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What is a bilinear control system?

...But first, what is a control system?

Dynamical system: v = f(u, ?)
control function

Boundary control problem:

u = Au+ Bu
u = plaa
u(0) = wo
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What is a bilinear control system?

...But first, what is a control system?
Dynamical system: v = f(u,p)
T
control function
Locally distributed control problem:

v = Au+ Bu + pl,,

u = gloa
u(0) = wo
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What is a bilinear control system?

...But first, what is a control system?

Dynamical system: v = f(u, ?)
control function

Multiplicative (or bilinear) control problem:

v = Au+ pBu
u = gloa
u(0) = wp
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What are the difficulties?
Themap®:p—~uis

Boundary control: Locally distributed control:  Bilinear control:
v = Au+ Bu v = Au+ Bu+pl, v = Au+ pBu
u=plag u=glan u=gloa
u(0) = up u(0) = uo u(0) = up
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What are the difficulties?
Themap®:p—~uis

Boundary control: Locally distributed control:  Bilinear control:
v = Au+ Bu v = Au+ Bu+pl, v = Au+ pBu
u=plag u=gloa u = glaa
u(0) = up u(0) = uo u(0) = up

linear linear nonlinear
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What are the difficulties?
Themap®:p+—uis

Bilinear control:

v = Au+ pBu (1)
u=glon
u(0) = wo

Theorem (Ball, Marsden, Slemrod 1982)

Let X be a Banach space with dim(X )=+occ. Let A generate a C ®_semigroup of bounded linear operators on X
and B : X — X be a bounded linear operator. Let ug € X be fixed, and let u(t; p, up) denote the unique

solution of (1) for p € Lj,.([0,+00),R). The set of states accessible from ug defined by

S(w) = {u(t; p,wo); t > 0,p € Linc([0, +00),R), r > 1}

is contained in a countable union of compact subsets of X and, in particular, has a dense complement.
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Why, afterall, we want to study these problems?
Multiplicative controls enter the system equations as coefficients. They change (at least some
of) the principal parameters of the process at hand.
Examples:
o by embedded smart alloys, the natural frequency response of a beam can be changed,
e the rate of a chemical reaction can be altered by various catalysts and/or by the speed at
which the reaction ingredients are mechanically mixed
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Why, afterall, we want to study these problems?
Multiplicative controls enter the system equations as coefficients. They change (at least some
of) the principal parameters of the process at hand.
Examples:
o by embedded smart alloys, the natural frequency response of a beam can be changed,
e the rate of a chemical reaction can be altered by various catalysts and/or by the speed at
which the reaction ingredients are mechanically mixed

Nuclear chain reaction

ur = a®Au+ v(t, x)u

o u(t,x) > 0 neutron density in the reaction,
e v(t,x) > 0 neutron amount in the surrounding medium,

v(t, x)u source of netrouns provided by the collision of the particles in the reaction with the
surrounding medium
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Why, afterall, we want to study these problems?

Multiplicative controls enter the system equations as coefficients. They change (at least some
of) the principal parameters of the process at hand.
Examples:

e by embedded smart alloys, the natural frequency response of a beam can be changed,

e the rate of a chemical reaction can be altered by various catalysts and/or by the speed at
which the reaction ingredients are mechanically mixed

Schrodinger equation

ihe = —Ap — p(t)pu(x)y

e 1) wave function of a particle,
e p amplitude of the electric field,

e 1 dipolar moment of the particle
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Previous results

e J.M. Ball, J.E. Marsden, and M. Slemrod. Controllability for distributed bilinear systems.
SIAM Journal on Control and Optimization, 1982,
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Superexponential stabilizability

v =Au+pBu t>0
{ u(0) = uo @)
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Superexponential stabilizability

v =Au+pBu t>0
{ u(0) = uo @)

Definitions

o Fixed a control p and an initial condition @y, (2) is locally stabilizable to a(-; Gy, p) if 35 > 0 such
that, Y up € Bs(dp), 3 p for which

t—leoo ||u(t; wo, p) — &(t; do, p)|| = O.
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Superexponential stabilizability

v =Au+pBu t>0
{ u(0) = uo @)

