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PRELIMINARIES



The controlled heat equation

Ω ⊂ RN, T > 0, ω ⊂ Ω.
yt −∆y = vχω in Q = Ω× (0,T)

y = 0 on ∂Ω× (0,T)

y(x,0) = y0(x) in Ω

(1)

v = v(x, t) is a control function

Null controllability

System (1) is said to be null-controllable at time T if, for any y0 ∈ L2(Ω),
there exists a control v ∈ L2(ω × (0,T)) such that the corresponding
solution satis�es

y(·,T) = 0 in Ω.
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The observability inequality

Consider the adjoint equation
−qt −∆q = 0 in Q = Ω× (0,T)

q = 0 on ∂Ω× (0,T)

q(x,T) = qT(x) in Ω

(2)

Then, (1) is null-controllable if and only if there exists Cobs > 0 such
that the following observability inequality holds

|q(0)|L2(Ω) ≤ Cobs

(∫∫
ω×(0,T)

|q|2dxdt

) 1
2

, ∀qT ∈ L2(Ω).

In 1996, Fursikov & Imanuvilov used global Carleman estimates
which readily yield the observability inequality.
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TIME-DISCRETE SETTING



Discrete framework

For any given M ∈ N∗, we set4t = T/M and introduce the following
discretization for the time variable

0 = t0 < t1 < . . . < tM = T,

with tn = n4t and n ∈ J0,MK. We also introduce tn+ 1
2

= (tn+1 + tn)/2,
for n ∈ J0,MK

0 = t0 t1 t2 tM−1 tM = T

t 1
2

t 3
2

tM− 1
2

tM+ 1
2 P = (tn)n∈J0,MK

D = (tn+ 1
2
)n∈J0,MK

Figure: Discretization of the time variable and its notation.
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Time-discrete heat equation

For any time discrete control sequence v = {vn+ 1
2 }n∈J0,M−1K ⊂ L2(Ω),

consider the sequence y = {yn}n∈J0,MK ⊂ L2(Ω) verifying
yn+1 − yn

4t
−∆yn+1 = χωvn+ 1

2 , n ∈ J0,M− 1K,

yn+1
|∂Ω = 0, n ∈ J0,M− 1K,
y0 = y0.

(3)

where yn (resp. vn+ 1
2 ) denotes an approximation of y (resp. v) at time

tn (resp. tn+ 1
2
).

• System (3) is precisely an Implicit Euler discretization of the
heat equation.

• For �xed4t and each n, this system can be regarded as a
system of controlled elliptic equations.
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What about null controllability...

As in the continuous case, we can formulate the notion of
null-controllability: is it true that for any y0 ∈ L2(Ω) there exists a
control sequence {vn+ 1

2 }n∈J0,M−1K such that the corresponding
solution of the time-discrete heat equation satis�es

yM = 0 ?

THEOREM. (C. ZHENG, 08)
Assume that ω ⊂⊂ Ω. For any given4t > 0, the time-discrete heat
equation is neither null or approximately controllable.
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The observability inequality fails

• The (time-discrete) observability inequality does not hold,
except for the trivial case ω = Ω, this is, having an observability
inequality like

|q 1
2 |L2(Ω) ≤ C

(
M−1∑
n=0

4t
∫
ω

|qn+ 1
2 |2
)1/2

where q = {qn+ 1
2 }n∈J0,MK solves the adjoint system

qn−
1
2 − qn+ 1

2

4t
−∆qn−

1
2 = 0, n ∈ J1,MK,

q
n− 1

2
|∂Ω = 0, n ∈ J1,MK,

qM+ 1
2 = qT .

is, in general, FALSE!
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Relaxation of the problem and previous results

• C. Zheng (’08) relaxed the null-controllability by considering the
projection of the solution over a class of low frequency Fourier
components. More precisely, consider

CK = span {φk associated to λk s.t. λk ≤ K(4t)−r}

for any �xed r ∈ (0,2), some positive constant K = K(r,T,Ω, ω)
and where (φk, λk) are the eigenfunctions and eigenvalues of
the Dirichlet Laplacian.
Then, there exists a control v = {vn+ 1

2 }n∈J0,MK (uniformly
bounded w.r.t. 4t) such that

ΠCK y
M = 0.
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Relaxation of the problem and previous results (cont.)

