Superexponential stabilizability of parabolic equations via bilinear control

F. Alabau^{2,3} P. Cannarsa⁴ C. Urbani^{1,2}

¹Gran Sasso Science Institute (GSSI)

²Université Pierre et Marie Curie (UPMC)

³Université de Lorraine

⁴Università di Roma "Tor Vergata"

VIII Partial differential equations, optimal design and numerics, Benasque, 19/08/2019

Questions

• What is a bilinear control system?

Questions

- What is a bilinear control system?
- What are the difficulties?

Questions

- What is a bilinear control system?
- What are the difficulties?
- What are the motivations?

...But first, what is a control system?

...But first, what is a control system?

Dynamical system: u' = f(u, p)

...But first, what is a control system?

Dynamical system:
$$u' = f(u, \mathbf{p})$$

control function

...But first, what is a control system?

Dynamical system:
$$u' = f(u, \mathbf{p})$$

control function

Boundary control problem:

$$\begin{cases} u' = Au + Bu \\ u = \mathbf{p}|_{\partial\Omega} \\ u(0) = u_0 \end{cases}$$

...But first, what is a control system?

Dynamical system:
$$u' = f(u, \mathbf{p})$$

control function

Locally distributed control problem:

$$\begin{cases} u' = Au + Bu + \mathbf{p} \mathbb{1}_{\omega} \\ u = g|_{\partial\Omega} \\ u(0) = u_0 \end{cases}$$

...But first, what is a control system?

Dynamical system:
$$u' = f(u, \mathbf{p})$$

control function

Multiplicative (or bilinear) control problem:

$$\begin{cases} u' = Au + pBu \\ u = g|_{\partial\Omega} \\ u(0) = u_0 \end{cases}$$

What are the difficulties?

The map $\Phi : \mathbf{p} \mapsto u$ is

Boundary control: Locally distributed control: Bilinear control:

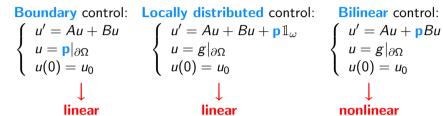
$$\begin{cases} u' = Au + Bu \\ u = \mathbf{p}|_{\partial\Omega} \\ u(0) = u_0 \end{cases}$$

$$\begin{cases} u' = Au + Bu \\ u = \mathbf{p}|_{\partial\Omega} \\ u(0) = u_0 \end{cases} \begin{cases} u' = Au + Bu + \mathbf{p}\mathbb{1}_{\omega} \\ u = g|_{\partial\Omega} \\ u(0) = u_0 \end{cases} \begin{cases} u' = Au + \mathbf{p}Bu \\ u = g|_{\partial\Omega} \\ u(0) = u_0 \end{cases}$$

$$\left(\begin{array}{l} u' = Au + \mathbf{p}Bu \\ u = g|_{\partial\Omega} \\ u(0) = u_0 \end{array} \right)$$

What are the difficulties?

The map $\Phi : \mathbf{p} \mapsto u$ is



What are the difficulties?

The map $\Phi : \mathbf{p} \mapsto u$ is

Bilinear control:

$$\begin{cases}
u' = Au + pBu \\
u = g|_{\partial\Omega} \\
u(0) = u_0
\end{cases}$$
(1)

Theorem (Ball, Marsden, Slemrod 1982)

Let X be a Banach space with $dim(X)=+\infty$. Let A generate a C^0 -semigroup of bounded linear operators on X and $B: X \to X$ be a bounded linear operator. Let $u_0 \in X$ be fixed, and let $u(t; p, u_0)$ denote the unique solution of (1) for $p \in L^1_{loc}([0,+\infty),\mathbb{R})$. The set of states accessible from u_0 defined by

$$S(u_0) = \{u(t; p, u_0); t \geq 0, p \in L^r_{loc}([0, +\infty), \mathbb{R}), r > 1\}$$

is contained in a countable union of compact subsets of X and, in particular, has a dense complement.

Why, afterall, we want to study these problems?

Multiplicative controls enter the system equations as coefficients. They change (at least some of) the principal parameters of the process at hand.

Examples:

- by embedded smart alloys, the natural frequency response of a beam can be changed,
- the rate of a chemical reaction can be altered by various catalysts and/or by the speed at which the reaction ingredients are mechanically mixed

Why, afterall, we want to study these problems?

Multiplicative controls enter the system equations as coefficients. They change (at least some of) the principal parameters of the process at hand.

Examples:

- by embedded smart alloys, the natural frequency response of a beam can be changed,
- the rate of a chemical reaction can be altered by various catalysts and/or by the speed at which the reaction ingredients are mechanically mixed

Nuclear chain reaction

$$u_t = a^2 \Delta u + v(t, x) u$$

- $u(t,x) \ge 0$ neutron density in the reaction,
- v(t,x) > 0 neutron amount in the surrounding medium,

v(t,x)u source of netrouns provided by the collision of the particles in the reaction with the surrounding medium

Why, afterall, we want to study these problems?

Multiplicative controls enter the system equations as coefficients. They change (at least some of) the principal parameters of the process at hand.

Examples:

- by embedded smart alloys, the natural frequency response of a beam can be changed,
- the rate of a chemical reaction can be altered by various catalysts and/or by the speed at which the reaction ingredients are mechanically mixed

Schrödinger equation

$$i\psi_t = -\Delta\psi - \rho(t)\mu(x)\psi$$

- ullet ψ wave function of a particle,
- p amplitude of the electric field,
- \bullet μ dipolar moment of the particle

• J.M. Ball, J.E. Marsden, and M. Slemrod. Controllability for distributed bilinear systems. SIAM Journal on Control and Optimization, 1982,

- J.M. Ball, J.E. Marsden, and M. Slemrod. Controllability for distributed bilinear systems. SIAM Journal on Control and Optimization, 1982,
- exact controllability (hyperbolic problems)

- J.M. Ball, J.E. Marsden, and M. Slemrod. Controllability for distributed bilinear systems. SIAM Journal on Control and Optimization, 1982,
- exact controllability (hyperbolic problems)
 - K. Beauchard and C. Laurent. Local controllability of 1d linear and nonlinear Schrödinger equations with bilinear control. J. Math. Pures Appl., 2010,

- J.M. Ball, J.E. Marsden, and M. Slemrod. Controllability for distributed bilinear systems.
 SIAM Journal on Control and Optimization, 1982,
- exact controllability (hyperbolic problems)
 - ▶ K. Beauchard and C. Laurent. Local controllability of 1d linear and nonlinear Schrödinger equations with bilinear control. J. Math. Pures Appl., 2010,
 - ▶ K. Beauchard. Local controllability and non-controllability for a 1d wave equation with bilinear control. Journal of Differential Equations, 2011,