Definitions

e Fixed a control p and an initial condition o, (2) is locally stabilizable to (-; do, p) if 36 > 0 such
that, Y up € Bs(dp), 3 p for which

t_'jToo ||u(t; uo, p) — @(t; o, p)|| = 0.
e Given a control p and an initial condition &y, (2) is locally exponentially stabilizable to i(-; o, p) if
Vp >0, 3R(p) > 0 for which, ¥ ug € Bg(,)(io), 3 p and M > 0 such that
|| (t Uo, p ) - U(t; L_IOaﬁ)” < Meipta vt > 0.
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Superexponential stabilizability

v =Au+pBu t>0
{ u(0) = uo @)

Definitions

e Fixed a control p and an initial condition o, (2) is locally stabilizable to (-; do, p) if 36 > 0 such
that, Y up € Bs(dp), 3 p for which
t—I)IToo ||U(t, o, p) - L_’(tv Uo, 5)” =0.
e Given a control p and an initial condition &y, (2) is locally exponentially stabilizable to i(-; o, p) if
Vp >0, 3R(p) > 0 for which, ¥ ug € Bg(,)(io), 3 p and M > 0 such that
|| (t Uo, p ) - U(t; L_lOaﬁ)” < Meipta vt > 0.
e Given control p and an initial condition &, (2) is locally superexponentially stabilizable to
a(-; o, p) if IM,w > 0 such that, ¥ p > 0, IR(p) > 0 such that, ¥V ug € Br,(il), 3 p for which
1é lielet llu(t; o, p) — a(t; @, B)|| < Me=<™", Vit > 0.
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Setting of the problem

Let (X, (-,-)) be a separable Hilbert space and A: D(A) C X — X a densely defined linear
operator with the following properties:

(a) Ais self-adjoint ,
(b) (Ax,x) > 0,Vx € D(A), (3)
(c) 33X >0suchthat (\/ +A)~1: X — X is compact .
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Setting of the problem

Let (X, (-,-)) be a separable Hilbert space and A: D(A) C X — X a densely defined linear
operator with the following properties:

(a) Ais self-adjoint ,

(b) (Ax,x) > 0,Vx € D(A), (3)
(c) 33X >0suchthat (\/ +A)~1: X — X is compact .

l

1. there exists an orthonormal basis {¢k }ken+ on X of eigenfunctions of A,

2. the eigenvalues { Ak }xen+ of A are non-negative and Ay — 400 as k — 400,

3. —A generate a strongly continuous analytic semigroup of contractions e A,
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Setting of the problem

Given T > 0, consider the bilinear control problem

u'(t) + Au(t) + p(t)Bu(t) =0, te[0,T] 4
{ u(0) = uo ()

where p € L2(0, T) is the control function.

Cristina Urbani Superexponential stabilizability of parabolic equations via bilinear control



Setting of the problem

Given T > 0, consider the bilinear control problem

u'(t) + Au(t) + p(t)Bu(t) =0, te[0,T] 4
{ u(0) = uo ()

where p € L2(0, T) is the control function.
Consider system (4) with p = 0:

{ u(t)+Au(t)=0, te][0,T]
u(0) = ¢1.

The solution 11 (t) = e *typ; is called the ground state solution.
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Setting of the problem

Remark

Let A be strictly accretive. The evolution of the free dynamics with initial condition ug can be
represented by u(t) = e A ug. Therefore, with p = 0, system (4) is locally exponentially
stabilizable the trajectory 1. Indeed,

lu(t) — ¢1(2)l] = lle™ o — e || < e*||uo — ul.
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Setting of the problem

Remark

Let A be strictly accretive. The evolution of the free dynamics with initial condition ug can be
represented by u(t) = e A ug. Therefore, with p = 0, system (4) is locally exponentially
stabilizable the trajectory 1. Indeed,

lu(t) — ¢1(2)l] = lle™ o — e || < e*||uo — ul.

