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Classical non linear elasticity

We say that a solid Ω ⊂ R3 is elastic when it deforms under the action of
an external load and recovers its original shape when the load stops
acting.

Let u(x , t) be the position occupied by the material point x ∈ Ω at time t .
u : Ω× (0,T )→ R3.

The deformation gradient is the differential of u with respect to x ,
F = Du. In components, Fiα = ui ,α = ∂ui

∂xα .

J. C. Bellido, J. Cueto, C. Mora Corral (UCLM) Non local models based on hyperelasticity. 3 / 40



Classical non linear elasticity

We say that a solid Ω ⊂ R3 is elastic when it deforms under the action of
an external load and recovers its original shape when the load stops
acting.

Let u(x , t) be the position occupied by the material point x ∈ Ω at time t .
u : Ω× (0,T )→ R3.

The deformation gradient is the differential of u with respect to x ,
F = Du. In components, Fiα = ui ,α = ∂ui

∂xα .

J. C. Bellido, J. Cueto, C. Mora Corral (UCLM) Non local models based on hyperelasticity. 3 / 40



Classical non linear elasticity

We say that a solid Ω ⊂ R3 is elastic when it deforms under the action of
an external load and recovers its original shape when the load stops
acting.

Let u(x , t) be the position occupied by the material point x ∈ Ω at time t .
u : Ω× (0,T )→ R3.

The deformation gradient is the differential of u with respect to x ,
F = Du. In components, Fiα = ui ,α = ∂ui

∂xα .

J. C. Bellido, J. Cueto, C. Mora Corral (UCLM) Non local models based on hyperelasticity. 3 / 40



Cauchy’s equation of motion

After imposing second Newton’s law, it is obtained:

(ρR v̇ ) = Div TR + ρRb

Density ·
acceleration.

Piola-Kirchhoff
stress tensor. External forces.
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B Hyperelastic materials: There exists an energy function
W : Rn×n → R such that TR = DFW (F ).

B Equilibrium equations (?) as Euler-Lagrange equations.

B Deformation can be searched as a minimizer of the functional

I (u) =
∫

Ω
[W (Du)− Bu] dx .

Density ·
acceleration.

Piola-Kirchhoff
stress tensor. External forces.
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Direct method of Calculus of Variations

The direct method of Calculus of Variations is a way of determining the
existence of solution (a minimizer) of a variational problem provided the
following ingredients:

1 Coercivity: lim||u||→∞ I (u) = +∞.

2 Weak lower semi-continuity: For every uj ⇀ u (weakly), we have
the following inequality

I (u) ≤ lim inf I (uj ).
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Polyconvexity

Scalar case (n = 1 or m = 1): The s.w.l.s.c. of I is obtained through
the convexity of W (x , u, ·).

Vectorial case (n,m > 1): Convexity may be a condition too strong
but there are other weaker notions that provide the s.w.l.s.c.

Definition: Polyconvexity
W : Rn×n → R is said to be polyconvex iff there exists a convex function
h : Rn×n × Rn×n × R→ R such that

W (A) = h(A, cofA, detA).
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Piola Identity

div(cofDu) = 0

⇓

Polyconvexity of W +

Piola Identity

div(cofDu) = 0

⇓
Weak continuity of detDu

⇓
Weak lower semi-continuity of the functional I =

∫
W (x , u,Du)
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Material symmetry: Isotropy
Isotropic material
W is isotropic if SO(3) ⊂ S, i.e.,

W (F ) = W (FR) ∀R ∈ SO(3).

In this case, the Rivlin-Ericksen theorem establishes that there exists
h̃ : (0,+∞)3 → R such that

W (A) = h̃(|A|2, |cofA|2, (detA)2).
It suits very well with the polyconvexity assumption !!
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Existence theorem

Theorem (John Ball )
There exists a convex function Ŵ : R3×3 × R3×3 × (0,∞)→ (0,∞)
such that

W (F ) = Ŵ (F , cofF , detF ) ∀F ∈ R3×3
+ .

W (F )→∞ when detF → 0.

