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Mean Field Games

A quote from Wikipedia

Mean field game theory is the study of strategic decision
making in very large populations of small interacting agents.
This class of problems was considered in the economics
literature by B Jovanovic and RW Rosenthal, in the
engineering literature by PE Caines and his co-workers, and
independently and around the same time by mathematicians
J-M Lasry and P-L Lions

Figure: Jovanovic, Rosenthal, Caines, Lasry, and Lions
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Mean Field Games

Motivations for studying MFG

Goal

To describe Nash equilibria in the collective behaviour of a large population of “small”
rational agents

large population infinite number (a continuum) of players

rational agents each agent is controlling his/her dynamical own state

Figure: MFG impact: finance, crowd dynamics, smart grids
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Mean Field Games

Lasry-Lions 1: the Hamilton-Jacobi equation
Main idea: to export the principle of statistical mechanics to interactions within rational
particles by introducing a macroscopic description through a mean field model

agents are identified with points x ∈ Ω ⊂ Rn

m(t , dx) is the distribution of agents at time t
Agent located in x ∈ Ω at time t ∈ [0,T ] chooses a path γt,x (s), s ∈ [t ,T ], such that

u(t , x) := min
γ(t)=x

{∫ T

t

[
L(γ(s), γ̇(s)) + F (γ(s),m(s))

]
ds + G(γ(T ),m(T ))

}
The value function u(t , x) satisfies the
associated Hamilton-Jacobi equation{
−∂tu + H(x ,∇u) = F (x ,m) [0,T ]× Ω

u(T , x) = G(x ,m(T ))

where
H(x , p) := supv∈Rn

{
− 〈p, v〉 − L(x , v)

}
met ↳ ✓

. CIRCTD

⇒
⇐ ⇒

fma.am
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Mean Field Games

Lasry-Lions 2: the continuity equation
The space gradient ∇u(t , x) of the solution to the Hamilton-Jacobi equation gives the
optimal feedback γt,x via the system

γ′(s) = −∂pH(γ(s),∇u(s, γ(s))) (s ∈ [t ,T ])

for the minimization problem

min
γ(t)=x

{∫ T

t

[
L(γ(s), γ̇(s)) + F (γ(s),m(s))

]
ds + G(γ(T ),m(T ))

}
Since m(·, dx) is just m0(dx) transported
by such a flow, the continuity equation{
∂tm − div(m ∂pH(x ,∇u)) = 0 [0,T ]× Ω

m(0, dx) = m0(dx)

must be satisfied

mctda, }
. CIRCTD

Grass (
(taxi ← mltdn )

Figure: default
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Mean Field Games

Lasry-Lions 3: the MFG system

By coupling the Hamilton-Jacobi equation with the continuity equation above, one
obtains the PDE system of Mean Filed Games−∂tu + H(x ,∇u)− F (x ,m) = 0

∂tm − div(m ∂pH(x ,∇u)) = 0
]0,T [×Ω

u(T , x) = G(x ,m(T ))

m(0, dx) = m0(dx)
(MFG)

In the last decade, system (MFG) has been widely investigated for two main kinds od
space domains

Ω = Tn, Rn

main contributions by: Achdou, Bardi, Bensoussan, Camilli, Capuzzo Docetta,
Cardaliaguet, Carmona, Delarue, Gomes, Guéant, Lachapelle, Porretta, . . .

P. Cannarsa (Rome Tor Vergata) first order mean field games 20/08/2019 7 / 43



Mean Field Games

Lasry-Lions 3: the MFG system

By coupling the Hamilton-Jacobi equation with the continuity equation above, one
obtains the PDE system of Mean Filed Games−∂tu + H(x ,∇u)− F (x ,m) = 0

∂tm − div(m ∂pH(x ,∇u)) = 0
]0,T [×Ω

u(T , x) = G(x ,m(T ))

m(0, dx) = m0(dx)
(MFG)

In the last decade, system (MFG) has been widely investigated for two main kinds od
space domains

Ω = Tn, Rn

main contributions by: Achdou, Bardi, Bensoussan, Camilli, Capuzzo Docetta,
Cardaliaguet, Carmona, Delarue, Gomes, Guéant, Lachapelle, Porretta, . . .
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Mean Field Games

Solution of the MFG system

Reference: notes on Mean Field Games
by P. Cardaliaguet, 2013 and 2015

by vanishing viscosity{
−∂tu − ε∆u + H(x ,∇u) = F (x ,m)