Novelty: construction of a control function p that brings u(t) arbitrary close to 11(t) in a very
short time. The convergence rate of the controlled solution to the reference trajectory is

doubly-exponential.
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Setting of the problem

Remark

Let A be strictly accretive. The evolution of the free dynamics with initial condition ug can be
represented by u(t) = e A ug. Therefore, with p = 0, system (4) is locally exponentially
stabilizable the trajectory 1. Indeed,

lu(t) — ¢1(2)l] = lle™ o — e || < e*||uo — ul.

Novelty: construction of a control function p that brings u(t) arbitrary close to 11(t) in a very
short time. The convergence rate of the controlled solution to the reference trajectory is

doubly-exponential.

Weak version of the exact controllability to the ground state solution.
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Superexponential stabilizability
Theorem

Let A: D(A) — X be a densely defined linear operator satisfying hypothesis (3) and suppose that there
exists a constant o > 0 such that the eigenvalues of A fulfill the gap condition

Vaa1— VA > a, VkeN

(5)
Let B : D(B) C X — X be a linear bounded operator with the following properties:
<B‘P17‘Pk> #07 VkEN*v
—2AkT
37 > 0 such that Z e—2 < 00. (6)
keN* |<B(pl’ (pk>|

2

Then, ¥ p >0, 3R > 0 such that any uy € Br(p1) admits a control p € L;, (0, 00) such that the

corresponding solution u(-; ug, p) of (4) satisfies

llu(t) — 1(t)]] < Me=Pe" =2t vt >0,

where M and w are positive constants depending only on A and B.

Cristina Urbani
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Sketch of the proof, A\ =0

{ u'(t) 4+ Au(t) + p(t)Bu(t) =0, te€]0,T] { Pi(t) +Ayr(t) =0, tel0,T]
u(0) = uo, ¥1(0) = ¢1.

Cristina Urbani Superexponential stabilizability of parabolic equations via bilinear control



Sketch of the proof, A\ =0

{ u'(t) 4+ Au(t) + p(t)Bu(t) =0, te€]0,T] { Pi(t) +Ayr(t) =0, tel0,T]
u(0) = uo, ¥1(0) = ¢1.

vi=u—1
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Sketch of the proof, A\ =0

{ VI(t) + Av(t) + p(t)Bv(t) + p(t)Bi1(t) = 0,
v(0) = vo = up — o1,

t €0, T]
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Sketch of the proof, A\ =0

{ V(1) + Av(t) + p(t)Bv(t) + p(t)Bia(t) = 0, { v(t)' + Av(t) + p(t)Bia(t) = 0,
v(0) = vp = up — o1, v(0) = w.
t €0, T]
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Sketch of the proof, A\ =0

{ V(1) + Av(t) + p(t)Bv(t) + p(t)Bia(t) = 0, { v(t)' + Av(t) + p(t)Bia(t) = 0,
v(0) = vp = up — o1, v(0) = w.
t €0, T]

o
\'- .
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Sketch of the proof, A\ =0

{ V/(t) + Av(t) + p(t)Bv(t) + p(t)Byx(t) = 0, { v(t) + Av(t) + p(t)Biy1(t) =0,

v(0) = vo = ug — o1, v(0) = vp.
te [0, T]
vo
)
‘7(}1_ ‘;Oap) \\\
0.
0 T

Cristina Urbani Superexponential stabilizability of parabolic equations via bilinear control



Sketch of the proof, A\ =0

{ V/(t) + Av(t) + p(t)Bv(t) + p(t) By (t) =0, { v(t) + Av(t) + p(t)Bys(t) = 0,

V(O) = Vo = Up — 1, \7(0) = .
t €0, T]
Vo
[}
W(tivo,p) -
0
0 T

[Ipll2(0,7) < C(T)AT||voll
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Sketch of the proof, A\ =0

{ v/(t) + Av(t) + p(t)Bv(t) + p(t) By (t) =0, { v(t) + Av(t) + p(t)Bys(t) = 0,

V(O) = Vo = Up — 1, \7(0) = .
tel0,T]
Yo
\\\ v(T; vo,p)
\7(\t,_\’/o,P) \\\
0e
0 T

[Ipll2(0,7) < C(T)AT||voll
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Sketch of the proof, A\ =0

{ v/(t) + Av(t) + p(t)Bv(t) + p(t) By (t) =0, { v(t) + Av(t) + p(t)Bys(t) = 0,

V(O) = Vo = Up — 1, \7(0) = .
t €0, T]
Vo
\\\ v(T; vo,p)
V(\tl_"/07p) \\\
0.