• Later, Ervedoza & Valein (2010) proved that any controllable
parabolic equation is also controllable after discretization in
time by an appropriate �ltering of high frequencies. In fact, they
proved an observability inequality of the form

|q 1
2 |2L2(Ω) ≤ C1

M−1∑
n=0

4t
∫
ω

|qn+ 1
2 |2 + C2(4t)β |qT |L2(Ω),

where C1,C2 > 0 are uniform w.r.t to4t and β > 0 is a �xed
constant. This inequality in turn implies that

|yM|L2(Ω) ≤
√
C2(4t)β/2|y0|L2(Ω).

• Some other (similar) results for wave-like, KdV, and Schrödinger
equations in Ervedoza, Cheng & Zuazua ’08, D. Xu ’19 and
Zhang, Zheng and Zuazua ’09.
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Old vs. New

The results from Cheng and Ervedoza & Valein rely (heavily) on
spectral analysis techniques. This fact allow us only to consider
linear systems and time-independent coe�cients.

In Ervedoza & Valein, they assume that the system under study is
controllable at the continuous level and are devoted to estimate the
“di�erence” between continuous and discrete case.

OUR APPROACH
To derive a Carleman estimate for the time-discrete parabolic
operator. This will enable us to study the controllability of more
general kind of systems and problems.
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CARLEMAN ESTIMATES



A Carleman inequality in the continuous framework

A Carleman estimate is a weighted energy estimate of the form∫∫
Q
e2τθϕτθ|∇q|2 +

∫∫
Q
e2τθϕ(τθ)3|q|2

≤ C

(∫∫
Q
e2τθϕ|F|2 +

∫∫
ω×(0,T)

e2τθϕ(τθ)3|q|2
)

for the solutions to
−qt −∆q = F(x, t), in Q

q = 0 on ∂Ω× (0,T)

q(x,T) = qT(x) in Ω.

(4)

The weight e2τθϕ is a function composed by: a parameter τ > 0 and

• an x-dependent function

ϕ(x) = eλψ(x) − eλK < 0, K > ‖ψ‖C(Ω̄), λ > 0

• a time-dependent function

θ(t) =
1

t(T − t) 13



A Carleman inequality in the continuous framework

Theorem. (Fursikov & Imanuvilov ’96)

For λ ≥ 1 su�ciently large, there existsC > 0 and τ0 ≥ 1 depending
on Ω, ω and λ such that∫∫

Q
e2τθϕτθ|∇q|2 +

∫∫
Q
e2τθϕ(τθ)3|q|2

≤ C

(∫∫
Q
e2τθϕ|F|2 +

∫∫
ω×(0,T)

e2τθϕ(τθ)3|q|2
)

for all τ ≥ τ0(T + T2) and all solutions q to the equation (4).

PROOF.
The proof relies on:

• A suitable change of variables.

• Identifying some dominant terms.

• A LOT of integration by parts.
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The change of variables

Continuous case

The change of variable is

z(x, t) = eτθ(t)ϕ(x)q(x, t), where θ(t) =
1

t(T − t)

The starting point is to obtain the equation satis�ed by{
eτθϕ

(
∂t(e−τθϕz) + ∆(e−τθϕz)

)
= −eτθϕF,

z(·,0) = z(·,T) = 0.

Then, after a long procedure that involves integration by parts
several times in time and space, we can obtain the desired
inequality.
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Our main goal is to obtain a time-discrete Carleman a la Fursikov &
Imanuvilov.

We will try to follow their strategy as close as possible. Obviously,
time-discretization introduces additional di�culties that need to be
taken into account.

Here, we will only focus on the selection of the Carleman weight
and the change of variable.
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Some useful de�nitions and tools

For functions u = {un}n∈J0,MK and v = {vn+ 1
2 }nJ0,MK we may de�ne

• Discrete integrals∫ T

0
u :=

M∑
n=1

4t un and —
∫ T

0
v :=

M−1∑
n=0

4t vn+ 1
2 .