W (F ) ≥ c1(|F |p + |cofF |q + (detF )r )− c2.

Then there exists a minimizer of the functional

I [u] :=
∫

Ω
W (x , u,Du)dx .
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Isotropic models

Money Rivlin materials

W (F ) = α|F |2 + β|cofF |2 + J(detF ),

with limt→∞ J(t) = +∞. α, β > 0.
Neo-Hookean materials in the case β = 0.
Curious note: Pixar’s characters simulation: ”Stable Neo-Hookean
Flesh Simulation”.

Odgen materials
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Why a fractional model of
hyperelasticity ?
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Problem

It is no valid any more when the functions stop being continuous and
some singularities arise, like fractures.
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Motivation

Lavrentiev phenomenon: minimizers may change as the functional
space changes.

When a solid is subjected to great loads, singularities may appear
such as fracture and cavitation (the sudden formation of voids in the
material).

W 1,p with p > n forces functions to be continuous.
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Previous approach

I =
∫ ∫

w (x , x ′, u(x), u(x ′))dxdx ′

Existence of solution and Γ- convergence were studied (Bellido,
Mora-Corral 2014; Bellido, Mora-Corral, Pedregal 2015).
Not suitable in hyperelasticity.

I =
∫
W
(∫
· · ·
)
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Functional space H s,p

Dsu(x) := cn,s p. v.x
∫

Rn

u(x)− u(y )
|x − y |n+s

x − y

|x − y |dy .

J. C. Bellido, J. Cueto, C. Mora Corral (UCLM) Non local models based on hyperelasticity. 16 / 40



Functional space H s,p

Dsu(x) := cn,s p. v.x
∫

Rn

u(x)− u(y )
|x − y |n+s

x − y

|x − y |dy .

Dsu = ( cn,s
|x |n−(1−s) ) ∗ Du

J. C. Bellido, J. Cueto, C. Mora Corral (UCLM) Non local models based on hyperelasticity. 16 / 40



Functional space H s,p

Dsu(x) := cn,s p. v.x
∫

Rn

u(x)− u(y )
|x − y |n+s

x − y

|x − y |dy .

Dsu = ( cn,s
|x |n−(1−s) ) ∗ Du

D̂su(ξ) = 1
|2πξ|1−s D̂u

= 2πiξ
|2πξ|1−s û(ξ)
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Functional space H s,p

Our goal was to prove the existence of minimizer of the functional

I (u) =
∫

Rn
W (x , u(x),Dsu(x))dx ,

where we have substituted the gradient by the so-called Riesz
s-fractional gradient

Dsu(x) := cn,s p. v.x
∫

Rn

u(x)− u(y )
|x − y |n+s

x − y

|x − y |dy .

And so, the new space we are going to search the minimizers in is

Hs,p
g (Ω) := {u ∈ Hs,p(Rn) : u = g in Ωc},

where

Hs,p(Rn) := {u ∈ Lp(Rn) : Dsu ∈ Lp(Rn;Rn)},
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Dsu(x) := cn,s p. v.x
∫

Rn

u(x)− u(y )
|x − y |n+s

⊗ x − y

|x − y |dy .

And so, the new space we are going to search the minimizers in is

Hs,p
g (Ω,Rm) := {u ∈ Hs,p(Rn,Rm) : u = g in Ωc},

where

Hs,p(Rn,Rm) := {u ∈ Lp(Rn,Rm) : Dsu ∈ Lp(Rn;Rn×m)},
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Functional space H s,p

Proposition
a) C∞c (Rn) is dense in Hs,p(Rn).

b) Hs,p(Rn) is reflexive.

c) If s < t < 1 and 1 < q ≤ p ≤ nq
n−(t−s)q , then Ht,q(Rn) ↪→ Hs,p(Rn).

d) If 0 < µ ≤ s − n
p , then Hs,p(Rn) ↪→ C 0,µ(Rn).

e) If p = 2, then Hs,2(Rn) = W s,2(Rn) with equivalence of norms.