0 T

Iplliz0,7) < C(TATIIoll [I(v = 0) (DI = [Iv(T)I < Krllvol[*.
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Sketch of the proof, A\ =0
{ V'(t) + Av(t) + p(t)Bv(t) + p(t)Byi(t) =0, { v(t) + Av(t) + p(t)Bya(t) = 0,
v(T) = vr, v(T)=vr.
te[T,2T]

\ v(T; vo,p)

o
T e
N
\'
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Sketch of the proof, A\ =0

{ v/(t) + Av(t) + p(t)Bv(t) + p(t) By (t) =0, { v(t) + Av(t) + p(t) By (t) = 0,

V( T) = VT, \7(T) = VT.
t e [T,2T]
vo
\\\ v(T; vo,p)
W(tivo,p) v V(EV(T).p)
0 0o
0 T 2T
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Sketch of the proof, A\ =0

{ v/(t) + Av(t) + p(t)Bv(t) + p(t) By (t) =0, { v(t) + Av(t) + p(t) By (t) = 0,

V( T) = VT, \7(T) = VT.
te[T,2T]
vo
\\\ \v(T; vo, P)
W(tivo,p) v V(EV(T).p)
0 0o
0 T 2T

Ipll2(r 2y < CATATIV(T)]
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Sketch of the proof, A\ =0

{ V'((t))+AV(t)+P(f)BV(t)+P(t)31/}1(t)=0, { v(t) + Av(t) + p(t)Bia(t) = 0,
v(T) = vr,

\7(T) = VT.
te[T,2T]

TN T wew(T)p) 2T; v,
v(t;vo,p) v V(EV(T),P) . WV(2Tivo,p)

0 T 2T
||P||L2(T,2T) < C(MATIvTIL,
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Sketch of the proof, A\ =0

{ V'((t))+AV(t)+P(f)BV(t)+P(t)31/}1(t)=0, { v(t) + Av(t) + p(t)Bia(t) = 0,
v(T) = vr,

\7(T) = VT.
te[T,2T]

TN T wew(T)p) 2T; v,
v(t;vo,p) v V(EV(T),P) . WV(2Tivo,p)

(=) T 2=T
1Plle2(r2my < CDATIVTIL - NIy = )T = V@I < Krlv(TIIP < (1/Kr)(Kr vl )"
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Sketch of the proof, A\ =0

{ v'(t) + Av(t) + p(t)Bv(t) + p(t)Bi(t) =0, { v(t) + Av(t) + p(t)Bya(t) =0,
V(2T) = VT,

\7(2T) = VoT.
t€[2T,3T]

TN T wew(T)p) 2T; v,
v(t;vo,p) v V(EV(T),P) . WV(2Tivo,p)

o
\'- .
N
\'
w
\'
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Sketch of the proof, A\ =0

{ v'(t) + Av(t) + p(t)Bv(t) + p(t)Bia(t) =0, { v(t) + Av(t) + p(t)Bya(t) =0,
V(2T) = VT,

\7(2T) = VoT.
t€[2T,3T]

S _ STV T T~ 2T; v,
7(t; vo, p) . v(t;v(T),p) . \‘i( Vo, P) -
0% O J(tv(2T),p) O°
0 T 2T 3T
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Sketch of the proof, A\ =0

{ v'(t) + Av(t) + p(t)Bv(t) + p(t)Bia(t) =0, { v(t) + Av(t) + p(t)Bya(t) =0,
V(2T) = VT,

\7(2T) = VoT.
t€[2T,3T]

S _ STV T T~ 2T; v,
7(t; vo, p) . v(t;v(T),p) . \‘i( Vo, P) -
0% 0 F(tv(2T),p) O°

