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The problem

{
∂tρ+ ∂xJ = 0
∂tJ + ∂xρ = −2k(x)g(J)

x ∈ I = (0, 1), t > 0

• Initial conditions: (ρ0, J0) ∈ L∞(I)

• Boundary conditions: J(0, t) = J(1, t) = Jb ∈ R

• Damping term: k(x) ≥ 0 , k ∈ L1(I) ; g ∈ C1(R) , g(J)J ≥ 0

Relation with the semilinear wave equation:{
−ux = ρ

ut = J
⇒ ∂ttu − ∂xxu + 2k(x)g(∂tu) = 0

• Fixed string at both ends:

u(0, t) = u(1, t) = 0 ⇔ Jb = 0 ,
∫

I
ρ0(x) dx = 0 .
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Stationary equations

∂xJ = 0 , ∂xρ = −2k(x)g(J)

• Stationary solution:

J(x) = Jb , ρ(x) = −2g(J)
∫ x

0
k(y) dy + C ,

C uniquely determined by
∫

I ρ0.

• Without loss of generality:

Jb = 0 ,
∫

I
ρ0 dx = 0 , J(x) = ρ(x) = 0 ∀ x

General target
(A) to study the decay properties of the solutions as t → ∞;
(B) to provide approximations with good accuracy for large t.
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What we did... and what we do

• For the Cauchy problem...
Rigorous L1 error estimates for suitable approximations of

∂tρ+ ∂xJ = 0 , ∂tJ + ∂xρ = −2k(x)g(ρ, J)

based on Bressan-Liu-Yang functional for hyperbolic systems of conservation laws
[A. - Gosse, Springerbriefs 2015]

• ... and for the Initial-Boundary Value problem (IBVP)
– No direct approach using the BLY functional, due to the reflection of waves

at the two boundaries
– An alternative approach inspired by the probabilistic interpretation of the

damped wave equation (using matrix analysis)
; Decay in L∞ as t → ∞

[Haraux (2009): Decay in Lp, 2 ≤ p ≤ ∞, sufficiently regular data. Chitour, Marx, Prieur (2019)]
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A probabilistic interpretation of telegrapher’s equation
Goldstein, Kac (1956)

• Particles moving either to the left or to the right, speed = ±1.
Time step τ , space step δ

• α(x, t): probability that a particle at (x, t) arrived from the left,
β(x, t): probability that a particle at (x, t) arrived from the right

• λ: fixed rate of reversal, 1 − λτ > 0:

α(x, t) = (1 − λτ)α(x − δ, t − τ) + λτ β(x − δ, t − τ)

β(x, t) = (1 − λτ)β(x + δ, t − τ) + λτ α(x + δ, t − τ)

• As τ = δ → 0: a linear system

∂tα+ ∂xα = −λα+ λβ

∂tβ − ∂xβ = λα− λβ
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A probabilistic interpretation for the telegrapher’s equation

∂t(α+ β) + ∂x(α− β) = 0
∂t(α− β) + ∂x(α+ β) = −2λ(α− β)

• For v = α+ β:
∂2

t v − ∂2
x v + 2λ · (∂tv) = 0 .

Remark:
The damping term is linear.
In our case, the rate of reversal λ is not constant but depends on x and on the
solution through g′(J).
Question: Is there a counterpart of this derivation for nonlinear damping?

[Katsoulakis-Tzavaras JSP 1999]
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The ”Well Balanced” (WB) approximation

Let N ∈ 2N, ∆x = ∆t = 1/N, xj = j∆x, j = 0, . . . ,N and set

µN =

2N−1∑
j=1

(∫ xj

xj−1

k(x) dx
)
δ{xj}

Consider {
∂tρ+ ∂xJ = 0 ,
∂tJ + ∂xρ+ 2g(J)µN = 0 ,

with
• initial data (ρ∆x

0 , J∆x
0 ) piecewise constant, being constant on each cell

• boundary conditions J∆x(0, t) = J∆x(1, t) = 0.

An approximate solution (ρ∆x, J∆x)(x, t) is an exact solution to the
initial-boundary value problem above.
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Waves in the WB approximation

∆t

2∆t
σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8

x1 x2 x30 1 x

t

WB scheme, N = 4. The segments with speed 0, ±1 correspond to the location of the discontinuities.