f ) If 0 < s1 < s < s2 < 1 then Hs2,p(Rn) ↪→W s,p(Rn) ↪→ Hs1,p(Rn).
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Functional space H s,p

Theorem (Shieh-Spector 2015)
Set 0 < s < 1 and 1 < p < ∞. Let Ω ⊂ Rn be a bounded open set. Then
there exists C = C (|Ω|, n, p, s) > 0 such that

||u||Lq (Ω) ≤ C ||Dsu||Lp (Rn)

for all u ∈ Hs,p(Rn), and any q satisfying





q ∈ [1, p∗] if sp < n,
q ∈ [1,∞) if sp = n,
q ∈ [1,∞] if sp > n.

p∗ = np
n−sp .
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Functional space H s,p

Theorem (Shieh-Spector 2017)
Set 0 < s < 1 and 1 < p < ∞. Let Ω ⊂ Rn be open and bounded and
g ∈ Hs,p(Rn). Then for any sequence {uj}j∈N ⊂ Hs,p

g (Ω) such that

uj ⇀ u in Hs,p(Rn),

for some u ∈ Hs,p(Rn), one has u ∈ Hs,p
g (Ω) and

uj → u in Lq(Rn),

for every q satisfying





q ∈ [1, p∗) if sp < n,
q ∈ [1,∞) if sp = n,
q ∈ [1,∞) if sp > n.
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Singularities: fracture and cavitation
Hs,p may include functions with singularities forbidden in Sobolev spaces
of interest in a pure mathematical point of view as well as an applied
one.

Fracture: Let Q = (0, 1)n and φ2, . . . , φn ∈ C∞c (Rn). Define
u = (χQ , φ2, . . . , φn). Then

u ∈ Hs,p(Rn,Rn) if p < 1

s
, and u /∈ Hs,p(Rn,Rn) if p > 1

s
.

Cavitation: Let φ ∈ C∞c ([0,∞)) be such that φ(0) > 0, and
u(x) = x

|x |φ(|x |). Then

u ∈ Hs,p(Rn,Rn) if p < n

s
and u /∈ Hs,p(Rn,Rn) if p > n

s
.

Cavitation:
The sudden formation of voids in a material.
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s
, and u /∈ Hs,p(Rn,Rn) if p > 1

s
.

Cavitation: Let φ ∈ C∞c ([0,∞)) be such that φ(0) > 0, and
u(x) = x

|x |φ(|x |). Then

u ∈ Hs,p(Rn,Rn) if p < n

s
and u /∈ Hs,p(Rn,Rn) if p > n

s
.

Cavitation:
The sudden formation of voids in a material.
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Theorem
Let W : Rn × Rn × Rn×n → R ∪ {∞} satisfy the following conditions:

a) W (x , y , ·) is polyconvex.
b) There exists h : [0,∞)→ [0,∞) such that limt→∞

h(t)
t =∞ and

{
W (x , y ,F ) ≥ a(x) + c |F |p + c |cofF |q + h(|detF |), if sp < n,
W (x , y ,F ) ≥ a(x) + c |F |p , if sp ≥ n,

for a ∈ L1 and some q > p∗

p∗−1 .
Let Ω be a bounded open subset of Rn and u0 ∈ Hs,p(Rn,Rn).
Then there exists a minimizer of I in Hs,p

u0 (Ω,Rn).
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How do we do it ?
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Fractional divergence

The definition of the s-fractional divergence is given in order to fulfil an
integration by parts/Divergence Theorem.

divsφ(x) = −cn,s p. v.x
∫

Rn

φ(x) + φ(y )
|x − y |n+s

· x − y

|x − y |dy .