0 T 2T 3T
||P||L2(2T,3T) < C(DAT|[v2T)],
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Sketch of the proof, A\ =0

{ v/(£) + Av(t) + p(t)Bv(t) + p(t)Byn(t) =0, { v(t) + Av(t) + p(t)Bia(t) = 0,
V(2T) = VT, \7(2T) = VoT.

te[2T,3T]

W(Evp) . WUEV(T).P)

0 T 2T 3T
||P||L2(2T,3T) < C(MAT(Iv2T)],
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Sketch of the proof, A\ =0

{ v/(£) + Av(t) + p(t)Bv(t) + p(t)Byn(t) =0, { v(t) + Av(t) + p(t)Bia(t) = 0,
V(2T) = VT, \7(2T) = VoT.

te[2T,3T]

W(Evp) . WUEV(T).P)

(=) JI' 2T 3T
1Pll2er 3m) < CDATIIVETIL, - I(v = BT = [IvE I < Krlv@T)IP < (1/K7)(Krl[wol)”
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Sketch of the proof, A\ =0
. (Tl < (Kl lvol ) )
T

in every [nT,(n+1)T].
¢ In any time interval [nT,(n+ 1) T] we prove that

vl < Crllv(nT)ll,  nT <t<(n+1)T. (9)
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Sketch of the proof, A\ =0
. VT < 2=(Krlvoll
T

in every [nT,(n+1)T].
¢ In any time interval [nT,(n+ 1) T] we prove that

V(DI < Crllv(nT)||, T <t<(n+1)T.

e Let 0 € (0,1) and [|v|| < #-. Combining (8) and (9), we obtain

u(t) — i(t)]] < Cr o vt >0,
K
.
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Sketch of the proof, A\ =0
1 n
° [V(nT)I < = (Krl[vo])* (8)
T
in every [nT,(n+1)T].
e In any time interval [nT,(n+ 1) T] we prove that
vl < Crliv(nT)ll, T <t<(n+1)T. (9)

e Let 0 € (0,1) and [|v|| < #-. Combining (8) and (9), we obtain

u(t) — i(t)]] < Crgprm yes 0,
K
.

o Let 6 € (0,1) and let p > 0 be the value for which § = e~2°, then 3 R, > 0 such that if
||uo — ¢1]| < Ry, then

wrt

[|u(t) = || < Mre™?°

with M1, w7t > 0 suitable constants.

Yt > 0.
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Sketch of the proof, \; > 0

We introduce the operator
AL i=A—- )\

Observe that A; : D(A;) C X — X is self-adjoint, accretive and —A; generates a strongly
continuous analytic semigroup of contraction. Its eigenvalues are given by

Ik = Ak — A1, Vk € N*

(in particular, 1 = 0) and it has the same eigenfunctions as A, {¢k }ken+. Moreover, the
family {ik}ken+ satisfies the same gap condition that is satisfied by the eigenvalues of A.
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Sketch of the proof, \; > 0

We introduce z(t) = etu(t), then z solves

{ Z'(t) + Aiz(t) + p(t)Bz(t) =0, t >0,
z(0) = up.

So, we can apply the previous analysis to this problem:
_ wTt
12(t) = ¢1]] < Mre™* ", V>0

and therefore

[[u(t) = ¢a(8)]] = [le M 2(t) — e || = e X||2(t) — ¢u]| < Mye (PRI ve > 0.
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Superexponential stabilizability — Exact controllability
Theorem

Let A: D(A) — X be a densely defined linear operator satisfying hypothesis (3) and suppose that there
exists a constant o > 0 such that the eigenvalues of A fulfill the gap condition

Vaa1— VA > a, VkeN

Let B : D(B) C X — X be a linear bounded operator with the following properties:

<B‘P17‘Pk> #07 VkEN*v

e
d7 > 0 such that —— < 00.
k;;* [(Be1, i) [?

