PART 2: SINGULAR SUPPORT

ON THE REGULARITY AND THE SINGULAR SUPPORT OF THE MINIMUM TIME FUNCTION

FOR AFFINE-CONTROL PROBLEMS WITH HÖRMANDER VECTOR FIELDS AND SMOOTH MANIFOLD TARGETS

Teresa Scarinci, University of Vienna

VIII Partial differential equations, optimal design and numerics

Based on joint works with Paolo Albano (University of Bologna) and Piermarco Cannarsa (University of Rome Tor Vergata)

SC > < E >

TERESA SCARINCI

SUBELLIPTIC EIKONAL EQUATIONS

AUGUST 2019 1 / 23

MINIMUM TIME PROBLEM AND EIKONAL EQUATION

PART 1: SEMICONCAVITY IN ABSENCE OF SINGULAR TRAJECTORIES

PART 2: SINGULAR SUPPORT

TERESA SCARINCI

SUBELLIPTIC EIKONAL EQUATIONS

AUGUST 2019 2 / 23

EIKONAL EQUATION

ASSUMPTION (H)

- Ω ⊂ ℝⁿ is a bounded open set with boundary, Γ, given by a C[∞]-manifold of dimension n − 1.
- $\Omega' \supset \Omega$ is an open set of \mathbb{R}^n and $\{X_1, \ldots, X_N\}$ is a system of Hörmander vector fields on Ω' , i.e., $Lie(\{X_i\}_{i=1}^N)[x] = \mathbb{R}^n$ for all $x \in \Omega'$ ($N \le n$).

We consider the Dirichlet problem

$$\begin{cases} \sum_{j=1}^{N} (X_j T)^2 (x) = 1 & \text{in } \Omega, \\ T = 0 & \text{on } \Gamma. \end{cases}$$

We study the regularity and the structure of the singular support of its viscosity solution T.

TERESA SCARINCI

SUBELLIPTIC EIKONAL EQUATIONS

AUGUST 2019 3 / 23

HÖRMANDER BRACKET GENERATING CONDITION

Taking two C[∞] vector fields on Ω',

$$X(x) = \sum_{i=1}^n f_i(x)\partial_{x_i}, \quad Y(x) = \sum_{i=1}^n g_i(x)\partial_{x_i}, \quad x \in \Omega',$$

where $f_i, g_i \in C^{\infty}(\Omega')$, the introduce the Lie bracket

$$[X, Y](x) = \sum_{i=1}^n h_i(x) \partial_{x_i} \quad \text{where} \quad h_i = \sum_{j=1}^n \left(f_j \partial_{x_j} g_i - g_j \partial_{x_j} f_i \right).$$

• Lie algebra generated by $\{X_i\}_{i=1}^N$: Lie $(\{X_i\}_{i=1}^N) = \bigcup_{k=1}^\infty$ Lie^k $(\{X_i\}_{i=1}^N)$, where Lie^k $(\{X_i\}_{i=1}^N)$ is defined recursively by taking

$$\mathsf{Lie}^{1}(\{X_{i}\}_{i=1}^{N}) = \mathsf{span}\left\{X_{i}\right\}_{i=1}^{N}$$

and for $k \ge 1$ Lie^{k+1}($\{X_i\}_{i=1}^N$) = span $\left(\text{Lie}^k(\{X_i\}_{i=1}^N) \cup \left\{ [X, X_j] : X \in \text{Lie}^k(\{X_i\}_{i=1}^N), j = 1, \dots, N \right\} \right).$

• Hörmander bracket condition: $Lie({X_i}_{i=1}^N)[x] = \mathbb{R}^n$ for all $x \in \Omega'$.