- J.M. Ball, J.E. Marsden, and M. Slemrod. Controllability for distributed bilinear systems.
 SIAM Journal on Control and Optimization, 1982,
- exact controllability (hyperbolic problems)
 - ▶ K. Beauchard and C. Laurent. Local controllability of 1d linear and nonlinear Schrödinger equations with bilinear control. J. Math. Pures Appl., 2010,
 - ▶ K. Beauchard. Local controllability and non-controllability for a 1d wave equation with bilinear control. Journal of Differential Equations, 2011,
- approximate controllability

- J.M. Ball, J.E. Marsden, and M. Slemrod. Controllability for distributed bilinear systems.
 SIAM Journal on Control and Optimization, 1982,
- exact controllability (hyperbolic problems)
 - K. Beauchard and C. Laurent. Local controllability of 1d linear and nonlinear Schrödinger equations with bilinear control. J. Math. Pures Appl., 2010,
 - ▶ K. Beauchard. Local controllability and non-controllability for a 1d wave equation with bilinear control. Journal of Differential Equations, 2011,
- approximate controllability
 - A.Y. Khapalov. Global non-negative controllability of the semilinear parabolic equation governed by bilinear control. ESAIM: Control, Optimisation and Calculus of Variations, 2002,

- J.M. Ball, J.E. Marsden, and M. Slemrod. Controllability for distributed bilinear systems.
 SIAM Journal on Control and Optimization, 1982,
- exact controllability (hyperbolic problems)
 - K. Beauchard and C. Laurent. Local controllability of 1d linear and nonlinear Schrödinger equations with bilinear control. J. Math. Pures Appl., 2010,
 - ▶ K. Beauchard. Local controllability and non-controllability for a 1d wave equation with bilinear control. Journal of Differential Equations, 2011,
- approximate controllability
 - A.Y. Khapalov. Global non-negative controllability of the semilinear parabolic equation governed by bilinear control. ESAIM: Control, Optimisation and Calculus of Variations, 2002,
 - P. Cannarsa, G. Floridia, and A. Y. Khapalov. Multiplicative controllability for semilinear reaction-diffusion equations with finitely many changes of sign. Journal de Mathematiques Pures et Appliquees, 2017.

$$\begin{cases} u' = Au + \mathbf{p}Bu & t > 0 \\ u(0) = u_0 \end{cases}$$
 (2)

$$\begin{cases} u' = Au + \mathbf{p}Bu & t > 0 \\ u(0) = u_0 \end{cases}$$
 (2)

Definitions

• Fixed a control \bar{p} and an initial condition \bar{u}_0 , (2) is *locally stabilizable to* $\bar{u}(\cdot; \bar{u}_0, \bar{p})$ if $\exists \delta > 0$ such that, $\forall u_0 \in B_{\delta}(\bar{u}_0)$, $\exists p$ for which

$$\lim_{t \to +\infty} ||u(t; u_0, p) - \bar{u}(t; \bar{u}_0, \bar{p})|| = 0.$$

$$\begin{cases} u' = Au + \mathbf{p}Bu & t > 0 \\ u(0) = u_0 \end{cases}$$
 (2)

Definitions

• Fixed a control \bar{p} and an initial condition \bar{u}_0 , (2) is *locally stabilizable to* $\bar{u}(\cdot; \bar{u}_0, \bar{p})$ if $\exists \delta > 0$ such that, $\forall u_0 \in B_{\delta}(\bar{u}_0)$, $\exists p$ for which

$$\lim_{t \to +\infty} ||u(t; u_0, p) - \bar{u}(t; \bar{u}_0, \bar{p})|| = 0.$$

• Given a control \bar{p} and an initial condition \bar{u}_0 , (2) is locally exponentially stabilizable to $\bar{u}(\cdot; \bar{u}_0, \bar{p})$ if $\forall \rho > 0$, $\exists R(\rho) > 0$ for which, $\forall u_0 \in B_{R(\rho)}(\bar{u}_0)$, $\exists p$ and M > 0 such that

$$||u(t;u_0,p)-\bar{u}(t;\bar{u}_0,\bar{p})||\leq Me^{-\rho t}, \qquad \forall t>0.$$

$$\begin{cases} u' = Au + \mathbf{p}Bu & t > 0 \\ u(0) = u_0 \end{cases}$$
 (2)

Definitions

• Fixed a control \bar{p} and an initial condition \bar{u}_0 , (2) is *locally stabilizable to* $\bar{u}(\cdot; \bar{u}_0, \bar{p})$ if $\exists \delta > 0$ such that, $\forall u_0 \in B_{\delta}(\bar{u}_0)$, $\exists p$ for which

$$\lim_{t \to +\infty} ||u(t; u_0, p) - \bar{u}(t; \bar{u}_0, \bar{p})|| = 0.$$

• Given a control \bar{p} and an initial condition \bar{u}_0 , (2) is locally exponentially stabilizable to $\bar{u}(\cdot; \bar{u}_0, \bar{p})$ if $\forall \rho > 0$, $\exists R(\rho) > 0$ for which, $\forall u_0 \in B_{R(\rho)}(\bar{u}_0)$, $\exists p$ and M > 0 such that

$$||u(t;u_0,p)-\bar{u}(t;\bar{u}_0,\bar{p})||\leq Me^{-\rho t}, \qquad \forall t>0.$$

• Given control \bar{p} and an initial condition \bar{u}_0 , (2) is locally superexponentially stabilizable to $\bar{u}(\cdot; \bar{u}_0, \bar{p})$ if $\exists M, \omega > 0$ such that, $\forall \rho > 0$, $\exists R(\rho) > 0$ such that, $\forall u_0 \in B_{R(\rho)}(\bar{u}_0)$, $\exists p$ for which it holds $||u(t; u_0, p) - \bar{u}(t; \bar{u}_0, \bar{p})|| \leq Me^{-\rho e^{\omega t}}$, $\forall t > 0$.

Let $(X, \langle \cdot, \cdot \rangle)$ be a separable Hilbert space and $A : D(A) \subset X \to X$ a densely defined linear operator with the following properties:

- (a) A is self-adjoint,
- (b) $\langle \mathbf{A}x, x \rangle \ge 0, \forall x \in D(\mathbf{A}),$ (3)
- (c) $\exists \, \lambda > 0$ such that $(\lambda I + {\color{red}A})^{-1}: X o X$ is compact .

Let $(X, \langle \cdot, \cdot \rangle)$ be a separable Hilbert space and $A : D(A) \subset X \to X$ a densely defined linear operator with the following properties:

- (a) A is self-adjoint,
- (b) $\langle \mathbf{A} x, x \rangle \ge 0, \forall x \in D(\mathbf{A}),$ (3)
- (c) $\exists \lambda > 0$ such that $(\lambda I + {\color{red}A})^{-1}: X o X$ is compact .