—2AkT

2

Then, ¥ p > 0, 3R > 0 such that any uy € Br(p1) admits a control p € L;,_(0,00) such that the

corresponding solution u(-; ug, p) of (4) satisfies

llu(t) —a(t)]] < Me=Pe" =2t vt >0,

where M and w are positive constants depending only on A and B.
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Exact controllability

Theorem

Let A: D(A) — X be a densely defined linear operator satisfying hypothesis (3) and suppose that there
exists a constant o > 0 such that the eigenvalues of A fulfill the gap condition

Vaa1— VA > a, VkeN

Let B : D(B) C X — X be a linear bounded operator with the following properties:

<B‘P17‘Pk> 7&07 VkEN*v

e—2)\k7'
< 00.

d7 > 0 such that _
k;;* [{Be1, pi) |2

Then, ¥ p >0, 3R > 0 such that any ug € Br(p1) admits a control p € L2 (0,00) such that the
corresponding solution u(-; ug, p) of (4) satisfies

llu(t) —a(t)]] < Me=Pe" =2t vt >0,

where M and w are positive constants depending only on A and B.
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Exact controllability
Theorem

Let A: D(A) — X be a densely defined linear operator satisfying hypothesis (3) and suppose that there
exists a constant o > 0 such that the eigenvalues of A fulfill the gap condition

Vaa1— VA > a, VkeN

Let B : D(B) C X — X be a linear bounded operator with the following properties:

<B‘P17‘Pk> #07 VkEN*v

e—2)\k7'
d7 > 0 such that Z |

_— < Q.
2
S 1(Bor, i)

Then, 3R > 0 such that any uy € Br(y1) admits a control p € L2 _(0,00) such that, for any T > 0,
the corresponding solution u(-; ug, p) of (4) satisfies

u(T; uo, p) = 1(T).
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Examples

Let T >0, Q = [0,1] and consider the bilinear control system
Ut(t,X) - Uxx(tax) + p(t)/,L(X)U(t,X) = 07 (t7X) € [07 T] x Q
u(t,0) = u(t,1) =0,
u(0, x) = up(x).
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Examples
Let T >0, X = L?(Q2) and consider the bilinear control system

ue(t) + Au(t) + p(t)Bu(t) =0, te[0,T]
{ u(0) = wo(x). (10)
where A and B are defined by
D(A) = H* N HY(Q), Ap=-%¢ (1)

D(B) = X, By = up.
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Examples
Let T >0, X = L?(2) and consider the bilinear control system

ue(t) + Au(t) + p(t)Bu(t) =0, te[0,T]
{ u(0) = wo(x). (10)
where A and B are defined by
D(A) = H* N HY(Q), Ap=-%¢ (1)

D(B) = X, By = up.

e A is a self-adjoint accretive operator with compact resolvent,
o eigenvalues and eigenvectors of A:

M = (k7)%, @i(x) = V2sin(knx), Yk € N*
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Examples
Let T >0, X = L?(2) and consider the bilinear control system

ue(t) + Au(t) + p(t)Bu(t) =0, te[0,T]
{ u(0) = wo(x). (10)
where A and B are defined by
D(A) = H* N HY(Q), Ap=-%¢ (1)

D(B) = X, By = up.

e A is a self-adjoint accretive operator with compact resolvent,
o eigenvalues and eigenvectors of A:

M = (k7)%, @i(x) = V2sin(knx), Yk € N*

We want to study the superexponential stabilizability of (10)-(11) to the ground state solution
P = e Mgy,
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Examples

e gap condition:

VA+1 — VA = (k+ 1)7T— kp=m, VkeN*.
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Examples

e gap condition:
VA1 — VA= (k+ 1) —kp=m, VkeN".

e estimate of the Fourier coefficients:

1
(Be1,pk) = /0 2u(x) sin(mx) sin(kmx)dx =
= 5 (V) - i) +
- ﬁ /0 (1(x)1(x))" cos(kmx)dx
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Examples

e gap condition:
VA1 — VA= (k+ )7 —kp=m, VkeN~

e estimate of the Fourier coefficients:

1
(Be1, ¢k) :/0 2u(x) sin(mx) sin(kmx)dx =
= 5 (V) - i) +
ﬁ /0 (1(x)1(x))" cos(kmx)dx

If (Beo1, k) # 0 Vk € N* and /(1) &+ 1/(0) # 0, then we have

’<B<P1,<Pk>‘ > CAk_3/27 Vk € N*.
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Examples

e gap condition:
VA1 — VA= (k+ )7 —kp=m, VkeN~

o estimate of the Fourier coefficients:

1
(B¢1,¢k>:/() 2u(x) sin(mx) sin(kmx)dx =
= 5 (V) - i) +
ﬁ/o (1(x)p1(x))" cos(kmx)dx

If (Beo1, k) # 0 Vk € N* and /(1) &+ 1/(0) # 0, then we have
’<B<P1,<Pk>‘ > CAk_3/27 Vk € N*.