TERESA SCARINCI

SUBELLIPTIC EIKONAL EQUATIONS

AUGUST 2019 4 / 23

HÖRMANDER BRACKET GENERATING CONDITION

Taking two C[∞] vector fields on Ω',

$$X(x) = \sum_{i=1}^n f_i(x)\partial_{x_i}, \quad Y(x) = \sum_{i=1}^n g_i(x)\partial_{x_i}, \quad x \in \Omega',$$

where $f_i, g_i \in C^{\infty}(\Omega')$, the introduce the Lie bracket

$$[X, Y](x) = \sum_{i=1}^{n} h_i(x) \partial_{x_i} \quad \text{where} \quad h_i = \sum_{j=1}^{n} \left(f_j \partial_{x_j} g_i - g_j \partial_{x_j} f_i \right).$$

• Lie algebra generated by $\{X_i\}_{i=1}^N$: Lie $(\{X_i\}_{i=1}^N) = \bigcup_{k=1}^\infty \text{Lie}^k(\{X_i\}_{i=1}^N)$, where Lie^k $(\{X_i\}_{i=1}^N)$ is defined recursively by taking

$$Lie^{1}(\{X_{i}\}_{i=1}^{N}) = span \{X_{i}\}_{i=1}^{N}$$

and for $k \ge 1$ $\mathsf{Lie}^{k+1}(\{X_i\}_{i=1}^N)$ $= \operatorname{span}\left(\mathsf{Lie}^k(\{X_i\}_{i=1}^N) \cup \left\{ [X, X_j] : X \in \mathsf{Lie}^k(\{X_i\}_{i=1}^N), j = 1, \dots, N \right\} \right).$

• Hörmander bracket condition: $Lie({X_i}_{i=1}^N)[x] = \mathbb{R}^n$ for all $x \in \Omega'$.

TERESA SCARINCI

HÖRMANDER BRACKET GENERATING CONDITION

Taking two C[∞] vector fields on Ω',

$$X(x) = \sum_{i=1}^n f_i(x)\partial_{x_i}, \quad Y(x) = \sum_{i=1}^n g_i(x)\partial_{x_i}, \quad x \in \Omega',$$

where $f_i, g_i \in C^{\infty}(\Omega')$, the introduce the Lie bracket

$$[X, Y](x) = \sum_{i=1}^{n} h_i(x) \partial_{x_i} \quad \text{where} \quad h_i = \sum_{j=1}^{n} \left(f_j \partial_{x_j} g_i - g_j \partial_{x_j} f_i \right).$$

• Lie algebra generated by $\{X_i\}_{i=1}^N$: Lie $(\{X_i\}_{i=1}^N) = \bigcup_{k=1}^\infty \text{Lie}^k(\{X_i\}_{i=1}^N)$, where Lie^k $(\{X_i\}_{i=1}^N)$ is defined recursively by taking

$$Lie^{1}(\{X_{i}\}_{i=1}^{N}) = span \{X_{i}\}_{i=1}^{N}$$

and for $k \ge 1$ $\text{Lie}^{k+1}(\{X_i\}_{i=1}^N)$ $= \text{span}\left(\text{Lie}^k(\{X_i\}_{i=1}^N) \cup \left\{ [X, X_j] : X \in \text{Lie}^k(\{X_i\}_{i=1}^N), j = 1, \dots, N \right\} \right).$

• Hörmander bracket condition: $Lie(\{X_i\}_{i=1}^N)[x] = \mathbb{R}^n$ for all $x \in \Omega'$.

TERESA SCARINCI

HÖRMANDER BRACKET GENERATING CONDITION. CONT.

DEFINITION

Degree of nonholonomy at x:

the smallest integer $r = r(x) \ge 1$ such that $Lie^{r}(\{X_1, \ldots, X_N\}) = \mathbb{R}^n$.

EXAMPLE (NONHOLOMONIC INTEGRATOR)

In \mathbb{R}^3 ,

$$f_1(x) = \begin{pmatrix} 1 \\ 0 \\ x_2 \end{pmatrix}, \quad f_2(x) = \begin{pmatrix} 0 \\ 1 \\ -x_1 \end{pmatrix}, \quad [f_1, f_2](x) = \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix}.$$

Thus, $Lie^{2}({f_{1}, f_{2}})[x] = span{f_{1}, f_{2}, [f_{1}, f_{2}]}[x] = \mathbb{R}^{3}$.