∂tm − ε∆m − div(m ∂pH(x ,∇uµ)) = 0

by a fixed point argument

µ −→ uµ

−∂tu + H(x ,∇u) = F (x , µ)

u(T , x) = G(x , µ(T ))
−→ mµ

{
∂tm − div(m ∂pH(x ,∇uµ)) = 0
m(0, dx) = m0(x)dx

Very important facts:
although nonsmooth, u is linearly semiconcave, which ensures a nice behaviour
along minimizers
if m0 is absolutely continuous with respect to the Lebesgue measure, then m(t , ·)
stays absolutely continuous
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Mean Field Games

Does all this break down under state constraints?

Our goal To study MFG problems with state constraints: x ∈ Ω

Difficulty
Agent distribution may concentrate

on small sets

Then the above methods break down
sptlmly

*
: . sptcmg

.

d

P. Cannarsa (Rome Tor Vergata) first order mean field games 20/08/2019 9 / 43



MFG with state constraints Lagrangian approach
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MFG with state constraints Lagrangian approach

A change of paradigm

Ω ⊂ Rn bounded domain with boundary of class C2

P(Ω) Borel probability measures on Ω with Katorovich-Rubinstein distance

d1(m1,m2) = sup
{∫

Ω

f dm1 −
∫

Ω

f dm2 :
∣∣f (x)− f (y)| 6 |x − y |

}
Recall that, given m ∈ C

(
[0,T ];P(Ω)

)
, agents aim to attain

min
γ(0)=x,γ(t)∈Ω

{∫ T

0

[
L(γ(t), γ̇(t)) + F (γ(t),m(t))

]
dt + G(γ(T ),m(T ))

}
but m cannot be fixed a priori as it evolves along optimal feedback
Main idea to overcome such a difficulty:

to replace m ∈ C
(
[0,T ];P(Ω)

)
by a probability measure on the metric space C

(
[0,T ]; Ω

)
that is C

(
[0,T ];P(Ω)

)
←→ P

(
C([0,T ]; Ω)

)
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MFG with state constraints Lagrangian approach

Lagrangian approach

References

Brenier (1999), Benamou – Brenier (2000), Benamou – Carlier (2015), Benamou –
Carlier – Santambrogio (2017)
Cardaliaguet (2015), Cardaliaguet – Mészáros – Santambrogio (2017)
C – Capuani (2018)
C – Capuani – Cardaliaguet (2018), C – Capuani – Cardaliaguet (2019)

Notation

constrained arcs

Γ =
{
γ ∈ AC([0,T ];Rn) : γ(t) ∈ Ω , ∀t ∈ [0,T ]

}
with ‖ · ‖∞

Γ[x ] =
{
γ ∈ Γ : γ(0) = x

}
(x ∈ Ω)

P(Γ) Borel probability measures on Γ: metric space with d1 metric

d1(µ1, µ2) = sup
{∫

Γ

f dµ1 −
∫

Γ

f dµ2 :
∣∣f (γ)− f (ξ)| 6 ‖γ − ξ‖∞

}
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MFG with state constraints Lagrangian approach

Relaxed MFG functional
The evaluation map et : Γ→ Ω (t ∈ [0,T ]) is defined by et (γ) = γ(t)

Push-forward

With any µ ∈ P(Γ) and t ∈ [0,T ] one can associate the probability measure et]µ on Ω
given by ∫

Ω

f (x) et]µ(dx) =

∫
Γ

f (γ(t))µ(dγ) ∀f ∈ C(Ω)

et]µ is the push-forward of µ by et

For any µ ∈ P(Γ) we define

the associated payoff functional

Jµ[γ] =

∫ T

0

[
L(γ(t), γ̇(t)) + F (γ(t), et]µ)

]
dt + G(γ(T ), eT ]µ) ∀γ ∈ Γ

the family of minimizing arcs for Jµ at x ∈ Ω

Γµ[x ] =
{
γ ∈ Γ[x ] : Jµ[γ] = min

Γ[x ]
Jµ
}
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MFG with state constraints Lagrangian approach

Relaxed equilibria

A Borel probability measure µ ∈ P(Γ) is compatible with m0 ∈ P(Ω) if

e0]η = m0

Denote by Pm0 (Γ) the subspace consisting of all such measures

Definition

µ ∈ Pm0 (Γ) is called a relaxed (CMFG) equilibrium for m0 if

spt(µ) ⊆
⋃
x∈Ω

Γµ[x ]

