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Motivation

Often the mathematical treatment of real life problems not only involves

1 Modelling

2 Analysis

3 Simulation

but also

1 Design

2 Optimisation

3 Parameter identification

4 Uncertainty quantification

5 Control
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Motivation

Our original motivation: multilinguism

Why, often, minority languages are used less than expected, in view of the
percentage of population that masters them?

A “politeness equilibrium” emerges as a consequence of a variety of
factors, including the fact we try not to annoy the other.
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Motivation
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Motivation

This and many other problems in social sciences require a significant
mathematical e↵ort and a variety of modelling paradigms can be
employed:

1 ODE

2 Stochastic systems of interacting particles

3 Reaction-di↵usion equations

4 Mean Field games

5 Kinetic models

6 PDEs on networks
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Allee optimal control of a system in ecology

E. Trélat, J. Zhu & E. Zuazua, M3AS, 2018

The bistable Cauchy problem:

yt � yxx = ay(1� y)(y � ✓), y(0, ·) = y0, x 2 R, t 2 R
+,

The state 0  y  1 represents the density of individuals.

Typical application : spread of invading organisms in ecology systems,
(cf. e.g. M.A. Lewis and P. Kareiva 1993).
The role of parameters a, ✓:

a > 0 : reproductive rate (a = 1 without loss of generality).
✓ 2 (0, 1) : local critical density or Allee threshold2 that determines the
sign (positive or negative) the population growth.

Other applications : population genetics (biology), propagation of
nerve tension (neurobiology), propagation waves in chemical reactors
(chemistry), etc.

2Warder Clyde Allee, 30’s
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Allee optimal control of a system in ecology

Allee e↵ect

Allee e↵ect : population growth is negative (leading to the extinction)
when the density of the population is lower than the Allee threshold ✓,
otherwise the population will reach carrying capacity.

increase ✓ by the sterile male technique, the mating disruption (pest
management technique), etc.

decrease ✓ by providing protection (e.g. e�cient feeding, suppressing
natural enemies) to the population

Typical solutions of the system :

Steady state constant solutions : y ⌘ 0 or ✓ or 1.

Traveling wave solutions : link two of the three constant solutions,
the steady state ones, through a front that propagates in space with a
constant velocity.
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Allee optimal control of a system in ecology

solution of the form
y(t, x) = U(x � ct),

U(±1) = U±, U(±1)0 = 0

where U(x) is the wave profile and c is the wave speed.

sign of the wave speed : signc = �
R 1
0 f (t)dt

Traveling wave

The profile U is independent of ✓: U(x) = e
p

a/2x

1+e
p

a/2x

The Allee parameter ✓ determines the wave speed: c =
p
a/2(2✓�1).
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Allee optimal control of a system in ecology

“La ola” / The wave
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Allee optimal control of a system in ecology

Control through known dynamical properties

For the system to be controlled or driven to the suitable state
configuration, one has to first understand what are its fundamental
dynamical properties and how they depend on the parameter ✓ to be
tuned.

We have to learn how the system responds to parameter changes be
experiencing on the manipulation of the free parameters. 34

3D.G. Aronson, H.F. Weinberger, Nonlinear di↵usion in population genetics,
combustion, and nerve pulse propagation, in PDE and Related Topics, Lecture Notes in
Math., vol. 446, Springer, Berlin, 1975, pp. 5-49.

4P.C. Fife, J.B. McLeod, The approach of solutions of nonlinear di↵usion equations
to travelling front solutions. Arch. Ration. Mech. Anal. 65 (1977) 335-361.
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Allee optimal control of a system in ecology

Invasion

✓ = 0.1 : invasion of the population
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Allee optimal control of a system in ecology

Extintion

✓ = 0.7 : extinction of the population
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Allee optimal control of a system in ecology

Attractiveness of traveling waves

Lemma

If the initial datum y0 is such that y0(x) 2 [0, 1] for every x 2 R, and

satisfies

lim
x!+1

y0(x) > ✓, lim
x!�1

y0(x) < ✓ (1)

for some x1 2 R, the solution approaches a the traveling wave

U(x � ct � x1) uniformly in x and exponentially in time for c = c(✓), i.e.,
for some positive constants K and �,

ky(t, x)� U(x � ct � x1)kL1(R) < Ke
��t .
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Allee optimal control of a system in ecology

Formulation of the control problem

5

Control problem Pc

Find ✓(t) 2 [0, 1], t 2 [0,T ] such that the solution of

yt � yxx = ay(1� y)(y � ✓(t)),

y(0, ·) = y0(·)

develops into an expected wave U(·) at the given time T , minimizing

J(✓) =
���y(T , ·)� U

���
2

.

5P. M. Cannarsa, G. Floridia, A.Y. Khapalov, Multiplicative controllability for
semilinear reaction-di↵usion equations with finitely many changes of sign, JMPA, 2017.
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Allee optimal control of a system in ecology

Control in two steps if time T is long enough for initial data satisfying:

lim
x!�1

y0(x) < lim
x!+1

y0(x).