TERESA SCARINCI

SUBELLIPTIC EIKONAL EQUATIONS

AUGUST 2019 5 / 23

MINIMUM TIME PROBLEM

The solution T of

$$\sum_{j=1}^{N} (X_j T)^2 (x) = 1 \quad \text{in} \quad \Omega,$$
$$T = 0 \quad \text{on} \quad \Gamma$$

can be caracterized as the minimum time function: for $x \in \overline{\Omega}$,

 $T(x) = \min \tau_{\Gamma}(x, u)$ over all controls $u : [0, +\infty[\rightarrow \overline{B}_1(0) \subset \mathbb{R}^N]$

where τ_{Γ} is the *transfer time* to Γ

 $\tau_{\Gamma}(x,u) = \inf \left\{ t \geq 0 \ : \ y^{x,u}(t) \in \Gamma \right\}$

and $y^{x,u}(\cdot)$ is the unique solution of the Cauchy problem: for $t \ge 0$,

$$y'(t) = \sum_{j=1}^{N} u_j(t) X_j(y(t)), \ y(0) = x.$$

TERESA SCARINCI

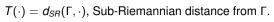
SUB-RIEMANNIAN DISTANCE

- X_1, \ldots, X_N are smooth vector fields linearly independent for all $x \in \mathbb{R}^n$.
- $\Delta(x) := \operatorname{span}\{X_1(x), \ldots, X_N(x)\}$ for all $x \in \mathbb{R}^n$.
- Let g(·, ·) be a Riemannian metric on ℝⁿ, associated with a smooth positive definite symmetric matrix Q(x), that is g_x(v, w) = ⟨Q(x)v, w⟩ for all x ∈ ℝⁿ, v and w in ℝⁿ.
- (Δ, g) : sub-Riemannian distribution of rank $N \leq n$ on \mathbb{R}^n .
- Sub-Riemmanian distance

$$d_{SR}(x,y) := \inf \Big\{ \int_0^1 g_{\gamma(t)}(\dot{\gamma}(t),\dot{\gamma}(t))dt : \dot{\gamma}(t) \in \Delta(\gamma(t)) \text{ a.e. on } [0,1],$$

$$\gamma(0) = x, \gamma(1) = y \Big\}.$$

Let (Δ, g) be a sub-Riemannian structure on ℝⁿ, then the topology defined by d_{SR} coincides with the original topology of ℝⁿ. In particular, the sub-Riemannian distance d_{SR} is continuous on ℝⁿ × ℝⁿ.



SUBELLIPTIC EIKONAL EQUATIONS

AUGUST 2019 7 / 23

VISCOSITY SOLUTIONS

When T is continuous, it is the viscosity solution of

$$\begin{cases} \sum_{j=1}^{N} (X_j T)^2 (x) = 1 & \text{in } \Omega, \\ T = 0 & \text{on } \Gamma. \end{cases}$$

Crandall, Ishii, Lions (1992), User's guide to viscosity solutions of second order partial differential equations.

KNOWN FACTS

Under the Hörmander condition

- the control problem is locally controllable (Chow-Rashevsky Theorem).
- *T* is finite and continuous.
- The Dirichlet problem has a unique viscosity solution.

THEOREM

T is $1/r_{\Omega}$ - Hölder continuous, where

$$r_{\Omega} = \max_{x \in \overline{\Omega}} \min\{k \geq 1 : Lie^{k}(\{X_i\}_{i=1}^{N})[x] = \mathbb{R}^n\}.$$

(Nagel-Stein-Wainger 1985, Evans-James 1989).

For instance, $[X_1, [X_1, X_2]]$ has length 3.

NON-DEGENERATE EQUATIONS

• Our eikonal equation can be recast as

$$\langle A(x)DT(x), DT(x) \rangle = 1$$
 in Ω ,

where $A(\cdot)$ is a suitable positive semidefinite $n \times n$ matrix with smooth entries and $DT = (\partial_{x_1}T, \ldots, \partial_{x_n}T)$.