Equivalently,
Jµ[γ] = min

γ∈Γ[γ(0)]
Jµ[γ] for µ−a.e. γ ∈ Γ

where

Jµ[γ] =

∫ T

0

[
L(γ(t), γ̇(t)) + F (γ(t), et]µ)

]
dt + G(γ(T ), eT ]µ)
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MFG with state constraints Lagrangian approach

Relaxed solutions

Let m0 ∈ P(Ω)

Definition

(u,m) ∈ C([0,T ]× Ω)× C
(
[0,T ];P(Ω)

)
is a relaxed solution to the CMFG problem if

m(t) = et]µ ∀t ∈ [0,T ]

for some relaxed equilibrium µ ∈ Pm0 (Γ) and

u(t , x) = min
γ∈Γ,γ(t)=x

{∫ T

t

[
L(γ(s), γ̇(s)) + F (γ(s),m(s))

]
dt + G(γ(T ),m(T ))

}
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MFG with state constraints Existence and uniqueness
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MFG with state constraints Existence and uniqueness

Existence of relaxed equilibria and solutions

Theorem

For any m0 ∈ P(Ω) there is at least one relaxed equilibrium

Corollary

For any m0 ∈ P(Ω) there is at least one relaxed solution (u,m) to the CMFG problem

P. Cannarsa (Rome Tor Vergata) first order mean field games 20/08/2019 17 / 43



MFG with state constraints Existence and uniqueness

Existence of relaxed equilibria and solutions

Theorem

For any m0 ∈ P(Ω) there is at least one relaxed equilibrium

Corollary

For any m0 ∈ P(Ω) there is at least one relaxed solution (u,m) to the CMFG problem

P. Cannarsa (Rome Tor Vergata) first order mean field games 20/08/2019 17 / 43



MFG with state constraints Existence and uniqueness

Proof

Kakutani’s fixed-point theorem

S 6= ∅ compact convex subset of a locally convex Hausdorff space

φ : S ⇒ S nonempty convex-valued with closed graph

=⇒ φ has a fixed point.

Proof of theorem: construction of a fixed point of E : Pm0 (Γ)⇒ Pm0 (Γ)

E(η) =
{
µ ∈ Pm0 (Γ) | spt(µx ) ⊆ Γη[x ] for m0−a.e. x ∈ Ω

}
(η ∈ Pm0 (Γ))

where {µx}x∈Ω ⊂ P(Γ) is the family of probability measures which disintegrates µ

µ =

∫
Ω

µx dm0(x) and spt(µx ) ⊆ Γ[x ] m0 − a.e. x ∈ Ω

Indeed
η ∈ Pm0 (Γ) relaxed equilibrium ⇐⇒ η ∈ E(η)

The existence of a fixed point of E follows from Kakutani’s Theorem
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E(η) =
{
µ ∈ Pm0 (Γ) | spt(µx ) ⊆ Γη[x ] for m0−a.e. x ∈ Ω

}
(η ∈ Pm0 (Γ))

where {µx}x∈Ω ⊂ P(Γ) is the family of probability measures which disintegrates µ

µ =

∫
Ω

µx dm0(x) and spt(µx ) ⊆ Γ[x ] m0 − a.e. x ∈ Ω

Indeed
η ∈ Pm0 (Γ) relaxed equilibrium ⇐⇒ η ∈ E(η)

The existence of a fixed point of E follows from Kakutani’s Theorem
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MFG with state constraints Existence and uniqueness

Uniqueness

Theorem

Assume monotonicity conditions: for any m1,m2 ∈ P(Ω)
∫

Ω

(G(x ,m1)−G(x ,m2))d(m1 −m2)(x) > 0∫
Ω

(F (x ,m1)− F (x ,m2))d(m1 −m2)(x) > 0 if m1 6= m2

If (u1,m1) and (u2,m2) are relaxed solutions to the CMFG problem, then

u1 ≡ u2 and m1 = m2

F satisfies the strict monotonicity condition if F : Ω× P(Ω)→ R is of the form

F (x ,m) =

∫
Ω

f
(
y , (φ ?m)(y)

)
φ(x − y) dy

where φ : Rd → R is a smooth even kernel with compact support and

f : Ω× R→ R is smooth and f (x , ·) is strictly increasing
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MFG with state constraints Regularity