- 1. there exists an orthonormal basis $\{\varphi_k\}_{k\in\mathbb{N}^*}$ on X of eigenfunctions of A,
- 2. the eigenvalues $\{\lambda_k\}_{k\in\mathbb{N}^*}$ of **A** are non-negative and $\lambda_k\to+\infty$ as $k\to+\infty$,
- 3. -A generate a strongly continuous analytic semigroup of contractions e^{-tA} .

Given T > 0, consider the bilinear control problem

$$\begin{cases} u'(t) + Au(t) + p(t)Bu(t) = 0, & t \in [0, T] \\ u(0) = u_0 \end{cases}$$
 (4)

where $p \in L^2(0, T)$ is the control function.

Given T > 0, consider the bilinear control problem

$$\begin{cases} u'(t) + Au(t) + p(t)Bu(t) = 0, & t \in [0, T] \\ u(0) = u_0 \end{cases}$$
 (4)

where $p \in L^2(0, T)$ is the control function.

Consider system (4) with p = 0:

$$\begin{cases} u'(t) + \mathbf{A}u(t) = 0, & t \in [0, T] \\ u(0) = \varphi_1. \end{cases}$$

The solution $\psi_1(t) = e^{-\lambda_1 t} \varphi_1$ is called the ground state solution.

Remark

Let A be strictly accretive. The evolution of the free dynamics with initial condition u_0 can be represented by $u(t)=e^{-tA}u_0$. Therefore, with p=0, system (4) is locally exponentially stabilizable the trajectory ψ_1 . Indeed,

$$||u(t) - \psi_1(t)|| = ||e^{-t\mathbf{A}}u_0 - e^{-t\mathbf{A}}\varphi_1|| \le e^{-\nu t}||u_0 - \varphi_1||.$$

Remark

Let A be strictly accretive. The evolution of the free dynamics with initial condition u_0 can be represented by $u(t)=e^{-tA}u_0$. Therefore, with p=0, system (4) is locally exponentially stabilizable the trajectory ψ_1 . Indeed,

$$||u(t) - \psi_1(t)|| = ||e^{-t\mathbf{A}}u_0 - e^{-t\mathbf{A}}\varphi_1|| \le e^{-\nu t}||u_0 - \varphi_1||.$$

Novelty: construction of a control function p that brings u(t) arbitrary close to $\psi_1(t)$ in a very short time. The convergence rate of the controlled solution to the reference trajectory is **doubly-exponential**.

Remark

Let A be strictly accretive. The evolution of the free dynamics with initial condition u_0 can be represented by $u(t)=e^{-tA}u_0$. Therefore, with p=0, system (4) is locally exponentially stabilizable the trajectory ψ_1 . Indeed,

$$||u(t) - \psi_1(t)|| = ||e^{-t\mathbf{A}}u_0 - e^{-t\mathbf{A}}\varphi_1|| \le e^{-\nu t}||u_0 - \varphi_1||.$$

Novelty: construction of a control function p that brings u(t) arbitrary close to $\psi_1(t)$ in a very short time. The convergence rate of the controlled solution to the reference trajectory is **doubly-exponential**.

Weak version of the exact controllability to the ground state solution.

Theorem

Let $A: D(A) \to X$ be a densely defined linear operator satisfying hypothesis (3) and suppose that there exists a constant $\alpha > 0$ such that the eigenvalues of A fulfill the gap condition

$$\sqrt{\lambda_{k+1}} - \sqrt{\lambda_k} \ge \alpha, \quad \forall k \in \mathbb{N}^*.$$
 (5)

Let $B : D(B) \subset X \to X$ be a linear bounded operator with the following properties:

$$\langle \mathbf{B} \boldsymbol{\varphi}_{1}, \boldsymbol{\varphi}_{k} \rangle \neq 0, \qquad \forall k \in \mathbb{N}^{*},$$

$$\exists \tau > 0 \text{ such that } \sum_{k \in \mathbb{N}^{*}} \frac{e^{-2\lambda_{k}\tau}}{|\langle \mathbf{B} \boldsymbol{\varphi}_{1}, \boldsymbol{\varphi}_{k} \rangle|^{2}} < \infty.$$
(6)

Then, $\forall \rho > 0$, $\exists R > 0$ such that any $u_0 \in B_R(\varphi_1)$ admits a control $p \in L^2_{loc}(0, \infty)$ such that the corresponding solution $u(\cdot; u_0, p)$ of (4) satisfies

$$||u(t) - \psi_1(t)|| \le Me^{-\rho e^{\omega t} - \lambda_1 t} \qquad \forall t \ge 0, \tag{7}$$

where M and ω are positive constants depending only on A and B.

$$\begin{cases} u'(t) + \mathbf{A}u(t) + p(t)\mathbf{B}u(t) = 0, & t \in [0, T] \\ u(0) = u_0, \end{cases} \qquad \begin{cases} \psi_1'(t) + \mathbf{A}\psi_1(t) = 0, & t \in [0, T] \\ \psi_1(0) = \mathbf{\varphi_1}. \end{cases}$$

$$\begin{cases} u'(t) + \mathbf{A}u(t) + p(t)\mathbf{B}u(t) = 0, & t \in [0, T] \\ u(0) = u_0, & v := u - \psi_1 \end{cases} \begin{cases} \psi_1'(t) + \mathbf{A}\psi_1(t) = 0, & t \in [0, T] \\ \psi_1(0) = \mathbf{\varphi_1}. \end{cases}$$

$$\begin{cases} v'(t) + \mathbf{A}v(t) + p(t)\mathbf{B}v(t) + p(t)\mathbf{B}\psi_1(t) = 0, \\ v(0) = v_0 = u_0 - \boldsymbol{\varphi_1}, \end{cases}$$

$$t \in [0, T]$$

$$\begin{cases}
v'(t) + \mathbf{A}v(t) + p(t)\mathbf{B}v(t) + p(t)\mathbf{B}\psi_1(t) = 0, \\
v(0) = v_0 = u_0 - \varphi_1,
\end{cases}
\begin{cases}
\bar{v}(t)' + \mathbf{A}\bar{v}(t) + p(t)\mathbf{B}\psi_1(t) = 0, \\
\bar{v}(0) = v_0.
\end{cases}$$

$$t \in [0, T]$$

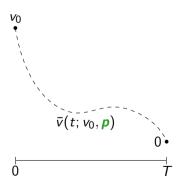
$$\begin{cases}
v'(t) + \mathbf{A}v(t) + p(t)\mathbf{B}v(t) + p(t)\mathbf{B}\psi_1(t) = 0, \\
v(0) = v_0 = u_0 - \varphi_1,
\end{cases}
\begin{cases}
\bar{v}(t)' + \mathbf{A}\bar{v}(t) + p(t)\mathbf{B}\psi_1(t) = 0, \\
\bar{v}(0) = v_0.
\end{cases}$$

v₀

$$\begin{cases} v'(t) + \mathbf{A}v(t) + p(t)\mathbf{B}v(t) + p(t)\mathbf{B}\psi_1(t) = 0, \\ v(0) = v_0 = u_0 - \varphi_1, \end{cases}$$

$$\begin{cases} \bar{v}(t)' + \mathbf{A}\bar{v}(t) + p(t)\mathbf{B}\psi_1(t) = 0, \\ \bar{v}(0) = v_0. \end{cases}$$

