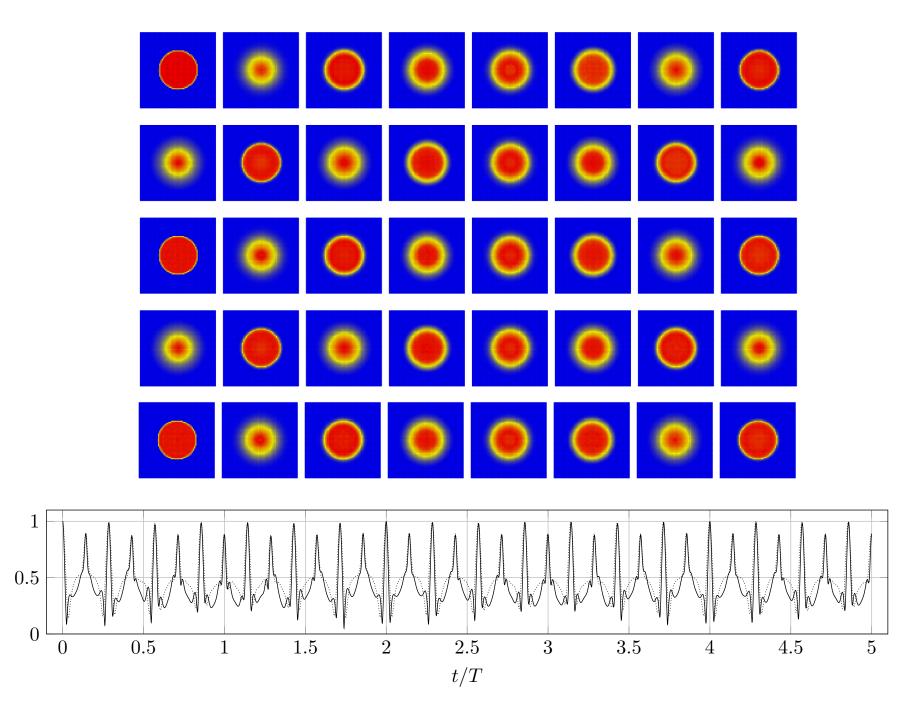
 $\Lambda(t) = \left(1 + \omega_2^2 t^2\right)^{-1/2}$ $\omega_2 au(t) = \arctan(\omega_2 t)$



Evolution with different $\tilde{g}N$'s

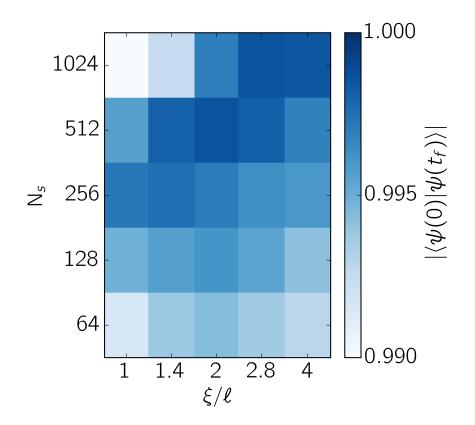


Breathers: disk



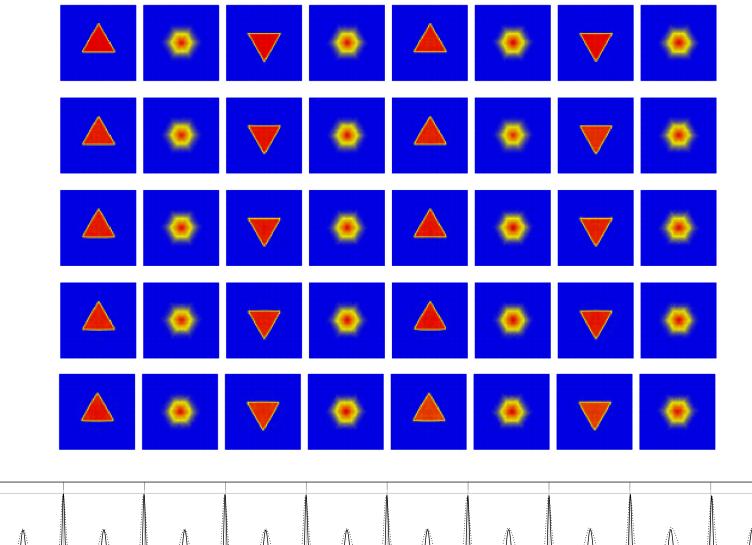
Finite-size scaling: disk

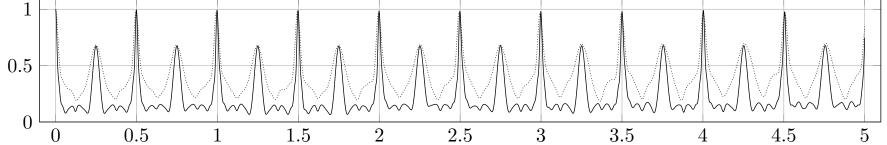
Overlap between $\psi(t=0)$ and $\psi(t=4\pi/\omega)$.



