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Motivation

A Basic MPC algorithm

Solve OCP

Usually 7 < T < 00
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Motivation

Turnpike Property

B Optimal solutions stay close to an optimal equilibrium for the majority
of the time interval

—— Solution of the OCP
........ turnpike

t

|
o

t=T

—
Implemented as MPC-feedback
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OCP has turnpike property = MPC-closed loop approximately optimal on
infinite horizon (Griine '13, Griine/Stieler '14, Griine/Pirkelmann '18)

When does the turnpike property hold?

B strict dissipativity = Turnpike (Carlson et al. '91, Griine '13,
Griine/Stieler /Pirkelmann '18)

B Turnpike + Controllability = str. dissipativity (Griine/Miiller '16)
B System stabilizable: Turnpike <= Detectability (Griine/Guglielmi

'18)
B Stabilizability and Detectability = Turnpike for OC of PDEs (Trélat,
Zhang, Zuazua, Poretta, Gugat, Zamorano, Breiten et al. ... '13—'19)
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Turnpike analysis for general evolution equations
Setting

Spaces.
B X Hilbert space with norm || - ||
m L,(0,T:X), 1 < p < oo with norm [Jyl|, x) = (fy Ily(0)|”de)'/”
® C(0,7; X) with norm max;¢(o 7y [|z(t)]|
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Turnpike analysis for general evolution equations

Setting

Spaces.

B X Hilbert space with norm || - ||

. T
W L,(0,T;X), 1 <p < oo with norm [ly[|.,x) = (fy ly(®)|[7dt)'/
® C(0,7; X) with norm max;¢(o 7y [|z(t)]|

Dynamics.

For yo € X, f € L1(0,T; X) we consider the dynamics

y(t) = Ay(t) + Bu(t) + f fort >0,  y(0)=1yo
with

B A:D(A) C X — X generator of Cy-semigroup (T'(t)):>0
B B admissible control operator for (T'(t))i>0

Manuel Schaller Turnpike and MPC



Turnpike analysis for general evolution equations

Example: Boundary control of wave equation

Q C R"™ bounded C2-domain.

d*w
W—Aw on Q x (0,7)
w =70 on 90\ T x (0,7)
w=u onI'x (0,7)
w(z,0) = f(x), a—w(al;,O) = g(z) r €,

ot
where f € Ly(Q),g € HY(Q) and u € L3(0,T; La(T)).
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w(z,0) = f(x), a—w(aﬁ,O) = g(z) r €,

ot
where f € Ly(Q),g € HY(Q) and u € L3(0,T; La(T)).
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Example: Boundary control of wave equation

Q C R"™ bounded C2-domain.

2

%;::Aw on Q x (0,7)
w=0 on 90\ T x (0,7)
w=u onI'x (0,7)

0
w(e,0) = f(2), S-(@0)=gx) weQ
where f € Ly(Q),g € HY(Q) and u € L3(0,T; La(T)).
B Can derive well-posed boundary control system on
X = Ly(Q) x H1(Q), see Tucsnak&Weiss 2009 with generator

A= < 21 é) D(A) = H}(Q) x La(9), where Ay is the Dirichlet
—Ap
Laplacian

B (Q,I',T) Geometric Control Condition (GCC) = controllability, see
Rauch et. al 1974, Bardos et. al 1992.
Turnpike and MPC 719



Linear-quadratic OCP

Optimal Control problem.

min /||c )%+ IRGu(t) — ug)[? dt

s.t. y=Ay+Bu+f
Z/(O) =%0
with
B Y, U Hilbert Spaces

B (A, B,C) form well posed system (Staffans 2005, Tucsnak&Weiss
2014)

m Re LUU), |Rull? > alull? for a >0

Manuel Schaller Turnpike and MPC 8/19



Optimality conditions
(y,u) optimal, Lagrange multiplier A € C(0,T; X) s.t.

C*Cy— N — A*\ = C*Clyq, ANT)=0
R*Ru — B*)\ = R*Ruy,
Y —Ay—Bu=f,  y(0)=uy
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Optimality conditions
(y,u) optimal, Lagrange multiplier A € C(0,T; X) s.t.