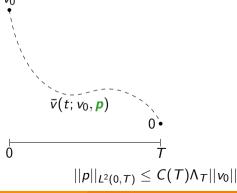
$$t \in [0, T]$$

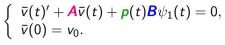


$$\begin{cases}
v'(t) + \mathbf{A}v(t) + p(t)\mathbf{B}v(t) + p(t)\mathbf{B}\psi_1(t) = 0, \\
v(0) = v_0 = u_0 - \varphi_1,
\end{cases}$$

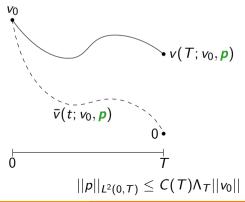
$$\begin{cases}
\bar{v}(t)' + \rho(t)\mathbf{B}\psi_1(t) = 0, \\
\bar{v}(0) = 0,
\end{cases}$$

$$t \in [0, T]$$



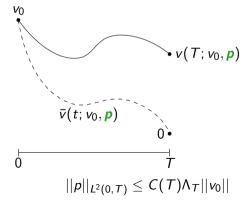


$$\begin{cases} v'(t) + \mathbf{A}v(t) + \mathbf{p}(t)\mathbf{B}v(t) + \mathbf{p}(t)\mathbf{B}\psi_1(t) = 0, \\ v(0) = v_0 = u_0 - \varphi_1, \end{cases} \begin{cases} \bar{v}(t)' + \mathbf{A}\bar{v}(t) + \mathbf{p}(t)\mathbf{B}\psi_1(t) = 0, \\ \bar{v}(0) = v_0. \end{cases}$$
$$t \in [0, T]$$



$$\begin{cases}
v'(t) + \mathbf{A}v(t) + \mathbf{p}(t)\mathbf{B}v(t) + \mathbf{p}(t)\mathbf{B}\psi_1(t) = 0, \\
v(0) = v_0 = u_0 - \varphi_1,
\end{cases}
\begin{cases}
\bar{v}(t)' + \mathbf{A}\bar{v}(t) + \mathbf{p}(t)\mathbf{B}\psi_1(t) = 0, \\
\bar{v}(0) = v_0.
\end{cases}$$

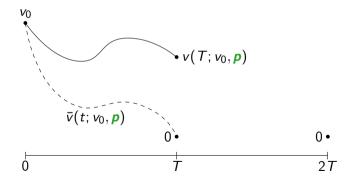
$$t \in [0, T]$$



$$||p||_{L^2(0,T)} \le C(T)\Lambda_T||v_0|| \qquad ||(v-\bar{v})(T)|| = ||v(T)|| \le K_T||v_0||^2.$$

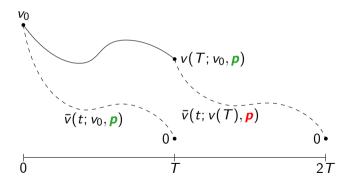
$$\begin{cases}
v'(t) + \mathbf{A}v(t) + p(t)\mathbf{B}v(t) + p(t)\mathbf{B}\psi_1(t) = 0, \\
v(T) = v_T,
\end{cases}
\begin{cases}
\bar{v}(t)' + \mathbf{A}\bar{v}(t) + p(t)\mathbf{B}\psi_1(t) = 0, \\
\bar{v}(T) = v_T.
\end{cases}$$

$$t \in [T, 2T]$$

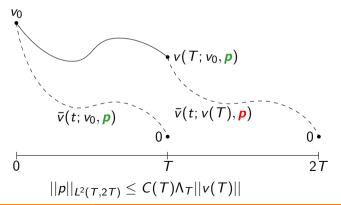


$$\begin{cases}
v'(t) + \mathbf{A}v(t) + p(t)\mathbf{B}v(t) + p(t)\mathbf{B}\psi_1(t) = 0, \\
v(T) = v_T,
\end{cases}
\begin{cases}
\bar{v}(t)' + \mathbf{A}\bar{v}(t) + \mathbf{p}(t)\mathbf{B}\psi_1(t) = 0, \\
\bar{v}(T) = v_T.
\end{cases}$$

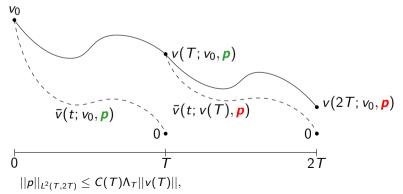
$$t \in [T, 2T]$$



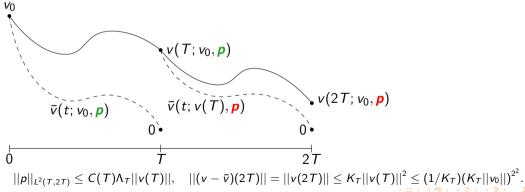
$$\begin{cases} v'(t) + \mathbf{A}v(t) + p(t)\mathbf{B}v(t) + p(t)\mathbf{B}\psi_1(t) = 0, \\ v(T) = v_T, \end{cases} \begin{cases} \bar{v}(t)' + \mathbf{A}\bar{v}(t) + \mathbf{p}(t)\mathbf{B}\psi_1(t) = 0, \\ \bar{v}(T) = v_T. \end{cases}$$
$$t \in [T, 2T]$$



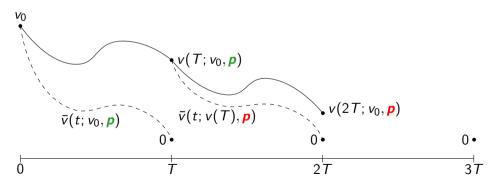
$$\begin{cases} v'(t) + \mathbf{A}v(t) + \mathbf{p}(t)\mathbf{B}v(t) + \mathbf{p}(t)\mathbf{B}\psi_1(t) = 0, \\ v(T) = v_T, \end{cases} \begin{cases} \bar{v}(t)' + \mathbf{A}\bar{v}(t) + \mathbf{p}(t)\mathbf{B}\psi_1(t) = 0, \\ \bar{v}(T) = v_T. \end{cases}$$
$$t \in [T, 2T]$$



