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|. Introduction

One-dimensional isentropic Euler equations :

» The p-system (compressible Euler equation in Lagrangian
coordinates) :
(9,57' — aXV = 0,
{ Orv + Ox(kT™7) = 0. (P)

» In original Eulerian coordinates :

6tp + axm = 0,
3tm + ax (m?z + /{p"/) =0.

where
> p=p(t,x) > 0is the density of the fluid,
» m(t,x) is the momentum (v(t,x) = ':((:XX)) is the velocity of the

fluid),
> 7:=1/pis the specific volume,

» the pressure law is p(p) = kp?, v € (1, 3].



Controllability problem

» Domain : (t,x) € [0, T] x [0, L].

> State of the system : u = (7, v).

» Control : the “boundary data” : here, on one side, say x = 0, while
there is a fixed boundary law at x = L.

» Controllability problem : given up and uy, can we find boundary data
x = 0 driving the state from ug to uy ?

» Equivalently : given ug and w7, can we find a solution of the system
satisfying the boundary condition and driving ug to uy ?



Systems of conservation laws

» Both systems enter the class of hyperbolic systems of conservation
laws :

U+ F(U)e =0, f:QCR"—R", (SCL)

satisfying the (strict) hyperbolicity condition that at each point
df has n distinct real eigenvalues A\; < --- < A,

» Hyperbolic systems of conservation laws develop singularities in
finite time.

» This easy to see for instance for the Burgers equation :

us + (%), = 0.




Class of solutions

» One can either work with regular solutions (C') with small Cl-norm
(for small time), or with discontinuous (weak) solutions.

» For the latter case, is natural for the sake of uniqueness to consider
weak solutions which satisfy entropy conditions (entropy solutions).

» More precisely, the solutions will be of bounded variation, with small

total variation in x (“a la Glimm”).

> Note that there exist weaker solutions (DiPerna,
Lions-Perthame-Souganidis-Tadmor, etc.)



Entropy conditions

Definition
An entropy/entropy flux couple for a hyperbolic system of conservation
laws (SCL) is defined as a couple of regular functions (1,q) : @ - R
satisfying :

vU € Q, Dn(U)- Df(U) = Dq(U).

Definition

A function U € L*°(0, T; BV(0, L)) N Lip(0, T; L1(0, L)) is called an
entropy solution of (SCL) when, for any entropy/entropy flux couple
(n, g), with 1 convex, one has in the sense of measures

U(U)t + CI(U)X <0,

that is, for all ¢ € D((0, T) x (0, L)) with ¢ >0,

/ (n(U(t,3))ge(t %) + a(U(E %))px (£, %)) dx dt > 0.
(0,T)x(0,L)



Boundary condition

» Our boundary condition will take the following form at x = L :
b(u(t,L)) =0 for a.e. t,

where b= b(p,v) : RT x R — R is a function satisfying some
non-degeneracy conditions (to be specified later).

» Examples :

» v =0 : zero-speed on the right boundary,
» p = : constant density (or constant pressure) at x = L.



Main result

Theorem
Let b satisfy the non-degeneracy condition.

Let Ty := (?O,Vo) € R? with To > 0 and b(Uo) =0 and let i1 = (?1,71)
with 71 > 0 and b(Ul) =0.

There exist € > 0 and T > 0 such that for any uy = (1, Vo) in
BV(0, L; R?) such that

|uo — TollLo=(0,) + TV (wo) < e,
and b(ug(L™)) =0, there is
ue L0, T; BV(0,L)) N Lip([0, T]; L*(0, L)),
a weak entropy solution of the p-system such that

Uit—o = Ug and U1 = U1.



Refined variant

Theorem
Let b satisfy the non-degeneracy condition.

Let Tg := (To, Vo) € R? with 7o > 0 and b(Up) = 0 and let 1y = (71, V1)
with 71 > 0 and b(Ul) =0.

Letn > 0. There exist e > 0 and T > 0 such that for any ug = (19, vo)
in BV(0, L; R?) such that

luo — ol (0,0) + TV (o) < e,
and b(upg(L™)) =0, there is
u e L>=(0, T; BV(0,L)) N Lip([0, T]; L*(0, L)),
a weak entropy solution of the p-system such that
Ut—o = Up and up_7 =Ty,

and
TV(u(t,-))<n, Vte(0,T).



. Two connected results

> Bressan and Coclite (2002) : for a class of systems containing Di
Perna’s system :

{ dep + Ox(pu) =0,

O + 0O (u?z + 7}(;1:07_1) =0,

there are initial conditions ¢ € BV/([0, 1]) of arbitrary small total
variation such that any entropy solution u remaining of small total
variation satisfies : for any t, u(t,-) is not constant. # C! case!

» G. (2007) : A sufficient condition concerning the isentropic Euler
equation

(E) . atp+6x(pu) =0, (P) . 0,7 — Oxv =0,
1 9e(pu) + Ox(p? + kp7) = 0, "1 Oev 4 Ox(kTY) =0,

for final states to be reachable. For instance, all constant states are
reachable.



[Il. Basic facts on systems of conservation laws

» Systems of conservations laws :
up+f(u)x=0, Ff:R"—=R",

A(u) == df(u) has n real distinct eigenvalues A; < --- < A,
which are characteristic speeds of the system with corresponding
eigenvectors r;(u).