- If for any x ∈ Ω, span{X₁,..., X_N}(x) = ℝⁿ, then the equation is nondegenerate. Any viscosity solution *T* is locally Lipschitz on Ω and, under mild assumptions (x ↦ ⟨A(x)p, p⟩ semiconvex), *T* is locally semiconcave on Ω.
- Petrov's condition (optimal control): here, if for any $x \in \Gamma$,

$$\sup_{u\in U} \langle \sum_{i=1}^{N} u_i X_i(x), \nabla d^{\Gamma}(x) \rangle > 0,$$

then T is locally Lipschitz on Ω (Veliov 1997), and moreover locally semiconcave (Cannarsa, Sinestrari 1995).

DEFINITION

A function $f: U \to \mathbb{R}$ is locally semiconcave in U if for every $V \Subset U$ there exists a constant C such that $D^2 f \leq CI$ in $\mathcal{D}'(V)$ (in the sense of quadratic forms). f is said to be semiconvex if -f is semiconcave.

DEGENERATE EQUATIONS: DEFINITIONS

Hamiltonian: for any $(x, p) \in \Omega' \times \mathbb{R}^n$,

$$h(x,p) = \sum_{j=1}^{N} \langle X_j(x), p \rangle^2 = \left(\sup_{u \in \overline{B}_1(0)} \sum_{j=1}^{N} u_j \langle X_j(x), p \rangle \right)^2.$$

DEFINITION

- Characteristic set: $Char(\{X_i\}_{i=1}^N) = \{(x, p) \in \Omega' \times \mathbb{R}^n \smallsetminus \{0\} : h(x, p) = 0\}.$
- Characteristic (boundary) points

$$E = \{x \in \Gamma : \operatorname{span}(\{X_i(x)\}_{i=1}^N) \subset T_{\Gamma}(x)\}.$$

EXAMPLE (HEISENBERG VECTOR FIELDS)

 $\ln \mathbb{R}^3, X_1 = \partial_{x_1}, X_2 = \partial_{x_2} + x_1 \partial_{x_3}.$

 $Char(X_1, X_2) = \{(x_1, x_2, x_3, 0, -x_1p_3, p_3) : (x_1, x_2, x_3) \in \Omega, p_3 \neq 0\}$

is a smooth submanifold of \mathbb{R}^6 of codimension 2.

Singular time-optimal trajectories may occur, and these may destroy the regularity of *T* (well known idea, see Sussmann (1992), Agrechev (1998), and then Trélat, Cannarsa and Rifford...)

TERESA SCARINCI

SUBELLIPTIC EIKONAL EQUATIONS

AUGUST 2019 11 / 23

DEGENERATE EQUATIONS: DEFINITIONS

Hamiltonian: for any $(x, p) \in \Omega' \times \mathbb{R}^n$,

$$h(x,p) = \sum_{j=1}^{N} \langle X_j(x), p \rangle^2 = \left(\sup_{u \in \overline{B}_1(0)} \sum_{j=1}^{N} u_j \langle X_j(x), p \rangle \right)^2.$$

DEFINITION

- Characteristic set: $Char(\{X_i\}_{i=1}^N) = \{(x, p) \in \Omega' \times \mathbb{R}^n \setminus \{0\} : h(x, p) = 0\}.$
- Characteristic (boundary) points

$$E = \{x \in \Gamma : \operatorname{span}(\{X_i(x)\}_{i=1}^N) \subset T_{\Gamma}(x)\}.$$

EXAMPLE (HEISENBERG VECTOR FIELDS)

In \mathbb{R}^3 , $X_1 = \partial_{x_1}$, $X_2 = \partial_{x_2} + x_1 \partial_{x_3}$.

 $\mathsf{Char}(X_1, X_2) = \big\{ (x_1, x_2, x_3, 0, -x_1 p_3, p_3) : (x_1, x_2, x_3) \in \Omega, \, p_3 \neq 0 \big\}$

is a smooth submanifold of \mathbb{R}^6 of codimension 2.

Singular time-optimal trajectories may occur, and these may destroy the regularity of T (well known idea, see Sussmann (1992), Agrechev (1998), and then Trélat, Cannarsa and Rifford...)

TERESA SCARINCI

SUBELLIPTIC EIKONAL EQUATIONS

AUGUST 2019 11 / 23

PONTRYAGIN MAXIMUM PRINCIPLE

Pontryagin Hamiltonian: $H(x, p, u) = \sum_{j=1}^{n} u_j \langle X_j(x), p \rangle$.