Step 1. Choose ✓1 a suitable constant value and keep it long enough
[0,T1] until the solution approximates some traveling wave profile.

Step 2. Once the solution approaches a traveling wave profile, its location
can be tuned by a suitable choice of a second value ✓2 in the time interval
[T1,T1 + T2].
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Allee optimal control of a system in ecology

Computational optimisation: Two-grids

6

Figure: A fine time-mesh is employed to get a fine approximation of the state y .
A coarser one su�ces to approximate the control ✓.

6J. Casado-Diaz, C. Castro, M. Luna-Laynez & E. Z., Numerical approximation of a
one-dimensional elliptic optimal design problem, SIAM J. Multiscale Analysis, 2011.
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Allee optimal control of a system in ecology

Numerical experiment: Avoiding extintion
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Allee optimal control of a system in ecology

E↵ective tuning of the Allee parameter

Consider the system
@

@t
y � yxx = F (y) (2)

with y = (y1, y2)>, y1 being the density of normal couples and y2 of the
sterile ones and the vector valued reaction term F = (f1, f2)> with
f1 = ry1(1� y)(y � ✓)� uy1 and f2 = uy1 � r✓y2(1� y).

Overall:
@

@t
y � yxx = ry(1� y)(y � (✓+y2)) (3)

with y = y1 + y2.
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Allee optimal control of a system in ecology

Conclusion

The Allee parameter allows controlling the system, but quite mildly (long
time, traveling wave profiles) because of the weak e↵ect it produces into
the dynamics.

Other types of controls can be implemented as, for instance, the boundary
control. In that case the dynamics is confined in a bounded region and the
control is applied by regulating the density of population or its flux on the
boundary, which mimics the invasion of a population with specific
characteristics.

E. Zuazua (Deusto-Bilbao & UAM) Reaction-di↵usion control Benasque, August 2019 21 / 48



Allee optimal control of a system in ecology

Conclusion

The Allee parameter allows controlling the system, but quite mildly (long
time, traveling wave profiles) because of the weak e↵ect it produces into
the dynamics.

Other types of controls can be implemented as, for instance, the boundary
control. In that case the dynamics is confined in a bounded region and the
control is applied by regulating the density of population or its flux on the
boundary, which mimics the invasion of a population with specific
characteristics.
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Boundary control Problem formulation

C. Pouchol, E. Trélat, E. Zuazua. Phase plane control for 1D

monostable and bistable reaction-di↵usion equations, Nonlinearity, to

appear.

The density of individuals 0  y(t, x)  1 obeys the PDE
8
><

>:

yt � yxx = y(1� y)(y � ✓),

y(0) = y0,

y(t, 0) = u(t), y(t, L) = v(t).

with ✓ < 1/2, on the space interval x 2 (0, L). Here u, v stand for the
controls with constraints 0  u(t), v(t)  1.

For a (= 0, ✓ ou 1), we say that

The system is controllable to a in finite time if for all 0  y0  1,
there exist T , and controls u, v s.t.

y(T , ·) = a.

In infinite time when the same occurs asymptotically as t ! +1.
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Boundary control Problem formulation

Lack of obstructions: L small

The static strategy to control to 0, L small:

8
><

>:

yt � yxx = f (y),

y(0) = y0,

y(t, 0) = 0, y(t, L) = 0.

with f (y) = y(1� y)(y � ✓) with ✓ = 1
3 , y0 = 0.9, L = 7.
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Boundary control Problem formulation

Obstructions: L large (L = 11)
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Boundary control Static Strategy

Known facts (1)

The static strategy to reach a = 0, ✓, or 1 consists on keeping the
time-independent control a:

8
><

>:

yt � yxx = f (y),

y(0) = y0,

y(t, 0) = a, y(t, L) = a.

Matano’s Theorem (1978) :
y(t, ·) converges towards a steady state solution 0  w  1:

(
�wxx = f (w),

w(0) = a, w(L) = a.
(4)

w ⌘ a is a steady stae solution for a = 0, ✓ and 1. But is it the only one?
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Boundary control Static Strategy

P. L. Lions’s Theorem (1982) : There exists a threshold La such that

If L < La, w = a is the unique steady-state solution.

If L > La, there is another non-trivial steady state solution.

Conclusion

If L < La, the system is asymptotically controllable towards a.

If L > La, there is a barrier function making this impossible.

This issue is closely related to the question of whether the minimiser of the
functional

J(y) =
1

2

Z L

0
|yx |2dx �

Z L

0
F (y)dx

in H
1
0 (0, L) is the trivial one y ⌘ 0 or not.