C*Cy— N — A*\ = C*Clyq, ANT)=0
R*Ru — B*)\ = R*Ruy,
Y —Ay—Bu=f,  y(0)=uy

With u = (R*R) ' B*\ 4 ug, Eyy = y(t), equivalent to

N——
:;Q
crc -4 4 C*Cyq
0 ET A 0
4 A -BQ'B*|\N | Bua+f
Eo 0 Yo
=M
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Turnpike analysis for general evolution equations

Corresponding steady state problem

Assumption
Data is time independent, i.e. (yq(t),uq(t), f(t)) = (Ya, vua, f) J
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1 _ 2 1 - 2
min S [0 - ya)lly + 5 I1R(@ - wa)llf

st.  Ay+Bu+ f=0.

c*C A* 7\ (C*Cya
— ( A —BQlB*) (X) - ( Buy >

cxc -4 - A

C*Cyd
0 Er (g) A
e = e
4 —A -BQ'B*| \A Bug
Ey 0 y
=M
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Turnpike analysis for general evolution equations

A linear system for the distance to the turnpike

Dynamic problem

C*Clya

v\ 0
M(A) | Bug+f

Yo
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Turnpike analysis for general evolution equations

A linear system for the distance to the turnpike

Dynamic problem Steady state problem
C*Cya C*Cya
y) _ 0 v\ _ A
M(A) ~ | Bug+ f M(S\) - | Bug+f
Yo y
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Turnpike analysis for general evolution equations

A linear system for the distance to the turnpike

Dynamic Problem Steady state problem
C2egq
y) _ 0 v\ _ A
M (A) = | Braet M <>\> = | Buer
Yo y
07
y—uy\ _ | A
M ()\ - X> - 0
Yo—Y
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Turnpike analysis for general evolution equations

A linear system for the distance to the turnpike

Dynamic Problem Steady state problem
C2egq
v\ _ 0 v\ _ A
u(5) = |aer U (5) = | s
Yo y
07
y—uy\ _ | A
M ()\ - X> 0
Yo — Y

How does (—A, yo — #) influence (y(t) — #(t), A(t) — A(t)) for t € [0,T]?

Manuel Schaller Turnpike and MPC 11 /19



Turnpike analysis for general evolution equations

Notation
u HM_IHLQ,C = HM_lH(LQ(O,T;X)XX)2—>C(O,T;X)2
= HM71HL27L2 = HMilH(LQ(O,T;X)><X)2—>L2(0,T;X)2

Manuel Schaller Turnpike and MPC 12 /19



Turnpike analysis for general evolution equations

Towards a turnpike property

Theorem (Griine, S., Schiela, 2018)

Assume (¢, @, \) solves the steady state problem, (y,u,\) the dynamic
problem and set 0 < p < +
HM ||L2,L2

B (dy, 0u, 0M) == (y,u, A) = (7, T, A)
Then for all t € [0,T]

16y ()| + ISAD < Cle™ + e TN M~ a0 (1M L) + llvo — Gl

o
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Assume (¢, @, \) solves the steady state problem, (y,u,\) the dynamic
problem and set 0 < p < W
2,52
B (dy, 0u, 07) = (y,u, A)—(y, @, \)
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Turnpike analysis for general evolution equations

Towards a turnpike property

Theorem (Griine, S., Schiela, 2018)

Assume (¢, @, \) solves the steady state problem, (y,u,\) the dynamic
problem and set 0 < p < +
HM ||L2,L2

B (dy, 0u, 0M) == (y,u, A) = (7, T, A)
Then for all t € [0,T]

16y ()| + ISAD < Cle™ + e TN M~ a0 (1M L) + llvo — Gl
1 _ R .
I Oty < CIM s e (A za@) + 190 = Fll o)

o

If B e L(U,X), then for a.e. t € [0, T

1ou(®)|+ < Cle ™ + e TN M|, 0 (1M a@) + 1o = 9l o)
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Turnpike analysis for general evolution equations

A stability result for the solution operator

1T
win 5 [ ICE=wl + I1RCu o) [

y?u
st. Yy =Ay+Bu+f,  y(0)=yo
Recall: M operator for optimality conditions.

Theorem (Griine, S., Schiela, 2018)
If (A, B) is exp. stabilizable, (A, C') exp. detectable, then

[ | HM_IH(L2(07T;X)><X)2—>C(0,T;X)2
[ | HMflH(LQ((),T;X)xX)2—>L2(O,T;X)2
[ | HMilH(Ll(O,T;X)XX)2—>C(0,T;X)2
B (| M (2 0m:x)x X)2 5 Lo (0.7:X)2

can be bounded independently of T'.
Turnpike and MPC
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A second look at the turnpike property

— exact optimal solution
=== perturbed optimal solution

R
o

MPC-feedback
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Greedy discretization for MPC

A second look at the turnpike property

— exact optimal solution
=== perturbed optimal solution

R
o

MPC-feedback

— Can we show that perturbations close to t = 1" do not
really influence the MPC-feedback?