» Genuinely non-linear fields in the sense of Lax :

VAi.ri 20 for all u.

= we normalize V)\; - r; = 1.

» In the case of (P) we have

M = VT and Ay = Ry T,



Boundary conditions

» We can now express our non-degeneracy condition on the boundary
law b: RT x R — R.

We ask that b satisfies the two following conditions :
> Standard condition for the Cauchy problem :

rn-Vb#0onQ,

» Condition for the backward in time Cauchy problem :

rn-Vb#0onQ,



The Riemann problem

» Find autosimilar solutions u = T(x/t) to

{ ur+ (F(u))x =0

Ur- = uy and ug+ = u,.

» Solved by introducing Lax’s curves which consist of points that can
be joined starting from w; either by a shock or a rarefaction wave.



Shocks and rarefaction waves

Shocks

ur ur

Discontinuities satisfying :
» Rankine-Hugoniot (jump) relations

[F(w)] =s[u],
» Lax's inequalities :

)\,’(Ur) <s < )\,'(U/)

Propagates at speed s ~ qulj by

Rarefaction waves

uy ur

Regular solutions,
obtained with integral curves of r; :

d
<5 Filo) = ri(Ri(9)),
R,(O) = uy,

with o > 0.

Propagates at speed \;(Ri(0))



Solving the Riemann problem

. 2-rarefaction

ur
Um
u

Um u u
1-shock ! r

» Lax's Theorem proves that one can solve (at least locally) the
Riemann problem by first following the 1-curve (gathering states
connected to u; by a 1-rarefaction/1-shock), then the 2-curve.



Boundary Riemann problem

1-shock uy

Curve b(u) =0

> The same principle applies on the boundary (both forward and
backward in time)



Front-tracking algorithm (Dafermos, Di Perna, Bressan,
Risebro, . ..)

» Approximate initial condition by piecewise constant functions

» Solve the Riemann problems and replace rarefaction waves by
rarefaction fans

» One obtain a piecewise constant function, with straight
discontinuities (fronts)

> iterate the process at each interaction point (points where fronts
meet)



Estimates, convergence, etc.

» One shows than this defines a piecewise constant function, with a
finite number of fronts and discrete interaction points.

» A central argument is due to Glimm : analyzing interactions of
fronts a + 8 — o/ + B’ + 7' and the evolution of the strength of
waves across an interaction, one proves that :

if TV (uo) is small enough,
then TV (u(t)) < C TV(up) for some C > 0.

» One deduces bounds in LBV, then in Lip,Ll, so we have
compactness. ..



IV. A light idea of the construction when the control acts on
both sides

» Bressan & Coclite's counterexample. DiPerna’s system is a 2 x 2
hyperbolic system with GNL fields, and which satisfies

the interaction of two shocks of the same family generates
a shock in this family (normal) and a shock in the other family.

Hence starting from an initial date with a dense set of shocks, this
propagates over time, even with control on both sides.

> A basic idea (even to control on both sides) is to use the fact that
for the p-system :

the interaction of two shocks of the same family generates a shock
in this family (normal) and a rarefaction in the other family.



Some ideas, control from both boundaries, 1

> To begin with, sends a strong (large) shock of the second family
from the boundary.

t




Some ideas, control from both boundaries, 2

» Then one sends additional 2-shocks from the boundary and one
relies on cancellations to prevent 1-shocks to cross.

t

o L

» To make the construction, use L — x as time variable.

» Since only 1-rarefactions cross and since they do not interact, the
system reaches a constant state after a finite time.



V. A light idea of the construction, one-side controls

» When one controls only from one side (say, from the left), there are
two differences :

» One has to take into account the reflections at x = L below the
strong shock. Not an issue.

» One has to take into account the reflections at x = L of the strong
shock. There are two situations, one of which changes everything.

» Situation 1. The strong 2-shock is reflected as a 1-rarefaction when
(r1 . Vb)(rg . Vb) < 0.

In this case, since this adds a rarefaction to the picture, the above
construction still works.

» Situation 2. The strong 2-shock is reflected as a 1-shock when
(r1 . Vb)(rg . Vb) > 0.

In this case, one needs an additional construction.
Example : v=0at x = L.



A reflection as a shock

» When the strong 2-shock is reflected as a 1-shock, it can then
interact with 1-rarefactions, and one does not reach a constant state.

——— 2 shock

...... 1 rarefaction

1 shock




A picture of the construction

» When there is a reflected strong shock, then the idea is to send
again more small 2-shocks from the boundary (or here more precisely
compression fronts) and rely on the reflection at x = L to cancel the
rarefactions fronts that interact with the reflected strong 1-shock.

= strong 1-shock
—— strong 2-shock

1-weak shock

or.

2-weak shock
—— 1-rarefaction fronts
—— 2-rarefaction front
rrrrr 1-compression fronts

,,,,,,, 2-compression fronts



Main difficulty

» There is no “good” direction of time to make the construction.
Whether you use t, T — t, x, L — x and so on as a time direction,
the construction depends on the future.

» Hence to reach the previous picture of the construction, we rely on a
fixed-point scheme.

» Problem : the front-tracking approach makes the scheme
discontinuous. . .



Thank you for your attention !