THEOREM

For every time-optimal trajectory starting from $x, y = y^{x,u}$, there exist $p(\cdot) \in AC([0, T(x)]; \mathbb{R}^n)$ and $\nu \in \{0, 1\}$ such that, for a.e. $t \in [0, T(x)]$, 1. $(p(\cdot), \nu) \neq 0$. 2. $p'_k(t) = -\sum_{j=1}^N u_j(t) \langle \partial_{x_k} X_j(y(t)), p(t) \rangle$ for every k = 1, ..., n. 3. $p(T(x)) \in N_{\Gamma}(T(x))$. 4. $H(y(t), p(t), u(t)) = \max_{v \in \overline{B}_1(0)} H(y(t), p(t), v)$. 5. $H(y, p, u) \equiv \nu$.

Note that $p : [0, T(x)] \to \mathbb{R}^n \setminus \{0\}$.

DEFINITION

An extremal lift is a 4-tuple (y, p, ν, u) solving (1)-(4). The extremal lift is normal if $\nu \neq 0$ and abnormal if $\nu = 0$. An optimal trajectory is said singular if it admits an abnormal extremal lift.

PONTRYAGIN MAXIMUM PRINCIPLE

Pontryagin Hamiltonian: $H(x, p, u) = \sum_{j=1}^{n} u_j \langle X_j(x), p \rangle$.

THEOREM

For every time-optimal trajectory starting from $x, y = y^{x,u}$, there exist $p(\cdot) \in AC([0, T(x)]; \mathbb{R}^n)$ and $\nu \in \{0, 1\}$ such that, for a.e. $t \in [0, T(x)]$, 1. $(p(\cdot), \nu) \neq 0$. 2. $p'_k(t) = -\sum_{j=1}^N u_j(t) \langle \partial_{x_k} X_j(y(t)), p(t) \rangle$ for every k = 1, ..., n. 3. $p(T(x)) \in N_{\Gamma}(T(x))$. 4. $H(y(t), p(t), u(t)) = \max_{v \in \overline{B}_1(0)} H(y(t), p(t), v)$. 5. $H(y, p, u) \equiv \nu$.

Note that $p : [0, T(x)] \to \mathbb{R}^n \setminus \{0\}$.

DEFINITION

An extremal lift is a 4-tuple (y, p, ν, u) solving (1)-(4). The extremal lift is normal if $\nu \neq 0$ and abnormal if $\nu = 0$. An optimal trajectory is said singular if it admits an abnormal extremal lift.

EXAMPLE

Strict abnormal minimizers may destroy the regularity of T.

EXAMPLE (LIU-SUSSMANN 1994)

In \mathbb{R}^3 consider vector fields

$$X_1 = \partial_{x_1}, \qquad X_2 = (1 - x_1)\partial_{x_2} + x_1^2 \partial_{x_3}.$$

Then, there exists a bounded open set $\Omega \subset \mathbb{R}^3$, with C^{∞} boundary, such that the viscosity solution of the Dirichlet problem

$$\left\{ \begin{array}{ll} (X_1 T)^2 + (X_2 T)^2 = 1 & \text{ in } \Omega, \\ \\ T|_{\Gamma} = 0, \end{array} \right.$$

fails to be locally Lipschitz in Ω .

This is a minimum time function T that is not better than Hölder continuous somewhere!

TERESA SCARINCI

SUBELLIPTIC EIKONAL EQUATIONS

AUGUST 2019 13 / 23

DEFINITION

y is time-optimal singular if there exists an extremal lift such that $\langle p(t), X_j(y(t)) \rangle = 0$ for all j = 1, ..., n, i.e. $(y(t), p(t)) \in \text{Char}(\{X_j\}_{j=1}^N)$.