EXAMPLE: By(x) = x%¢(x)
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Examples

o the series
e—ZAkT

2 (B, k) [?

keN*

is finite for all 7 > 0.
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Examples

o the series .
0T

> 1B

- 1(Ber, 0P

is finite for all 7 > 0.

Thus, system (10) is locally superexponentially stabilizable to the trajectory 1.
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Examples

o the series .
0T

> 1B

- 1(Ber, 0P

is finite for all 7 > 0.

Thus, system (10) is locally superexponentially stabilizable to the trajectory 1.
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Examples
Let T >0, Q=1[0,1], X = L?(Q2) and consider the degenerate control system

ur — (x%ux)  + p(t)x>~%u =0, (t,x) €[0, T] x Q

w(t1) = 0 { u(t,0) =0, if o €[0,1),

(x%ux) (£,0) =0, ifa€[L,2), (19)
u(0, x) = up(x).
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Examples
Let T >0, Q =[0,1], X = L%(Q) and consider the degenerate control system

— (x%uy), + p(t)x*2u =0, (t,x) € [0, T] xQ
_ u(t,0) =0, if « €10,1),
u(t, 1) =0 { (x*uy) (t,0) =0, if a €1,2), (19)

u(0, x) = uop(x).
Define the quantities

|1 — af 2—«
= — ky, 1= .
T T
Then, A: D(A) C X — X, that is a self-adjoint accretive operator with compact resolvent,
have the following eigenvalues and eigenfunctions

Aa1k = kijé k>

_V2ka a)2y (i ok
a . @ Jy Ve “.
® ,k(X) | (Jua,k)‘ <./ kX )
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Examples

a€[0,1) = \Aak+1 — VAak > 15T, Vk € N*,
e gap condition:

a€[1,2) = okl — Aok > 5, VkeN-
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Examples

a € [0, 1) = \/)\a,k+1 — \//\a,k > 1%7‘(, Vk € N*,

e gap condition:

a€ll,2) = \/)\a,k+1 — \//\a,k > 75, VkeN~.
o there exists a constant C > 0 such that, for any « € [0,3/2),

’<B‘Pa,1a</’a, >| > 3/27 Vk € N*v k 7£ 17

(B‘Pa,l ) ‘Pa,1> #0

—2Ak7'
= Z is finite for all 7 > 0.
keN* ‘pl ‘Pk
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Examples

a€[0,1) = \Aak+1 — VAak > 15T, Vk € N*,
e gap condition:

a€ll,2) = \/)\a,k+1 — \/)\a,k > 75, VkeN~.
o there exists a constant C > 0 such that, for any a € [0,3/2)

(Bt ai)| 2 =S5, VhkEN' k#1,

(B‘Pa,l ) ‘Pa,1> #0
—2Ak7'

= D B P

is finite for all 7 > 0.
kEN* ‘pl Sok

Thus, system (19) is locally superexponentially stabilizable to the trajectory 17 = e *fyp;.
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Examples

a€[0,1) = \Aak+1 — VAak > 15T, Vk € N*,

e gap condition:

a€ll,2) = \/)\a,k+1 — \/)\a,k > 75, VkeN~.
o there exists a constant C > 0 such that, for any a € [0,3/2)

(Bt ai)| 2 =S5, VhkEN' k#1,

(B‘Pa,l ) ‘Pa,1> #0
—2Ak7'

= D B P

is finite for all 7 > 0.
kEN* ‘pl Sok

Thus, system (19) is locally superexponentially stabilizable to the trajectory ¢; = e

Gracias! Thank you! Grazie! Merci! Dank!

Cristina Urbani
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