Outline

1 Introduction to Mean Field Games

2 Mean Field Games with state constraints
The Lagrangian approach
Existence and uniqueness of relaxed equilibria
Regularity of relaxed solutions to constrained MFG
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MFG with state constraints Regularity

More notation and assumptions

Recall Ω ⊂ Rn is bounded with ∂Ω ∈ C2. Consequently

distance dΩ(x) = miny∈Ω |x − y |

of class C2(Ω+
δ

)
for some δ > 0 with Ω+

δ =
{

x ∈ Rn \ Ω : dΩ(x) < δ
}

oriented boundary distance bΩ(x) = dΩ(x)− dRn\Ω(x)

of class C2(Ωδ) on Ωδ =
{

x ∈ Rn : |bΩ(x)| < δ
}

Ω
dΩ

bΩ

P. Cannarsa (Rome Tor Vergata) first order mean field games 20/08/2019 21 / 43



MFG with state constraints Regularity

References

Dubovitskii – Milyutin (1964)

Malanowski (1978)

Hager (1979)

Vinter (2000)

Galbraith – Vinter (2003)

Frankowska (2006, 2009)

Bettiol – Frankowska (2007, 2008)

Bettiol – Khalil – Vinter (2016)

P. Cannarsa (Rome Tor Vergata) first order mean field games 20/08/2019 22 / 43



MFG with state constraints Regularity

Necessary conditions for smooth state constraints

Theorem

Given x ∈ Ω let γ∗ minimize over Γ[x ] the functional

γ 7→
∫ T

0

[
L(γ(s), γ̇(s)) + f (s, γ(s))

]
dt + g(γ(T ))

where g ∈ C1(Ω) and f : [0,T ]× Ω→ R satisfies |ft |+ |∇f | ≤ C

Then there exist

p∗ : [0,T ]→ Rn Lipschitz

ν ∈ R and Λ ∈ Cb
(
[0,T ]× Ωδ × Rn) (independent of γ∗, p∗)

such that (I∂Ω = characteristic function of ∂Ω)
γ̇∗ = −∂pH

(
γ∗, p∗

)
ṗ∗ = ∇H

(
γ∗, p∗

)
−∇f

(
t , γ∗

)
− Λ(t , γ∗, p∗) I∂Ω

(
γ∗
)
∇bΩ

(
γ∗
)

p∗(T ) = ∇g
(
γ∗(T )

)
+ ν I∂Ω

(
γ∗(T )

)
∇bΩ

(
γ∗(T )

) ∀t ∈ [0,T ]

Consequently, γ∗ ∈ C1
Lip

(
[0,T ];Rn) and ‖γ̇∗‖Lip 6 C(Ω,H, f , g)
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MFG with state constraints Regularity

Existence of Lipschitz solutions

Theorem

Let m0 ∈ P(Ω) and suppose

|F (x1,m1)− F (x2,m2)|+ |G(x1,m1)−G(x2,m2)| 6 C
(
|x1 − x2|+ d1(m1,m2)

)
Then there exists at least one relaxed solution of CMFG problem (u,m) such that

u ∈ Lip
(
[0,T ]× Ω

)
and m ∈ Lip

(
[0,T ];P(Ω)

)
Such a solution will be called a Lipschitz relaxed solution of the CMFG problem

The proof applies necessary conditions to construct a relaxed CMFG equilibrium

η ∈ Pm0 (Γ) such that m(t) := et]η belongs to Lip
(
[0,T ];P(Ω)

)
and uses the Lipschitz continuity of m to deduce that u ∈ Lip

(
[0,T ]× Ω

)
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MFG with state constraints Regularity

A quick look at semiconcave functions

Ω ⊆ Rn open
v : Ω→ R semiconcave with modulus ω : [0,∞[→ [0,∞[ if

λv(x) + (1− λ)v(y)− v
(
λx + (1− λ)y

)
6 λ(1− λ)|x − y |ω

(
|x − y |

)
for all x , y such that [x , y ] ⊂ Ω and λ ∈ [0, 1]

Special cases:

ω(s) ≡ 0 −→ concave

ω(s) = Cs (C > 0) −→ linearly semiconcave
In this case

x 7→ v(x)− C
2
|x |2 (?)

is concave on all convex subsets of Ω

ω(s) = Csα (C > 0, 0 < α < 1) −→ fractionally semiconcave
In this case, (?) is no longer valid
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MFG with state constraints Regularity