THEOREM

Let $x \in \Omega$ and let $y = y^{x,u}$ be a time-optimal trajectory. Then y is singular $\iff y^{x,u}(T(x)) \in E = \{x \in \Gamma : \operatorname{span}(\{X_i(x)\}_{i=1}^N) \subset T_{\Gamma}(x)\}.$

Proof. Let (y, p) be such that $(y(t), p(t)) \in \text{Char}(\{X_j\}_{j=1}^N)$. The function $t \mapsto h(y(t), p(t))$ is constant. This implies that

 $y(T(x)) \in E \Leftrightarrow h(y(T(x)), p(T(x)) = 0 \Leftrightarrow (y(t), p(t)) \in \operatorname{Char}(\{X_j\}_{j=1}^N).$

THEOREM (DERRIDJ, 1972)

 $E \subset \Gamma$ is a closed set and $\mathcal{H}^{n-1}(E) = 0$.

DEFINITION

y is time-optimal singular if there exists an extremal lift such that $\langle p(t), X_j(y(t)) \rangle = 0$ for all j = 1, ..., n, i.e. $(y(t), p(t)) \in \text{Char}(\{X_j\}_{j=1}^N)$.

THEOREM

Let $x \in \Omega$ and let $y = y^{x,u}$ be a time-optimal trajectory. Then y is singular $\iff y^{x,u}(T(x)) \in E = \{x \in \Gamma : \operatorname{span}(\{X_i(x)\}_{i=1}^N) \subset T_{\Gamma}(x)\}.$

Proof. Let (y, p) be such that $(y(t), p(t)) \in \text{Char}(\{X_j\}_{j=1}^N)$. The function $t \mapsto h(y(t), p(t))$ is constant. This implies that

 $y(T(x)) \in E \Leftrightarrow h(y(T(x)), p(T(x)) = 0 \Leftrightarrow (y(t), p(t)) \in \operatorname{Char}(\{X_j\}_{j=1}^N).$

THEOREM (DERRIDJ, 1972)

 $E \subset \Gamma$ is a closed set and $\mathcal{H}^{n-1}(E) = 0$.

DEFINITION

y is time-optimal singular if there exists an extremal lift such that $\langle p(t), X_j(y(t)) \rangle = 0$ for all j = 1, ..., n, i.e. $(y(t), p(t)) \in \text{Char}(\{X_j\}_{j=1}^N)$.

THEOREM

Let $x \in \Omega$ and let $y = y^{x,u}$ be a time-optimal trajectory. Then y is singular $\iff y^{x,u}(T(x)) \in E = \{x \in \Gamma : \operatorname{span}(\{X_i(x)\}_{i=1}^N) \subset T_{\Gamma}(x)\}.$

Proof. Let (y, p) be such that $(y(t), p(t)) \in \text{Char}(\{X_j\}_{j=1}^N)$. The function $t \mapsto h(y(t), p(t))$ is constant. This implies that

 $y(T(x)) \in E \Leftrightarrow h(y(T(x)), p(T(x)) = 0 \Leftrightarrow (y(t), p(t)) \in \operatorname{Char}(\{X_j\}_{j=1}^N).$

THEOREM (DERRIDJ, 1972) $F \subset \Gamma$ is a closed set and $\mathcal{H}^{n-1}(F) = 0$

DEFINITION

y is time-optimal singular if there exists an extremal lift such that $\langle p(t), X_j(y(t)) \rangle = 0$ for all j = 1, ..., n, i.e. $(y(t), p(t)) \in \text{Char}(\{X_j\}_{j=1}^N)$.

THEOREM

Let $x \in \Omega$ and let $y = y^{x,u}$ be a time-optimal trajectory. Then y is singular $\iff y^{x,u}(T(x)) \in E = \{x \in \Gamma : \operatorname{span}(\{X_i(x)\}_{i=1}^N) \subset T_{\Gamma}(x)\}.$

Proof. Let (y, p) be such that $(y(t), p(t)) \in \text{Char}(\{X_j\}_{j=1}^N)$. The function $t \mapsto h(y(t), p(t))$ is constant. This implies that

 $y(T(x)) \in E \Leftrightarrow h(y(T(x)), p(T(x)) = 0 \Leftrightarrow (y(t), p(t)) \in \operatorname{Char}(\{X_j\}_{j=1}^N).$

THEOREM (DERRIDJ, 1972)

 $E \subset \Gamma$ is a closed set and $\mathcal{H}^{n-1}(E) = 0$.