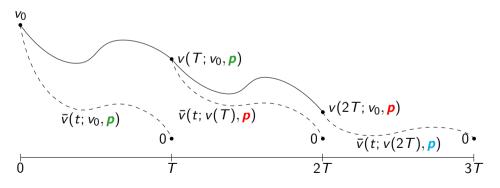
$$\begin{cases}
v'(t) + \mathbf{A}v(t) + \mathbf{p}(t)\mathbf{B}v(t) + \mathbf{p}(t)\mathbf{B}\psi_1(t) = 0, \\
v(T) = v_T,
\end{cases}
\begin{cases}
\bar{v}(t)' + \mathbf{A}\bar{v}(t) + \mathbf{p}(t)\mathbf{B}\psi_1(t) = 0, \\
\bar{v}(T) = v_T.
\end{cases}$$



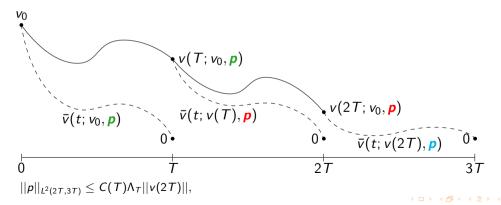
$$\begin{cases} v'(t) + \mathbf{A}v(t) + p(t)\mathbf{B}v(t) + p(t)\mathbf{B}\psi_1(t) = 0, \\ v(2T) = v_{2T}, \end{cases} \begin{cases} \bar{v}(t)' + \mathbf{A}\bar{v}(t) + p(t)\mathbf{B}\psi_1(t) = 0, \\ \bar{v}(2T) = v_{2T}. \end{cases}$$
$$t \in [2T, 3T]$$



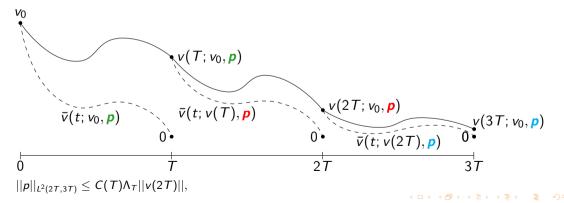
$$\begin{cases} v'(t) + \mathbf{A}v(t) + p(t)\mathbf{B}v(t) + p(t)\mathbf{B}\psi_1(t) = 0, \\ v(2T) = v_{2T}, \end{cases} \begin{cases} \bar{v}(t)' + \mathbf{A}\bar{v}(t) + p(t)\mathbf{B}\psi_1(t) = 0, \\ \bar{v}(2T) = v_{2T}. \end{cases}$$
$$t \in [2T, 3T]$$



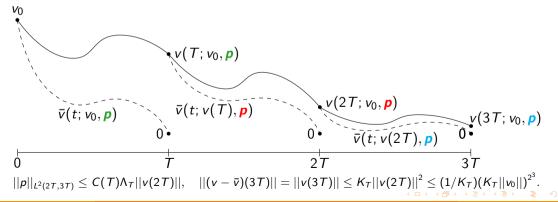
$$\begin{cases} v'(t) + \mathbf{A}v(t) + p(t)\mathbf{B}v(t) + p(t)\mathbf{B}\psi_1(t) = 0, \\ v(2T) = v_{2T}, \end{cases} \begin{cases} \bar{v}(t)' + \mathbf{A}\bar{v}(t) + p(t)\mathbf{B}\psi_1(t) = 0, \\ \bar{v}(2T) = v_{2T}. \end{cases}$$
$$t \in [2T, 3T]$$



$$\begin{cases} v'(t) + \mathbf{A}v(t) + \mathbf{p}(t)\mathbf{B}v(t) + \mathbf{p}(t)\mathbf{B}\psi_1(t) = 0, \\ v(2T) = v_{2T}, \end{cases} \begin{cases} \bar{v}(t)' + \mathbf{A}\bar{v}(t) + \mathbf{p}(t)\mathbf{B}\psi_1(t) = 0, \\ \bar{v}(2T) = v_{2T}. \end{cases}$$
$$t \in [2T, 3T]$$



$$\begin{cases} v'(t) + \mathbf{A}v(t) + \mathbf{p}(t)\mathbf{B}v(t) + \mathbf{p}(t)\mathbf{B}\psi_1(t) = 0, \\ v(2T) = v_{2T}, \end{cases} \begin{cases} \bar{v}(t)' + \mathbf{A}\bar{v}(t) + \mathbf{p}(t)\mathbf{B}\psi_1(t) = 0, \\ \bar{v}(2T) = v_{2T}. \end{cases}$$
$$t \in [2T, 3T]$$



• $||v(nT)|| \le \frac{1}{K_T} (K_T ||v_0||)^{2^n}$ (8)

in every [nT, (n+1)T].

• In any time interval [nT, (n+1)T] we prove that

$$||v(t)|| \le C_T ||v(nT)||, \qquad nT \le t \le (n+1)T.$$
 (9)

• $||v(nT)|| \le \frac{1}{K_T} (K_T ||v_0||)^{2^n}$ (8)

in every [nT, (n+1)T].

• In any time interval [nT, (n+1)T] we prove that

$$||v(t)|| \le C_T ||v(nT)||, \qquad nT \le t \le (n+1)T.$$
 (9)

• Let $\theta \in (0,1)$ and $||v_0|| \leq \frac{\theta}{K\tau}$. Combining (8) and (9), we obtain

$$||u(t)-\psi_1(t)|| \leq \frac{C_T}{K_T}\theta^{2^{t/T-1}} \qquad \forall t \geq 0,$$

• $||v(nT)|| \le \frac{1}{K_T} (K_T ||v_0||)^{2^n}$ (8)

in every [nT, (n+1)T].

• In any time interval [nT, (n+1)T] we prove that

$$||v(t)|| \le C_T ||v(nT)||, \qquad nT \le t \le (n+1)T.$$
 (9)

• Let $\theta \in (0,1)$ and $||v_0|| \leq \frac{\theta}{K\tau}$. Combining (8) and (9), we obtain

$$||u(t)-\psi_1(t)|| \leq \frac{C_T}{K_T}\theta^{2^{t/T-1}} \qquad \forall t \geq 0,$$

• Let $\theta \in (0,1)$ and let $\rho > 0$ be the value for which $\theta = e^{-2\rho}$, then $\exists R_{\rho} > 0$ such that if $||u_0 - \varphi_1|| \le R_{\rho}$, then

$$||u(t) - \varphi_1|| \leq M_T e^{-\rho e^{\omega_T t}}, \forall t \geq 0.$$

with $M_T, \omega_T > 0$ suitable constants.

We introduce the operator

$$A_1 := \mathbf{A} - \lambda_1 I$$
.

Observe that $A_1:D(A_1)\subset X\to X$ is self-adjoint, accretive and $-A_1$ generates a strongly continuous analytic semigroup of contraction. Its eigenvalues are given by

$$\mu_k = \frac{\lambda_k}{\lambda_1}, \quad \forall k \in \mathbb{N}^*$$

(in particular, $\mu_1=0$) and it has the same eigenfunctions as A, $\{\varphi_k\}_{k\in\mathbb{N}^*}$. Moreover, the family $\{\mu_k\}_{k\in\mathbb{N}^*}$ satisfies the same gap condition that is satisfied by the eigenvalues of A.