Some references on semiconcave functions

control theory and sensitivity analysis
Hrustalev 1978, C – Frankowska 1991
Fleming – McEneaney 2000
Rifford 2000, 2002

nonsmooth and variational analysis
Rockafellar 1982
Colombo – Marigonda 2006, Colombo – Nguyen 2010

differential geometry
Perelman 1995, Petrunin 2007

monographs
C – Sinestrari (Birkhäuser 2004)
Villani (Springer 2009)
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MFG with state constraints Regularity

Semiconcavity & nonsmooth analysis

For any semiconcave v : Ω→ R

the superdifferential at x ∈ Ω coincides with Clarke’s gradient

D+v(x) = co D∗v(x) = ∂v(x)

where D∗v(x) =
{

limi→∞ Dv(xi )
∣∣ xi → x

}
reachable gradients

D+v(x) = {p} ⇐⇒ v differentiable
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MFG with state constraints Regularity

Semiconcavity of relaxed Lipschitz solution

Theorem

Any Lipschitz relaxed solution (u,m) of CMFG problem is locally semiconcave on
[0,T [×Ω with a fractional modulus:

∀ρ ∈]0,T [ there exists Cρ ≥ 0 such that

u(t + τ, x + h) + u(t − τ, x − h)− 2u(t , x) 6 Cρ(|τ |+ |h|)3/2

for all t , t ± τ ∈ [0,T − ρ] and x , x ± h ∈ Ω

Several proofs of the above result can be given
An interesting method of proof uses sensitivity relations that we discuss next
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MFG with state constraints Regularity

Adjoint state inclusion / sensitivity relations

Given

a Lipschitz relaxed solution (u,m) of the CMFG problem

(t , x) ∈ [0,T [×Ω and a solution γ∗ ∈ Γ to

min
γ∈Γ,γ(t)=x

{∫ T

t

[
L(γ(s), γ̇(s)) + F (γ(s),m(s))

]
dt + G(γ(T ),m(T ))

}
the adjoint state p∗ : [t ,T ]→ Rn associated with γ∗

we have that(
H(γ∗(s), p∗(s))− F (γ∗(s),m(s)) , p∗(s)

)
∈ D+u

(
s, γ∗(s)

)
∀s ∈ [t ,T [

and ∀ρ ∈]0,T [ there exists Cρ > 0 such that ∀ t , t + τ ∈ [0,T − ρ] and all x + h ∈ Ω

u(t + τ, x + h)− u(t , x)− τ
(
H(x , p∗(t))− F (x ,m(t))

)
− 〈p∗(t), h〉

6 Cρ(|τ |+ |h|)3/2
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MFG with state constraints Regularity

Proof of sensitivity relation for τ = 0

We want to show that ∀ t ∈ [0,T − ρ] and all x + h ∈ Ω

u(t , x + h)− u(t , x)− 〈p(t), h〉 6 Cρ|h|3/2

Let 0 < σ 6 ρ to be fixed later and define for all s ∈ [t ,T ]

γh(s) = γ∗(s) +
(

1 +
t − s
σ

)
+

h

Ω

γ∗

x
x + h

γ∗ + h γh

γ̂h(s) = γh(s)− dΩ

(
γh(s)

)
Dd∂Ω

(
γh(s)

)
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MFG with state constraints Regularity

Proof of sensitivity relation (continued)
By dynamic programming

u(t , x + h)− u(t , x)− 〈p(t), h〉 6
∫ t+σ

t

[
L(γ̂h, ˙̂γh)− L(γ∗, γ̇∗)

]
ds

+

∫ t+σ

t

[
F (γ̂h,m)− F (γ∗,m)

]
ds − 〈p(t), h〉 (1)

We want to express 〈p(t), h〉 so we expand

−〈p(t), h〉 = −〈p(t + σ), γ̂h(t + σ)− γ∗(t + σ)︸ ︷︷ ︸
=0

〉+

∫ t+σ

t

d
ds
〈p, γ̂h − γ∗〉 ds

=

∫ t+σ

t
〈ṗ, γ̂h − γ∗〉 ds +

∫ t+σ

t
〈p, ˙̂γh − γ̇

∗〉 ds

By appealing to PMP to represent 〈ṗ, γ̂h − γ∗〉 and 〈p, ˙̂γh − γ̇∗〉 we obtain

u(t , x + h)− u(t , x)− 〈p(t), h〉 6 . . .