The size of waves:

±1-waves: σ±1 = ∆J = ±∆ρ , 0-waves: δ =

∫ xj

xj−1

k(y) dy

The vector size:

σ(t) = (σ1, . . . , σ2N) (t)
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Interactions

σ+
1σ+

−1

σ−
1 σ−

−1

δ

δ

δ ∼ k(x̄)∆x ≥ 0

Wave sizes change according to:(
σ−1
σ1

)+

=

(
1 − c c

c 1 − c

)(
σ−1
σ1

)−

c ∼ g′(J)δ .

; A 2 × 2 doubly stochastic matrix if g′ ≥ 0
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The transition matrix

Let
σ(t) = (σ1, . . . , σ2N) ∈ R2N, N = (∆x)−1

be the vector of sizes of waves at time t, in increasing space order. Then for
tn = n∆t , n ≥ 1:

σ(tn+) = B(cn)σ(tn−1+)

t = tn−1

t = tn

σ1 σ2

σ2Nσ1 σ2

σ2N

∆t
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The transition matrix

Let
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(
cn

1 , . . . , cn
N−1

)
∈ RN−1 cn

j ∼ g′(Jn
j )δj

• B(c) ∈ M2N(R) is doubly stochastic. The eigenvalues λi satisfy |λi| ≤ 1.

• The coefficients cn depend on time when g is non linear, and depend on
space if k(x) is not constant.

GOAL:
Determine spectral properties of the matrices B(c)
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The transition matrix

B(c) =



0 1 0 0 · · · 0 0 0 0
c1 0 0 1 − c1 · · · 0 0 0 0

1 − c1 0 0 c1
...

...
...

...
...

...
...

...
0 0 0 0 · · · cN−1 0 0 1 − cN−1
0 0 0 0 · · · 1 − cN−1 0 0 cN−1
0 0 0 0 · · · 0 0 1 0



1

2 4

3

2k 2k+2 2k+4

2k−1 2k+1 2k+3 2N−1

2N

11 / 15



The transition matrix / Properties

• If cj · cj+1 > 0 for some j, then the eigenvalues with max. modulus are
exactly two (λ = ±1) and they are simple.

• In the special case c = c(1, . . . , 1) (k(x) = k̄ > 0, g′ constant), then

B(c) = (1 − c)B(0) + cB1

is a Birkhoff decomposition for B(c), where B(0), B1 are permutation
matrices.

• Birkhoff Theorem: A n × n matrix is doubly stochastic if and only if it is a
convex combination of (at most n!) permutation matrices.

• References on doubly stochastic matrices (books): Horn–Johnson,
Bapat–Raghavan, D.Serre
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Some plots
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Iterations of the transition matrix
• By iteration,

σ(tn+) = Bnσ(0+) , Bn=̇
[
B(n)B(n−1) · · ·B(2)B(1)

]
∈ M2N .

• Spectral radius of each B(n)=1 . The eigenspace of the eigenv. ±1 is the
same for every B(n).

Good news:
Because of the boundary conditions J(0, t) = J(1, t), the projection of σ(t) onto
the eigenspace for λ = 1 is zero. Also the one for λ = −1 is harmless.

Problem:
Estimate the second maximal modulus of the eigenvalues of B(n) and of Bn.
Two parameters, both → ∞: n and N = ∆x−1

Possible tools:

Nonhomogeneous Markov chains... Joint Spectral Radius... Matrix theory!
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An estimate for the eigenvalues
Write B(c) as a perturbation:

B(c) = B(0) + E(c)
with

∥|E(c)|∥ = max
∥v∥=1

∥E(c)v∥ = 2 max
j=1,...,N−1

cj → 0 N → ∞

A Rayleigh quotient formula

λℓ = µℓ +
y∗
ℓE(c)xℓ

y∗
ℓxℓ

+ ”O
(
∥|E(c)∥|2

)
” , µℓ = e iπℓ

N

where xℓ,yℓ ∈ C2N are resp. the right and left eigenvector associated to µℓ

Lemma:
If k(x) ≥ k̄ · χ(α,β) with k̄ > 0 and if inf g′ > 0, then there exists C = C(α, β) > 0
such that for every µℓ ̸= ±1 and N large enough one has∣∣∣∣µℓ +

y∗
ℓE(c)xℓ

y∗
ℓxℓ

∣∣∣∣ ≤ 1 − k̄(inf g′)
N C .
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�� ��end of part I

. . . To be continued . . .
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