Theorem: Integrations by parts
Let u ∈ L1loc(Rn) and Dsu ∈ L1loc(Rn,Rn), then for all φ ∈ C 1

c (Rn,Rn),
∫

Dsu(x) · φ(x) dx = −
∫

u(x)divsφ(x) dx .
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Piola Identity

divs (cofDsu) = 0

⇓

Polyconvexity of W +

Piola Identity

divs (cofDsu) = 0

⇓
Weak continuity of detDsu

⇓
Weak lower semi-continuity of the functional I =

∫
W (x , u,Dsu)
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s-fractional divergence of the product

Lemma
Let g ∈ Hs,p(Rn,Rn) and φ ∈ C 1

c (Rn). Then φg ∈ Hs,p(Rn),Rn and for a.e.
x ∈ Rn,

divs (φg )(x) = φ(x)divsg (x) + Kφ(x)(gT )(x),

where the operator Kφ : Lq(Rn,Rk×n)→ Lp(Rn,Rk ) defined as

Kφ(U)(x) = cn,s

∫ φ(x)− φ(y )
|x − y |n+s

U(y ) x − y

|x − y |dy , a.e. x ∈ Rn,

is linear and bounded for all p ∈ [1, q].
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Piola Identity

Fractional Piola Identity
Let u ∈ C∞c (Rn), s ∈ (0, 1). Then

Divs (cof(Dsu)) = 0.

In the case of the first row:

−cn,spvx
∫

Rn

(cof (Dsu))1(x ′)
|x − x ′|n+s

· x − x ′

x − x ′
dx ′ = 0

Special attention had to be paid to the limits in the singularities!
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Integration by parts of the determinant

Classical result
∫

det(Du)(x)φ(x) dx = −1

n

∫
u(x) · ∇φcof(Du)(x) dx

⇑
det(Du) = div (uk (cofDu)k ) ∀k = 1, . . . , n
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Integration by parts of the determinant

Classical result
∫

det(Du)(x)φ(x) dx = −1

n

∫
u(x) · ∇φcof(Du)(x) dx

Lemma
For every φ ∈ C∞c (Rn) we have that u · Kφ(cofDsu) ∈ L1(Rn) and

∫
det(Dsu)(x)φ(x) dx = −1

n

∫
u(x) · Kφ(cof(Dsu))(x) dx .
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Weak continuity of the determinant

Weak continuity of the minors
Let uj ⇀ u in Hs,p(Rn,Rn) and M : Rn×n → R a minor of order r , then

M(Dsuj ) ⇀ M(Dsu)

in L
p
r (Rn).
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Γ-convergence

Convergence of the fractional gradients
For u ∈W 1,p(Rn,Rm) we have that

Dsu → Du

as s goes to 1−, strongly in Lp(Rn,Rn×m).
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Recovering the classical model

Γ-convergence in fractional hyperelasticity
Let W : Rn ×Rm ×Rn×m → R such that W (x , u, ·) is quasiconvex for a.e.
Rn and all u ∈ Rm. Let

Is (u) =
∫

Rn
W (x , u,Dsu) dx

be defined in Hs,p
g (Ω;Rm), and let

I (u) =
∫

Rn
W (x , u,Du) dx

be defined on W 1,p
g (Ω;Rm). Then

Is Γ-converges to I .
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Γ-convergence

Fractional Mean Value Theorem (p = 1 Comi-Stefani 2019)
Let u ∈ Hs,p(Rn). Then, for every s0 > 0 there exists a constant C > 0
such that for every s , s0 ≤ s < 1 and for every h ∈ Rn

∫

Rn
|u(x + h)− u(x)|pdx ≤ C |h|sp||Dsu||pLp (Rn).

Proposition
Let {us}s∈(0,1) where each us ∈ Hs,p

g (Ω). If

||Dsus ||Lp (Rn) ≤ C ,

then there exists u ∈W 1,p(Rn) such that Dsus ⇀ Du in Lp(Rn).
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New model on bounded domains

Motivated by applications, we would like to obtain similar results but
over bounded domains and including different kinds of boundary
conditions.

I [u] =
∫

Ω
W (Gρu(x))dx

where Gρu is a non-local gradient,

Gρ(u) =
∫

Ω

u(x)− u(y )
|x − y | · x − y

|x − y |ρ(|x − y |)dy ,

and W (F ) = Ŵ (F , cofF , detF ),
with Ŵ convex.
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ρ(|x − y |) = 1
|x−y |n−(1−s)χB(0,1−s)
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Thank you very much for your
attention.
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