• Time-discrete derivatives

(Dtu)n+ 1
2 :=

un+1 − un

4t
and (Dtv)n :=

vn+ 1
2 − vn−

1
2

4t

• Time-discrete integration by parts

—
∫ T

0

∫
Ω

(Dtu)v = −(u0, v
1
2 )L2(Ω) + (uM, vM+ 1

2 )L2(Ω) −
∫ T

0

∫
Ω

(Dtv)u
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The change of variables in the discrete case

Discrete case

In the discrete case, we cannot exploit the fact that the function θ
blows up as t→ 0 and t→ T . We need to change to

θ(t) =
1

(t + δT)(T + δT − t)
with 0 < δ < 1/2

With this new function, we can propose the change of variable

zn+ 1
2 = e

τθ(t
n+ 1

2
)ϕ(x)

qn+ 1
2 , n ∈ J0,MK

where we recall that q = {qn+ 1
2 } solves the equation

qn−
1
2 − qn+ 1

2

4t
−∆qn−

1
2 = Fn−

1
2 , n ∈ J1,MK,

q
n− 1

2
|∂Ω = 0, n ∈ J1,MK,

qM+ 1
2 = qT .
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The change of variables in the discrete case

Following the methodology of the continuous case, we shall look
for the equation veri�ed by

eτθ
n+ 1

2 ϕ

(
Dt(e−τθ

n+ 1
2 ϕzn+ 1

2 ) + ∆(e−τθ
n+ 1

2 ϕzn+ 1
2 )

)
= −eτθϕFn+ 1

2

Lemma. (Time-discrete derivative of the weight)

Provided 4tτ
(T3δ2)

≤ κ, we have

Dteτθϕ = τϕθn−
1
2 eτθ

n− 1
2 ϕ +4t eτθ

n− 1
2 ϕ

(
τ

δ3T4 +
τ2

δ4T6

)
Oλ,κ(1)
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A time-discrete Carleman estimate

Theorem. (F. Boyer & V. H.-S. ’19)

For λ ≥ 1 su�ciently large, there exists C > 0, τ0 ≥ 1, and ε0 > 0
depending on Ω, ω and λ such that

—
∫ T

0

∫
Ω

e2τθϕτθ|∇q|2 + —
∫ T

0

∫
Ω

e2τθϕ(τθ)3|q|2

≤ C
(

—
∫ T

0

∫
Ω

e2τθϕ|F|2 + —
∫ T

0

∫
ω

e2τθϕ(τθ)3|q|2
)

+ C(4t)−1
(∫

Ω

∣∣∣(eτθϕq)
1
2

∣∣∣2 +

∫
Ω

∣∣∣(eτθϕq)M+ 1
2

∣∣∣2 +

∫
Ω

∣∣∣(eτθϕ∇q)M+ 1
2

∣∣∣2)
for all τ ≥ τ0(T + T2), and for all4t > 0 and 0 < δ ≤ 1/2 satisfying

τ 44t
δ4 min{T3,T6} ≤ ε0
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CONTROLLABILITY RESULTS



Heat equation with potential

Consider the system
yn+1 − yn

4t −∆yn+1 + an+1yn+1 = vn+ 1
2 , n ∈ J0,M− 1K,

yn+1
|∂Ω = 0, n ∈ J0,M− 1K,
y0 = y0.

(5)

Theorem. φ(4t)-controllability (F. Boyer & V. H.-S. ’19)

Let us consider T > 0 and4t su�ciently small. Then, for any y0 ∈ L2(Ω)
and any function φ verifying

lim inf
4t→0

φ(4t)
e−C2/(4t)1/4

> 0,

there exists a time-discrete control v such that

—
∫ T

0

∫
ω

|v|2 ≤ C|y0|2L2(Ω),

and the associated solution y to (5) veri�es

|yM|L2(Ω) ≤ C
√
φ(4t)|y0|L2(Ω),

where the positive constant C depends only on φ, T and ‖a‖∞.
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Sketch of the proof

The controllability result is achieved in two steps:

• First step: controllability in H−1.
We choose some T0 < T and set M0 =

⌊ T0
4t

⌋
. Consider the adjoint

system
qn−

1
2 − qn+ 1

2

4t −∆qn−
1
2 + anqn−

1
2 = 0, n ∈ J1,M0K,

q
n− 1

2
|∂Ω = 0, n ∈ J1,M0K,

qM0+ 1
2 = qT .