6 C
∫ t+σ

t
|γ̂h − γ∗|2 ds + C

∫ t+σ

t
| ˙̂γh − γ̇∗|

2 ds + C
∫ t+σ

t
|γ̂h − γ∗| ds
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MFG with state constraints Regularity

Proof of sensitivity relation (completed)

Recalling γh(s) = γ∗(s) +
(

1 + t−s
σ

)
+

h

γ̂h(s) = γh(s)− dΩ

(
γh(s)

)
Dd∂Ω

(
γh(s)

)
we have that

|γ̂h(s)− γ∗(s)| ≤ 2|h| ∀s ∈ [t , t + σ]

Using the regularity of the distance functions one can also prove (technical)∫ t+σ

t
| ˙̂γh(s)− γ̇∗(s)|2 ds 6 C

|h|2

σ
+ C|h|σ

Therefore

u(t , x + h)− u(t , x)− 〈p(t), h〉 6 C|h|
( |h|
σ

+ σ
)
6 2C|h|3/2

by taking σ = |h|1/2
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MFG with state constraints Point-wise properties

Point-wise solutions of the HJ equation
Given a Lipschitz relaxed solution (u,m) to CMFG problem, we have that

(I) u is a constrained viscosity solution of{
−∂tu + H(x ,∇u) = F (x ,m) in ]0,T [×Ω

u(T , x) = G(x ,m(T )) ∀x ∈ Ω

Moreover, defining

Qm =
{

(t , x) ∈]0,T [×Ω : x ∈ spt
(
m(t)

)}
∂Qm =

{
(t , x) ∈]0,T [×∂Ω : x ∈ spt

(
m(t)

)}
the following holds true

(II) u is differentiable on Qm and −∂tu + H(x ,∇u) = F (x ,m) on Qm

(III) u has
time derivative, one-sided normal derivative, and tangential gradient on ∂Qm

(IV) the tangential gradient ∇τu satisfies

−∂tu + Hτ (x ,∇τx u) = F (x ,m) on ∂Qm

where Hτ (x , p) = sup
{
− 〈p, v〉 − L(x , v) | 〈v , ν(x)〉 = 0

}
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(III) u has
time derivative, one-sided normal derivative, and tangential gradient on ∂Qm

(IV) the tangential gradient ∇τu satisfies

−∂tu + Hτ (x ,∇τx u) = F (x ,m) on ∂Qm

where Hτ (x , p) = sup
{
− 〈p, v〉 − L(x , v) | 〈v , ν(x)〉 = 0

}
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MFG with state constraints Point-wise properties

Analysis of the continuity equation

Given a Lipschitz relaxed solution (u,m) to CMFG problem, we have that

(I) there exists a bounded continuous vector field V :]0,T ]× Ω→ Rn such that m
satisfies the continuity equation

∂tm + div(mV ) = 0 in ]0,T [×Ω

in the sense of distributions: ∀φ ∈ C1
c
(
]0,T [×Ω

)
∫ T

0

∫
Ω

(
φt + 〈V ,∇φ〉

)
dm(t , dx)dt = 0

(II) V is given by the optimal feedback on Qm, that is,

V (t , x) =

{
−∂pH

(
x ,∇u(t , x)

)
∀(t , x) ∈ Qm

−∂pH
(
x ,∇τx u(t , x) + ∂+

νi
u(t , x)νi (x)

)
∀(t , x) ∈ ∂Qm
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MFG with state constraints Point-wise properties

Proof

Consider the continuous map Vm : Qm ∪ ∂Qm → Rn

Vm(t , x) =

{
−∂pH

(
x ,∇u(t , x)

)
∀(t , x) ∈ Qm

−∂pH
(
x ,∇τx u(t , x) + ∂+

νi
u(t , x)νi (x)

)
∀(t , x) ∈ ∂Qm

and extend it to a continuous vector field V :]0,T [×Ω→ Rn by Tietze theorem
Let η be a constrained equilibrium associated with (u,m): then

(t , γ(t)) ∈ Qm ∪ ∂Qm and γ̇(t) = V (t , γ(t)) ∀t ∈]0,T [

for η-a.e. γ ∈ Γ

So, ∀φ ∈ C1
c
(
]0,T [×Ω

)
we use the change of variables m(t) = et]η to compute

d
dt

∫
Ω

φ(t , x)m(t , dx) =
d
dt

∫
Γ

φ(t , γ(t)))η(dγ)