DEFINITION

We say that a function $f : \overline{\Omega} \to \mathbb{R}$ is Lipschitz at a point $x_0 \in \overline{\Omega}$ if there exists a neighbourhood U of x_0 and a constant $L \ge 0$ such that

 $|f(x)-f(x_0)| \leq L|x-x_0| \quad \forall x \in U \cap \overline{\Omega}.$

THEOREM

Assume (H) and let $x_0 \in \Omega$. Then T fails to be Lipschitz at x_0 if and only if there exists a singular time-optimal $y^{x_0,u}$.

TERESA SCARINCI

SUBELLIPTIC EIKONAL EQUATIONS

AUGUST 2019 15 / 23

INTERIOR REGULARITY

THEOREM (INTERIOR REGULARITY)

Under assumption (H), the following properties are equivalent:

- 1. the minimum time problem admits no singular time-optimal trajectory;
- 2. T is locally semiconcave in Ω ;
- 3. T is locally Lipschitz continuous in Ω .

Proof. 2 \Rightarrow 3 is well-known. The theorem in the previous slide shows that 3 \Rightarrow 1. The implication 1 \Rightarrow 2 follows by a combination of

THEOREM (CANNARSA-SINESTRARI, 1995)

For a smooth controlled system, the minimum time is locally semiconcave whenever the target is a noncharacteristic smooth compact manifold.

and

THEOREM (DERRIDJ, 1972)

 $E \subset \Gamma$ is a closed set and $\mathcal{H}^{n-1}(E) = 0$.

TERESA SCARINCI

SUBELLIPTIC EIKONAL EQUATIONS

AUGUST 2019 16 / 23

INTERIOR REGULARITY

THEOREM (INTERIOR REGULARITY)

Under assumption (H), the following properties are equivalent:

- 1. the minimum time problem admits no singular time-optimal trajectory;
- 2. T is locally semiconcave in Ω ;
- 3. T is locally Lipschitz continuous in Ω .

Proof. 2 \Rightarrow 3 is well-known. The theorem in the previous slide shows that 3 \Rightarrow 1. The implication 1 \Rightarrow 2 follows by a combination of

THEOREM (CANNARSA-SINESTRARI, 1995)

For a smooth controlled system, the minimum time is locally semiconcave whenever the target is a noncharacteristic smooth compact manifold.

and

THEOREM (DERRIDJ, 1972)

 $E \subset \Gamma$ is a closed set and $\mathcal{H}^{n-1}(E) = 0$.

INTERIOR REGULARITY

THEOREM (INTERIOR REGULARITY)

Under assumption (H), the following properties are equivalent:

- 1. the minimum time problem admits no singular time-optimal trajectory;
- 2. T is locally semiconcave in Ω ;
- 3. T is locally Lipschitz continuous in Ω .

Proof. 2 \Rightarrow 3 is well-known. The theorem in the previous slide shows that 3 \Rightarrow 1. The implication 1 \Rightarrow 2 follows by a combination of

THEOREM (CANNARSA-SINESTRARI, 1995)

For a smooth controlled system, the minimum time is locally semiconcave whenever the target is a noncharacteristic smooth compact manifold.

and

THEOREM (DERRIDJ, 1972)

 $E \subset \Gamma$ is a closed set and $\mathcal{H}^{n-1}(E) = 0$.

BOUNDARY REGULARITY

DEFINITION

We say that a function $f : \overline{\Omega} \to \mathbb{R}$ is Hölder continuous of exponent $\alpha \in]0, 1]$ at a point $x_0 \in$ if there exist a neighborhood $U \subset$ of x_0 and a constant $C \ge 0$ such that

 $|f(x) - f(x_0)| \leq C|x - x_0|^{\alpha} \quad \forall x \in U \cap \overline{\Omega}.$

THEOREM

Assume (H). Then:

- 1. for any $x \in \Gamma \setminus E$, *T* is C^{∞} in a neighborhood of *x*;
- 2. for any $x \in E$, T is Hölder continuous at x of exponent 1/k(x), with k(x) given by

$$k(x) = \min \{k \ge 1 : Lie^k(\{X_i\}_{i=1}^N)[x] = \mathbb{R}^n\}$$
 $(x \in \Omega).$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

• $\{X_i\}_{i=1}^N$ is strongly bracket generating on Ω if for every $v = (v_1, \dots, v_N) \in \mathbb{R}^N \setminus \{0\},\$

$$\operatorname{span}\{X_i\}_{i=1}^N[x]+\operatorname{span}\left\{\sum_{j=1}^Nv_j[X_j,X_i]
ight\}_{i=1}^N[x]=\mathbb{R}^n\qquad orall x\in\Omega.$$

Example: Heisenberg vector field.