We introduce $z(t) = e^{\lambda_1 t} u(t)$, then z solves

$$\begin{cases} z'(t) + A_1z(t) + p(t)Bz(t) = 0, \quad t > 0, \\ z(0) = u_0. \end{cases}$$

So, we can apply the previous analysis to this problem:

$$||z(t) - \varphi_1|| \le M_T e^{-\rho e^{\omega_T t}}, \qquad \forall t \ge 0.$$

and therefore

$$||u(t)-\psi_1(t)||=||e^{-\boldsymbol{\lambda_1}t}z(t)-e^{-\boldsymbol{\lambda_1}t}\varphi_1||=e^{-\boldsymbol{\lambda_1}t}||z(t)-\varphi_1||\leq M_Te^{-(\rho e^{\omega_T t}+\boldsymbol{\lambda_1}t)},\quad\forall t\geq 0.$$

Superexponential stabilizability \rightarrow Exact controllability

Theorem

Let $A: D(A) \to X$ be a densely defined linear operator satisfying hypothesis (3) and suppose that there exists a constant $\alpha > 0$ such that the eigenvalues of A fulfill the gap condition

$$\sqrt{\lambda_{k+1}} - \sqrt{\lambda_k} \ge \alpha, \quad \forall k \in \mathbb{N}^*.$$

Let $B : D(B) \subset X \to X$ be a linear bounded operator with the following properties:

$$\langle \mathbf{\mathcal{B}} \boldsymbol{\varphi_1}, \boldsymbol{\varphi_k} \rangle \neq 0, \qquad \forall k \in \mathbb{N}^*,$$

$$\exists \, \tau > 0 \text{ such that } \sum_{k \in \mathbb{N}^*} \frac{e^{-2\lambda_k \tau}}{|\langle \mathbf{\mathcal{B}} \boldsymbol{\varphi_1}, \boldsymbol{\varphi_k} \rangle|^2} < \infty.$$

Then, $\forall \rho > 0$, $\exists R > 0$ such that any $u_0 \in B_R(\varphi_1)$ admits a control $p \in L^2_{loc}(0, \infty)$ such that the corresponding solution $u(\cdot; u_0, p)$ of (4) satisfies

$$||u(t) - \psi_1(t)|| \le Me^{-\rho e^{\omega t} - \lambda_1 t}$$
 $\forall t \ge 0$,

where M and ω are positive constants depending only on A and B.

Exact controllability

Theorem

Let $A: D(A) \to X$ be a densely defined linear operator satisfying hypothesis (3) and suppose that there exists a constant $\alpha > 0$ such that the eigenvalues of A fulfill the gap condition

$$\sqrt{\lambda_{k+1}} - \sqrt{\lambda_k} \ge \alpha, \quad \forall k \in \mathbb{N}^*.$$

Let $B : D(B) \subset X \to X$ be a linear bounded operator with the following properties:

$$\langle oldsymbol{\mathcal{B}} oldsymbol{arphi_1}, oldsymbol{arphi_k}
angle
eq 0, \qquad orall k \in \mathbb{N}^*, \ \exists \, au > 0 \; ext{such that} \; \sum_{k \in \mathbb{N}^*} rac{e^{-2\lambda_k au}}{|\langle oldsymbol{\mathcal{B}} oldsymbol{arphi_1}, oldsymbol{arphi_k}
angle|^2} < \infty.$$

Then, $\forall \rho > 0$, $\exists R > 0$ such that any $u_0 \in B_R(\varphi_1)$ admits a control $p \in L^2_{loc}(0,\infty)$ such that the corresponding solution $u(\cdot; u_0, p)$ of (4) satisfies

$$||u(t)-\psi_1(t)|| \leq Me^{-\rho e^{\omega t}-\lambda_1 t} \qquad \forall t \geq 0,$$

where M and ω are positive constants depending only on A and B.

Exact controllability

Theorem

Let $A: D(A) \to X$ be a densely defined linear operator satisfying hypothesis (3) and suppose that there exists a constant $\alpha > 0$ such that the eigenvalues of A fulfill the gap condition

$$\sqrt{\lambda_{k+1}} - \sqrt{\lambda_k} \ge \alpha, \quad \forall k \in \mathbb{N}^*.$$

Let $B : D(B) \subset X \to X$ be a linear bounded operator with the following properties:

$$egin{aligned} \langle oldsymbol{\mathcal{B}}oldsymbol{arphi_1}, oldsymbol{arphi_k}
angle
eq 0, & orall k \in \mathbb{N}^*, \ \exists \, au > 0 \; ext{such that} \; \sum_{k \in \mathbb{N}^*} rac{e^{-2\lambda_k au}}{|\langle oldsymbol{\mathcal{B}}oldsymbol{arphi_1}, oldsymbol{arphi_k}
angle|^2} < \infty. \end{aligned}$$

Then, $\exists R > 0$ such that any $u_0 \in B_R(\varphi_1)$ admits a control $p \in L^2_{loc}(0,\infty)$ such that, for any T > 0, the corresponding solution $u(\cdot; u_0, p)$ of (4) satisfies

$$u(T; u_0, p) = \psi_1(T).$$

Let T > 0, $\Omega = [0, 1]$ and consider the bilinear control system

$$\begin{cases} u_t(t,x) - u_{xx}(t,x) + p(t)\mu(x)u(t,x) = 0, & (t,x) \in [0,T] \times \Omega \\ u(t,0) = u(t,1) = 0, \\ u(0,x) = u_0(x). \end{cases}$$

Let T > 0, $X = L^2(\Omega)$ and consider the bilinear control system

$$\begin{cases} u_t(t) + \mathbf{A}u(t) + p(t)\mathbf{B}u(t) = 0, & t \in [0, T] \\ u(0) = u_0(x). \end{cases}$$
 (10)

where \mathbf{A} and \mathbf{B} are defined by

$$D(\mathbf{A}) = H^2 \cap H_0^1(\Omega), \quad \mathbf{A}\varphi = -\frac{d^2\varphi}{dx^2}$$

$$D(\mathbf{B}) = X, \qquad \mathbf{B}\varphi = \mu\varphi.$$
(11)

Let T > 0, $X = L^2(\Omega)$ and consider the bilinear control system

$$\begin{cases} u_t(t) + \mathbf{A}u(t) + p(t)\mathbf{B}u(t) = 0, & t \in [0, T] \\ u(0) = u_0(x). \end{cases}$$
 (10)

where \mathbf{A} and \mathbf{B} are defined by

$$D(\mathbf{A}) = H^2 \cap H_0^1(\Omega), \quad \mathbf{A}\varphi = -\frac{d^2\varphi}{dx^2}$$

$$D(\mathbf{B}) = X, \qquad \mathbf{B}\varphi = \mu\varphi.$$
(11)