Obviously, large L implies the first Dirichlet eigenvalue to be small, this
weakens the coercivity of the H

1
0 -norm, and facilitates the existence of

non-trivial solutions.
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Boundary control Static Strategy

Some non-trivial steady-states

E. Zuazua (Deusto-Bilbao & UAM) Reaction-di↵usion control Benasque, August 2019 28 / 48



Boundary control Static Strategy

Application
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Boundary control Static Strategy

Application
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Boundary control Static Strategy

Known facts (2)

For a = 0 and a = 1, because of the comparison principle this is the best
we can do, i.e. the control properties cannot be improved taking controls
other than the trivial one since every solution of

8
><

>:

yt � yxx = f (y),

y(0) = y0,

y(t, 0) = u(t), y(t, L) = v(t)

is such that
y(t, x) � z(t, x) > 0 over (0, L).

where 8
><

>:

zt � zxx = f (z),

z(0) = y0,

z(t, 0) = 0, z(t, L) = 0
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Boundary control Phase portrait and thresholds

Phase portrait for �w
00 = f (w)

We set F (y) :=
R y
0 f (z) dz , and suppose that F (1) � 0 (, ✓  1

2 with
f (y) = y(1� y)(y � ✓)).

E. Zuazua (Deusto-Bilbao & UAM) Reaction-di↵usion control Benasque, August 2019 32 / 48



Boundary control Phase portrait and thresholds

Case a = 1: L1 = 1

w = 1 is the only steady-state solution

0 ✓ ✓1 1

�
p

2F (1)

p
2F (1)

w

w0

Consequently, the constant control = 1 assures that the system reaches
asymptotically the equilibrium y ⌘ 1 in infinite time, and this for all L.
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Boundary control Phase portrait and thresholds

Case a = 0: L0 < 1

w = 0 is the unique steady state solution if L < L0 = L
?,

L
? = inf

�2(✓1,1)

p
2

Z �

0

dyp
F (�)� F (y)

.

0 ✓ ✓1 1

�
p

2F (1)

p
2F (1)

w

w0
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Boundary control Phase portrait and thresholds

Lack of obstructions: L small
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Boundary control Control towards ✓

Control to the politeness equilibrium ✓

Local controllability.
Classical but technically complex results on parabolic control allow
showing that initial data y0 close enough to w = ✓ can be driven to w = ✓
in any time T > 0 with solutions that oscillate very little around w = ✓,
and in particular 0  y  1.

Question

The question is whether we can get close to w = ✓ for L > L✓ with a more
complex strategy than simply taking constant controls u = v = ✓ and this
for all initial data, not necessarily close to ✓.
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Boundary control Control towards ✓

The quasi-static os staircase method

Build a path of steady states and follow it slowly, so to guarantee that
solutions oscillate very little. This imposes the time of control to be long.
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Boundary control Control towards ✓

beginframeConstruction of admissible paths

� is an invariant region in the phase plane and it is admissible.

(✓, 0) 2 �

We choose a parameterized initial data �(s) : [0, 1] ! � ⇢ R2 to fulfill
�(0) = (0, 0) and �(1) = (✓, 0). Then we solve the following problem:

✓
y

yx

◆

x

=

✓
yx

�f (y)

◆
(5)

from [0, L] for every initial datum �(s)
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Boundary control Control towards ✓

Construction of the paths in the phase portrait
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Boundary control Control towards ✓

Construction of symmetric paths

In order to create a symmetric path with respect to L/2 we can take the
initial condition in L/2 and to solve the ODE forward [L/2, L]. By
symmetry the result will be the same from [0, L/2].
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Boundary control Control towards ✓

Construction of symmetric paths
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Boundary control Control towards ✓

Note that beyond L
⇤ the non-trivial steady state solution with null

boundary data introduces a threshold in the space of solutions that makes
it impossible the control of all data. The result is optimal!
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Boundary control Control towards ✓

Beyond constraints (I)

When the nontrivial solution with 0 Dirichlet boundary appears, there
cannot be an admissible path of steady states connecting 1 and 0.

-0.2 0 0.2 0.4 0.6 0.8 1
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BUT we are always able to control to any steady state close to 1 by
employing a dynamic strategy.
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Boundary control Control towards ✓

Beyond constraints (I)
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Remark

If we admit that we can go below until �0.3 we would be able to control.
The path is not blowing up, but in general we should proof that our path
is not blowing up in finite time.
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Boundary control Numerical experiments

Experiment 2

When L✓ < L = 8 < L
⇤ the static control strategy does not work, but there

are other more complex paths to follow and that turn out to be e�cient.
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Boundary control Numerical experiments

Minimal time control in action
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Boundary control Numerical experiments

Conclusion

The optimal control strategies are not necessarily simple or intuitive. The
lanscape of the set of steady states can be complex and there might be
unexpected bridges indicating the path to follow for control.
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Perspectives

Perspectives

Significant work to be done from a modeling perspective to get closer to
real social or biological issues.

Plenty still to be done to gain understanding of these models from a
control perspective.

Extensions to multi-d and to systems raises interesting new questions
about the nature of set of steady state solutions, their stability, etc.

The great challenge of making our analysis ti be not only qualitatively
sound but quantitatively e�cient. Important modelling e↵orts are needed.
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