=

∫
Γ

(∂tφ(t , γ(t)) + 〈Dφ(t , γ(t)), γ̇(t)︸︷︷︸
=V (t,γ(t))

〉)η(dγ)

=

∫
Ω

(∂tφ(t , x) + 〈Dφ(t , x),V (t , x)〉m(t , dx)
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Conclusions

Conclusions
We have shown how to recover a fairly complete theory for the

existence and uniqueness
regularity
pointwise behaviour

of solutions to constrained MFG systems

This opens the way to the study of at least two main problems
Since constrained equilibria may develop singular parts (Dirac masses) induced
by the presence of state constraints, are such singularities stable or do they
disappear if constraints become inactive?
How to describe the behaviour of the solution (uT ,mT ) of the constrained Mean
Field Games system

−∂tuT (t , x) + H(x ,∇x uT (t , x)) = F (x ,mT (t)), in ]0,T [×Ω

∂tmT (t)− div
(

mT (t)DpH(x ,∇x uT (t , x))
)

= 0, in ]0,T [×Ω

uT (T , x) = uf (x), mT (0) = m0, in Ω.

(CMFG)

as T → +∞?
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Outline

1 Introduction to Mean Field Games

2 Mean Field Games with state constraints
The Lagrangian approach
Existence and uniqueness of relaxed equilibria
Regularity of relaxed solutions to constrained MFG
Point-wise properties of relaxed solutions

3 Concluding remarks
Asymptotic behaviour
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Asymptotic behaviour: the unconstrained case

References

(i) P. Cardaliaguet (2013) on Tn

(ii) joint work with W. Cheng, C. Mendico, and K. Wang (2019) in Rn

under the following assumptions
(F1) There is a constant C > 0 such that for every m1, m2 ∈ P1(Rn),∫

Rn
(F (x ,m1)− F (x ,m2))d(m1 −m2) > C

∫
Rn

(F (x ,m1)− F (x ,m2))2 dx

(F2) There exist a compact set K0 ⊂ Rn and a constant δ0 > 0 such that

min
x∈K0

{
L(x , 0) + F (x ,m)

}
6 inf

x∈Rn\K0

{
L(x , 0) + F (x ,m)

}
− δ0, ∀m ∈ P1(Rn)
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Conclusions Asymptotic behaviour

Ergodic Mean Field Games system

The limit behaviour of solutions is captured by

Ergodic Mean Field Games (EMFG) system
H(x ,Du(x)) = cH(m) + F (x ,m) in Rn

div
(

m∇p H(x ,Du(x))
)

= 0 in Rn∫
Rn m(dx) = 1

where Mañé’s critical value cH(m) is defined by

cH(m) := inf
{

c ∈ R : ∃u ∈ C(Rn) viscosity solution of H(x ,Du) = c + F (x ,m)
}

see A. Fathi, ”Weak KAM Theorem in Lagrangian dynamics”
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Conclusions Asymptotic behaviour

Solution of (EMFG)


H(x ,Du(x)) = cH(m) + F (x ,m), in Rn

div
(

m∇p H(x ,Du(x))
)

= 0, in Rn∫
Rn m(dx) = 1.

(EMFG)

Theorem (existence of solutions – uniqueness of critical values)

(i) There exists at least one solution
(
u,m, cH(m)

)
of system EMFG

(ii) Let
(
u1,m1, cH(m1)

)
,
(
u2,m2, cH(m2)

)
solve (EMFG). Then,

cH(m1) = cH(m2) and F (x ,m1) = F (x ,m2), ∀x ∈ Rn
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Convergence of MFG solution

Theorem

Let
(
u,m, cH(m)

)
be any solution of

H(x ,Du(x)) = cH(m) + F (x ,m), in Rn

div
(

m∇p H(x ,Du(x))
)

= 0, in Rn∫
Rn m(dx) = 1.

(EMFG)

Then, for any sufficiently large R > 0 there exists a constant C(R) > 0 such that for
every T ≥ 1 the solution (uT ,mT ) of the MFG system satisfies

sup
t∈[0,T ]

∥∥uT (t , ·)− cH(m)(t − T )
∥∥
∞,BR

T
≤ C(R)

T
1

n+2
, (2)

1
T

∫ T

0

∥∥F (·,mT (s))− F (·,m)
∥∥
∞,BR

ds ≤ C(R)

T
1

n+2
. (3)
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Thank you for your attention!

Figure: Rational agents at work, Benasque 2019
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