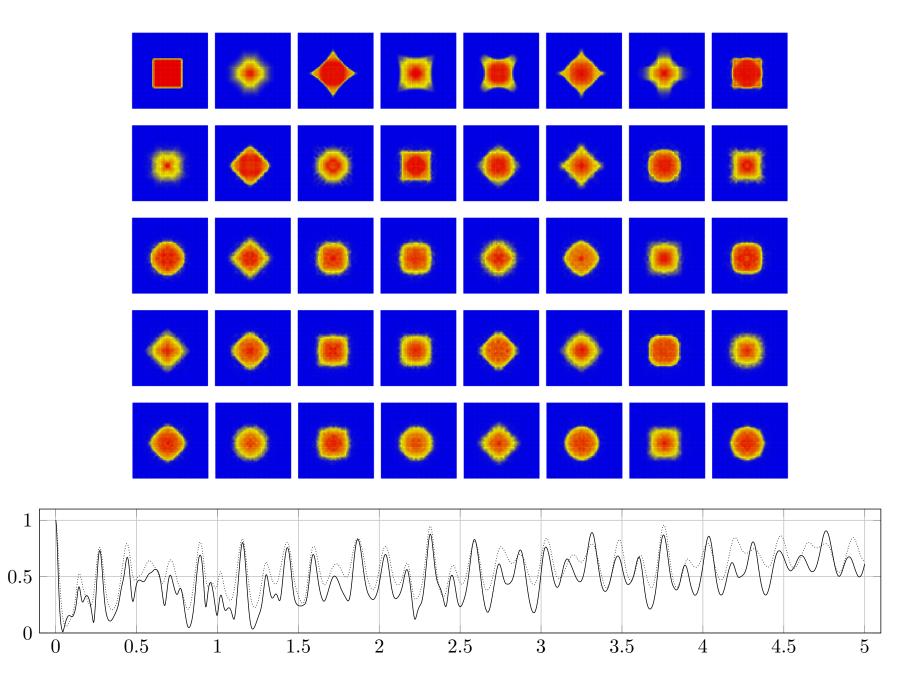
Best overlap > 0.998.

Numerical simulations: Triangle

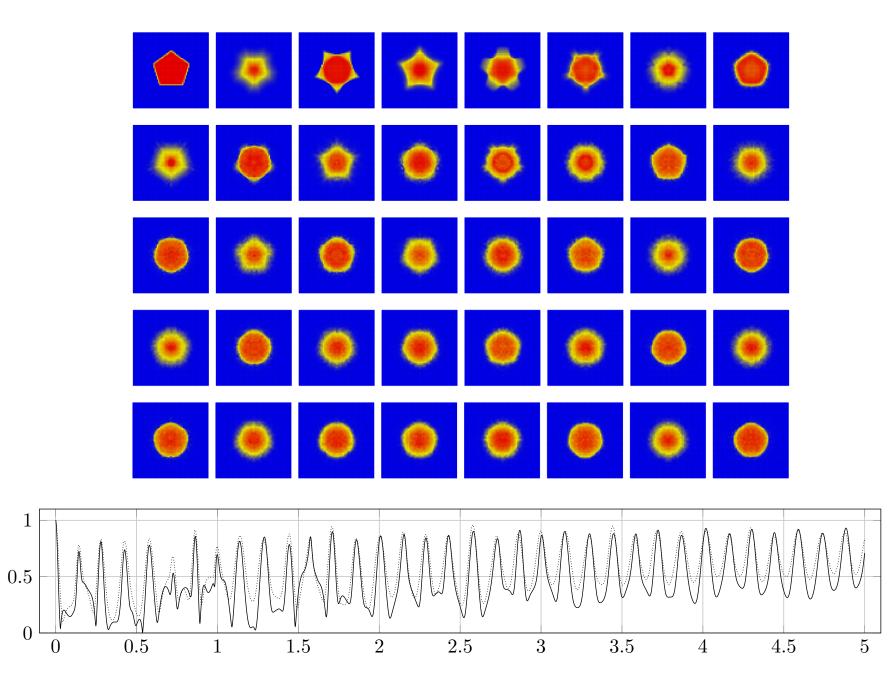




Numerical simulations: Square



Numerical simulations: Pentagon



Numerical simulations: Hexagon