Applying our Carleman estimate with F = −anqn−
1
2 , we can prove the

relaxed observability inequality of the form

|q
1
2 |L2(Ω) ≤ Cobs

(
—
∫ T0

0

∫
ω

|q|2 + e
− C2

(4t)1/4 |∇qT |2L2(Ω)

) 1
2

,

With this, we can readily prove a controllability result in H−1, i.e.,

|yM0 |2H−1(Ω) ≤ CT0e
− C2

(4t)1/4 |y0|2L2(Ω) with —
∫ T0

0

∫
ω

|v|2 ≤ C|y0|2L2(Ω)
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Sketch of the proof (Cont.)

• Second step: do nothing!

We set vn+ 1
2 = 0 for n ∈ JM0,M− 1K and consider the uncontrolled

system
yn+1 − yn

4t −∆yn+1 + an+1yn+1 = 0, n ∈ JM0,M− 1K,

yn+1
|∂Ω = 0, n ∈ JM0,M− 1K,
yM0+1 = yM0 .

(6)

from which we can obtain the energy estimate

−
√
4t |yM0+1|H10(Ω) ≤ C|yM0 |H−1(Ω).

We can iterate for indices n ∈ JM0 + 1,MK to deduce that

|yM|2L2(Ω) ≤ C e−C̃2/(4t)1/4︸ ︷︷ ︸
φ(4t)

|y0|2L2(Ω),
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Controllability of a semilinear heat equation

Using the previous result, we can also prove the controllability of the system


yn+1 − yn

4t −∆yn+1 + f(yn+1) = vn+ 1
2χω, n ∈ J0,M− 1K,

yn+1
|∂Ω = 0, n ∈ J0,M− 1K,
y0 = y0.

where f ∈ C1(R) is a globally Lipschitz function with f(0) = 0.

The proof is classical and follows well-known results (for instance, C. Fabre,
J. P. Puel & E. Zuazua, ’95).
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Controllability of coupled systems


yn+1
1 − yn1
4t −∆yn+1

1 + an+1
11 yn+1

1 + an+1
12 yn+1

2 = vn+ 1
2χω, n ∈ J0,M− 1K

yn+1
2 − yn2
4t −∆yn+1

2 + an+1
21 yn+1

1 + an+1
22 yn+1

2 = 0, n ∈ J0,M− 1K

y01 = y1,0, y02 = y2,0,

Theorem.
Assume that for ω0 ⊂ ω, the coe�cient a21 veri�es

an
21 ≥ a0 > 0 or − an

21 ≥ a0 > 0 ∀x ∈ ω0, n ∈ J1,MK.
Then, there exists constants C and C2 such that

|q
1
2
1 |

2
L2(Ω) +|q

1
2
2 |

2
L2(Ω)≤C

(
—
∫ T

0

∫
ω

|q1|2+ e
− C2

(4t)1/5

[
|∇qM+ 1

2
1 |2L2(Ω) + |∇qM+ 1

2
2 |2L2(Ω)

])
for the solutions to the adjoint system

q
n− 1

2
1 − q

n+ 1
2

1

4t −∆q
n− 1

2
1 + an

11q
n− 1

2
1 + an

21q
n− 1

2
2 = 0, n ∈ J1,MK,

q
n− 1

2
2 − q

n+ 1
2

2

4t −∆q
n− 1

2
2 + an

12q
n− 1

2
1 + an

22q
n− 1

2
2 = 0, n ∈ J1,MK,
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SOME PERSPECTIVES



Work in progress and open problems

• Other control problems as insensitizing controls can be addressed.

• Fully discrete Carleman estimates ? Doable

• Controllability of slightly super linear case ?

• Our approach works for internal control. For boundary controllability of
a single equation: OK.

• For boundary controllability of coupled systems, we need to change
the approach: time-discrete moment method (work in progress).
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