Manuel Schaller Turmpike and MPC



Influence of perturbations of the RHS

exact solution

C*Cyq

v\ 0
M()\) B Bug+ f

Yo
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Influence of perturbations of the RHS

exact solution

computed solution

C*Cyq

v\ 0
M()\) B Bug+ f

Yo

C*Cya €1

g\ 0 0
M(/\>_ Bug+ f + E9

Yo 0

Manuel Schaller
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Greedy discretization for MPC

Influence of perturbations of the RHS

exact solution computed solution
C*Clyq C*Cyq €1
y 0 0] 0 0
M = MlZ) =
<)‘> Bya </\> U " €2
Yo Yo 0
N
p
€1
U=y 0
M2 =
<>\ — )\) £9
0
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Greedy discretization for MPC

Influence of perturbations of the RHS

exact solution

computed solution

C*Cyq

v\ 0
M<A>_ Bug

Yo

C*Clyq €1

0 0
_|_

d €2

Yo 0

How does (£1(t), e2(t)) influence (§(t) — y(t), A(t) — A(t)) for t € [0,T]?
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Turnpike and MPC

16 / 19



Greedy discretization for MPC

Influence of perturbations of the RHS

exact solution computed solution
C*Clyq C*Cyq €1
y 0 0] 0 0
M = MlZ) =
() = | o () = s | 2
Yo Yo 0
P ~
€1
U=y 0
M2 =
<>\ — )\) £9
0

How does (£1(t), e2(t)) influence (§(t) — y(t), A(t) — A(t)) for t € [0,T]?

One can show, that perturbations act local in time.
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Greedy discretization for MPC

Main message

Reminder: MPC controller solves on [0, 7], but implements uho a7 <T.
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Greedy discretization for MPC

Main message

Reminder: MPC controller solves on [0, 7], but implements uho a7 <T.
Fine grid Residual e 1 Theorem ( Absolute~
0. 7] small on [0, 7] error |lu — al|
on %7 matton 15,7 J L small on [0, 7]
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Greedy discretization for MPC
Recap

W If |M ! independent of T' (given if stabilizable+detectable), then
B Turnpike property.
B |nfluence of discretization errors decays exponentially in time
< in MPC-context: coarsening of grids towards 7T'.

Ongoing work:
B Goal oriented space-time error estimation techniques confirm these
findings

B Numerical performance analysis

Manuel Schaller Turnpike and MPC 18 / 19



Greedy discretization for MPC
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Perturbations stay local in time

Notation:

B | M Y0 = [IM 7 (Ly0,15x) % X)2—C(0,75X)2

B (MY, L, = ”M_l”(Lz(O,T;X)><X)2—>L2(0,T;X)2

Theorem (Griine, S., Schiela, 2018)

(7,1, \) computed solution, (y,u, \) exact solution and
W (Sy,0u,0N) == (5,0, A) — (y.u. \)

m)< 1
0 - ILL < ||M71H(L2,L2)

W |le7" e 07 e ell0rx) <p p =0
Then, there is a constant C > 0 indep. of T s.t.

le™ 8ylleqorx) + e Sully0m0) + e ™ IMleomsx)
< Op||M Y10

v

Manuel Schaller Turmpike and MPC



Adaptive grids in optimal control

Let (y,u) be exact solution, (7, %) numerical approximation.
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Classical Try to reduce fOTl(y,u) — (g, a)dt.
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Adaptive grids in optimal control

Let (y,u) be exact solution, (7, %) numerical approximation.
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Adaptive grids in optimal control

Let (y,u) be exact solution, (7, %) numerical approximation.

How to do adaptive grid refinement?
Classical Try to reduce fOTl(y, w) — (g, u) dt.
MPC context Try to reduce [J I(y,u) — (7, 4)d

How do goal oriented grids which minimize the MPC
feedback error look like 7

Manuel Schaller Turnpike and MPC



Goal: Small error in cost functional ([0, 7)

Error indicators

10° | 8
Time Grid
@S o
15 Optimal State on finest grid
1
0.5
0 L L L L L I
0 0.5 1 15 2 2.5 3
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B
Goal: Small error in MPC-feedback ([0, 7], here 7 = 0.5)

Error indicators

100} .
107} .
Time Grid
@c )
15 Optimal State on finest grid
1
0.5
O L L L L L J
0 0.5 1 1.5 2 2.5 3
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