- A is a self-adjoint accretive operator with compact resolvent.
- eigenvalues and eigenvectors of A:

$$\lambda_{\mathbf{k}} = (k\pi)^2, \quad \varphi_{\mathbf{k}}(x) = \sqrt{2}\sin(k\pi x), \quad \forall k \in \mathbb{N}^*$$

Let T > 0, $X = L^2(\Omega)$ and consider the bilinear control system

$$\begin{cases} u_t(t) + \mathbf{A}u(t) + p(t)\mathbf{B}u(t) = 0, & t \in [0, T] \\ u(0) = u_0(x). \end{cases}$$
 (10)

where \mathbf{A} and \mathbf{B} are defined by

$$D(\mathbf{A}) = H^2 \cap H_0^1(\Omega), \quad \mathbf{A}\varphi = -\frac{d^2\varphi}{dx^2}$$

$$D(\mathbf{B}) = X, \qquad \mathbf{B}\varphi = \mu\varphi.$$
(11)

- A is a self-adjoint accretive operator with compact resolvent.
- eigenvalues and eigenvectors of A:

$$\lambda_{k} = (k\pi)^{2}, \quad \varphi_{k}(x) = \sqrt{2}\sin(k\pi x), \quad \forall k \in \mathbb{N}^{*}$$

We want to study the superexponential stabilizability of (10)-(11) to the ground state solution $\psi_1 = e^{-\lambda_1 t} \omega_1$

• gap condition:

$$\sqrt{\lambda_{k+1}} - \sqrt{\lambda_k} = (k+1)\pi - kp = \pi, \quad \forall k \in \mathbb{N}^*.$$

gap condition:

$$\sqrt{\lambda_{k+1}} - \sqrt{\lambda_k} = (k+1)\pi - kp = \pi, \quad \forall k \in \mathbb{N}^*.$$

estimate of the Fourier coefficients:

$$\langle \boldsymbol{B}\boldsymbol{\varphi_1}, \boldsymbol{\varphi_k} \rangle = \int_0^1 2\mu(x) \sin(\pi x) \sin(k\pi x) dx =$$

$$= \frac{4}{k^3} \left((-1)^{k+1} \mu'(1) - \mu'(0) \right) +$$

$$- \frac{\sqrt{2}}{(k\pi)^3} \int_0^1 (\mu(x) \boldsymbol{\varphi_1}(x))''' \cos(k\pi x) dx$$

gap condition:

$$\sqrt{\lambda_{k+1}} - \sqrt{\lambda_k} = (k+1)\pi - kp = \pi, \quad \forall k \in \mathbb{N}^*.$$

estimate of the Fourier coefficients:

$$\langle \boldsymbol{B}\boldsymbol{\varphi_1}, \boldsymbol{\varphi_k} \rangle = \int_0^1 2\mu(x) \sin(\pi x) \sin(k\pi x) dx =$$

$$= \frac{4}{k^3} \left((-1)^{k+1} \mu'(1) - \mu'(0) \right) +$$

$$- \frac{\sqrt{2}}{(k\pi)^3} \int_0^1 (\mu(x) \boldsymbol{\varphi_1}(x))''' \cos(k\pi x) dx$$

If $\langle \pmb{B} \pmb{\varphi_1}, \pmb{\varphi_k} \rangle \neq 0 \ \forall k \in \mathbb{N}^*$ and $\mu'(1) \pm \mu'(0) \neq 0$, then we have

$$|\langle \boldsymbol{B} \boldsymbol{\varphi_1}, \boldsymbol{\varphi_k} \rangle| \geq C \lambda_k^{-3/2}, \quad \forall k \in \mathbb{N}^*.$$

gap condition:

$$\sqrt{\lambda_{k+1}} - \sqrt{\lambda_k} = (k+1)\pi - kp = \pi, \quad \forall k \in \mathbb{N}^*.$$

estimate of the Fourier coefficients:

$$\langle \boldsymbol{B}\boldsymbol{\varphi_1}, \boldsymbol{\varphi_k} \rangle = \int_0^1 2\mu(x) \sin(\pi x) \sin(k\pi x) dx =$$

$$= \frac{4}{k^3} \left((-1)^{k+1} \mu'(1) - \mu'(0) \right) +$$

$$- \frac{\sqrt{2}}{(k\pi)^3} \int_0^1 (\mu(x) \boldsymbol{\varphi_1}(x))''' \cos(k\pi x) dx$$

If $\langle \mathbf{B} \varphi_1, \varphi_k \rangle \neq 0 \ \forall k \in \mathbb{N}^*$ and $\mu'(1) \pm \mu'(0) \neq 0$, then we have

$$|\langle \mathbf{B} \varphi_1, \varphi_k \rangle| \geq C \lambda_k^{-3/2}, \quad \forall k \in \mathbb{N}^*.$$

EXAMPLE:
$$\boldsymbol{B}\varphi(x) = x^2\varphi(x)$$

• the series

$$\sum_{oldsymbol{k}\in\mathbb{N}^*}rac{e^{-2oldsymbol{\lambda_{oldsymbol{k}}} au}}{|\langleoldsymbol{B}oldsymbol{arphi_1},oldsymbol{arphi_{oldsymbol{k}}}
angle|^2}$$

is finite for all $\tau > 0$.

• the series

$$\sum_{m{k}\in\mathbb{N}^*}rac{e^{-2m{\lambda_k} au}}{|\langlem{B}m{arphi_1},m{arphi_k}
angle|^2}$$

is finite for all $\tau > 0$.

Thus, system (10) is locally superexponentially stabilizable to the trajectory ψ_1 .

• the series

$$\sum_{m{k}\in\mathbb{N}^*}rac{e^{-2m{\lambda_k} au}}{|\langlem{B}m{arphi_1},m{arphi_k}
angle|^2}$$

is finite for all $\tau > 0$.

Thus, system (10) is locally superexponentially stabilizable to the trajectory ψ_1 .

Let T > 0, $\Omega = [0, 1]$, $X = L^2(\Omega)$ and consider the degenerate control system

$$\begin{cases} u_{t} - (x^{\alpha}u_{x})_{x} + p(t)x^{2-\alpha}u = 0, & (t,x) \in [0,T] \times \Omega \\ u(t,1) = 0, & u(t,0) = 0, & \text{if } \alpha \in [0,1), \\ (x^{\alpha}u_{x})(t,0) = 0, & \text{if } \alpha \in [1,2), \\ u(0,x) = u_{0}(x). & (19) \end{cases}$$

Let T > 0, $\Omega = [0,1]$, $X = L^2(\Omega)$ and consider the degenerate control system

$$\begin{cases} u_{t} - (x^{\alpha}u_{x})_{x} + p(t)x^{2-\alpha}u = 0, & (t,x) \in [0,T] \times \Omega \\ u(t,1) = 0, & u(t,0) = 0, & \text{if } \alpha \in [0,1), \\ (x^{\alpha}u_{x})(t,0) = 0, & \text{if } \alpha \in [1,2), \\ u(0,x) = u_{0}(x). & (19) \end{cases}$$

Define the quantities

$$u_{\alpha} := \frac{|1-\alpha|}{2-\alpha}, \qquad k_{\alpha} := \frac{2-\alpha}{2}.$$

Then, $A: D(A) \subset X \to X$, that is a **self-adjoint accretive** operator with **compact resolvent**, have the following eigenvalues and eigenfunctions

$$\begin{split} \boldsymbol{\lambda_{\alpha,k}} &= k_{\alpha}^2 j_{\alpha,k}^2, \\ \boldsymbol{\varphi_{\alpha,k}}(x) &= \frac{\sqrt{2k_{\alpha}}}{|J'_{\nu_{\alpha}}(j_{\nu_{\alpha},k})|} x^{(1-\alpha)/2} J_{\nu_{\alpha}} \left(j_{\nu_{\alpha},k} x^{k_{\alpha}}\right). \end{split}$$

$$\alpha \in [0,1) \Rightarrow \sqrt{\lambda_{\alpha,k+1}} - \sqrt{\lambda_{\alpha,k}} \ge \frac{7}{16}\pi, \quad \forall k \in \mathbb{N}^*,$$

• gap condition:

$$\alpha \in [1,2) \Rightarrow \sqrt{\lambda_{\alpha,k+1}} - \sqrt{\lambda_{\alpha,k}} \geq \frac{\pi}{2}, \quad \forall k \in \mathbb{N}^*.$$

$$\alpha \in [0,1) \Rightarrow \sqrt{\lambda_{\alpha,k+1}} - \sqrt{\lambda_{\alpha,k}} \ge \frac{7}{16}\pi, \quad \forall k \in \mathbb{N}^*,$$

gap condition:

$$\alpha \in [1,2) \Rightarrow \sqrt{\lambda_{\alpha,k+1}} - \sqrt{\lambda_{\alpha,k}} \geq \frac{\pi}{2}, \quad \forall k \in \mathbb{N}^*.$$

• there exists a constant C > 0 such that, for any $\alpha \in [0, 3/2)$,

$$|\langle {\color{red} {\pmb{B}}} {\color{black} {\pmb{\varphi}}}_{{\color{black} {\pmb{\alpha}}}, {\color{black} {\pmb{1}}}}, {\color{black} {\pmb{\varphi}}}_{{\color{black} {\pmb{\alpha}}}, {\color{black} {\pmb{k}}}} \rangle| \geq \frac{C}{\lambda_{{\color{black} {\pmb{\alpha}}}, {\color{black} {\pmb{k}}}}^{3/2}}, \quad \forall {\color{black} {\pmb{k}}} \in \mathbb{N}^*, \; {\color{black} {\pmb{k}}} \neq 1,$$

$$\langle \mathbf{B} \varphi_{\boldsymbol{\alpha}, \mathbf{1}}, \varphi_{\boldsymbol{\alpha}, \mathbf{1}} \rangle \neq 0$$

$$\Rightarrow \sum_{k \in \mathbb{N}^*} \frac{e^{-2\lambda_k \tau}}{|\langle \mathbf{B} \varphi_1, \varphi_k \rangle|^2} \text{ is finite for all } \tau > 0.$$

$$\alpha \in [0,1) \Rightarrow \sqrt{\lambda_{\alpha,k+1}} - \sqrt{\lambda_{\alpha,k}} \ge \frac{7}{16}\pi, \quad \forall k \in \mathbb{N}^*,$$

gap condition:

$$\alpha \in [1,2) \Rightarrow \sqrt{\lambda_{\alpha,k+1}} - \sqrt{\lambda_{\alpha,k}} \geq \frac{\pi}{2}, \quad \forall k \in \mathbb{N}^*.$$

• there exists a constant C > 0 such that, for any $\alpha \in [0, 3/2)$,

$$|\langle \mathbf{\textit{B}} \mathbf{\textit{\varphi}}_{\pmb{\alpha},\pmb{1}}, \mathbf{\textit{\varphi}}_{\pmb{\alpha},\pmb{k}} \rangle| \geq \frac{\textit{C}}{\lambda_{\pmb{\alpha},\pmb{k}}^{3/2}}, \quad \forall \textit{k} \in \mathbb{N}^*, \; \textit{k} \neq 1,$$

$$\langle \mathbf{B} \varphi_{\boldsymbol{\alpha}, \mathbf{1}}, \varphi_{\boldsymbol{\alpha}, \mathbf{1}} \rangle \neq 0$$

$$\Rightarrow \sum_{k \in \mathbb{N}^*} \frac{e^{-2\lambda_k \tau}}{|\langle \mathbf{B} \varphi_1, \varphi_k \rangle|^2} \text{ is finite for all } \tau > 0.$$

Thus, system (19) is locally superexponentially stabilizable to the trajectory $\psi_1 = e^{-\lambda_1 t} \varphi_1$.

$$\alpha \in [0,1) \Rightarrow \sqrt{\lambda_{\alpha,k+1}} - \sqrt{\lambda_{\alpha,k}} \ge \frac{7}{16}\pi, \quad \forall k \in \mathbb{N}^*,$$

gap condition:

$$\alpha \in [1,2) \Rightarrow \sqrt{\frac{\lambda_{\alpha,k+1}}{\lambda_{\alpha,k}}} - \sqrt{\frac{\lambda_{\alpha,k}}{\lambda_{\alpha,k}}} \geq \frac{\pi}{2}, \quad \forall k \in \mathbb{N}^*.$$

• there exists a constant C > 0 such that, for any $\alpha \in [0, 3/2)$,

$$|\langle \mathbf{B} \varphi_{\alpha, \mathbf{1}}, \varphi_{\alpha, \mathbf{k}} \rangle| \ge \frac{c}{\lambda_{\alpha, \mathbf{k}}^{3/2}}, \quad \forall \mathbf{k} \in \mathbb{N}^*, \ \mathbf{k} \ne 1,$$

$$\langle \mathbf{B} \varphi_{\boldsymbol{\alpha}, \mathbf{1}}, \varphi_{\boldsymbol{\alpha}, \mathbf{1}} \rangle \neq 0$$

$$\Rightarrow \sum_{k \in \mathbb{N}^*} \frac{e^{-2\lambda_k \tau}}{|\langle \boldsymbol{B} \boldsymbol{\varphi_1}, \boldsymbol{\varphi_k} \rangle|^2} \text{ is finite for all } \tau > 0.$$

Thus, system (19) is locally superexponentially stabilizable to the trajectory $\psi_1 = e^{-\lambda_1 t} \varphi_1$.

Gracias! Thank you! Grazie! Merci! Dank!