- Γ is noncharacteristic and $Char(X_1, \ldots, X_N)$ is a sympletic manifold.
- Systems of vector fields admitting, in general, singular time-optimal trajectories may have a better behaviour when Ω enjoys specific properties.

EXAMPLE (LTU-SUSSMAN'S EXAMPLE)

consider vector fields

$X_1 = \partial_{x_1}$, $X_2 = (1 - x_1)\partial_{x_2} + x_1^2 \partial_{x_3}$

and let 0 be a bounded convex open set with C^{ree} boundary. Then, there are an an an an an and the set of the

• $\{X_i\}_{i=1}^N$ is strongly bracket generating on Ω if for every $v = (v_1, \dots, v_N) \in \mathbb{R}^N \setminus \{0\},\$

$$\operatorname{span}\{X_i\}_{i=1}^N[x] + \operatorname{span}\left\{\sum_{j=1}^N v_j[X_j, X_i]\right\}_{i=1}^N [x] = \mathbb{R}^n \qquad \forall x \in \Omega.$$

Example: Heisenberg vector field.

- Γ is noncharacteristic and $Char(X_1, \ldots, X_N)$ is a sympletic manifold.
- Systems of vector fields admitting, in general, singular time-optimal trajectories may have a better behaviour when Ω enjoys specific properties.

EXAMPLE (LIU-SUSSMAN'S EXAMPLE)

In \mathbb{R}^3 consider vector fields

$$X_1 = \partial_{x_1}, \quad X_2 = (1 - x_1)\partial_{x_2} + x_1^2 \partial_{x_3}$$

and let Ω be a bounded convex open set with C^{∞} boundary. Then, there are no singular time-optimal trajectory.

TERESA SCARINCI

SUBELLIPTIC EIKONAL EQUATIONS

AUGUST 2019 18 / 23

• $\{X_i\}_{i=1}^N$ is strongly bracket generating on Ω if for every $v = (v_1, \dots, v_N) \in \mathbb{R}^N \setminus \{0\},\$

$$\operatorname{span}\{X_i\}_{i=1}^N[x]+\operatorname{span}\left\{\sum_{j=1}^Nv_j[X_j,X_i]
ight\}_{i=1}^N[x]=\mathbb{R}^n\qquad orall x\in\Omega.$$

Example: Heisenberg vector field.

- Γ is noncharacteristic and $Char(X_1, \ldots, X_N)$ is a sympletic manifold.
- Systems of vector fields admitting, in general, singular time-optimal trajectories may have a better behaviour when Ω enjoys specific properties.

EXAMPLE (LIU-SUSSMAN'S EXAMPLE)

In \mathbb{R}^3 consider vector fields

$$X_1 = \partial_{x_1}, \quad X_2 = (1 - x_1)\partial_{x_2} + x_1^2 \partial_{x_3}$$

and let Ω be a bounded convex open set with C^{∞} boundary. Then, there are no singular time-optimal trajectory.

TERESA SCARINCI

SUBELLIPTIC EIKONAL EQUATIONS

AUGUST 2019 18 / 23

• $\{X_i\}_{i=1}^N$ is strongly bracket generating on Ω if for every $v = (v_1, \dots, v_N) \in \mathbb{R}^N \setminus \{0\},\$

$$\operatorname{span}\{X_i\}_{i=1}^N[x] + \operatorname{span}\left\{\sum_{j=1}^N v_j[X_j, X_i]\right\}_{i=1}^N [x] = \mathbb{R}^n \qquad \forall x \in \Omega.$$

Example: Heisenberg vector field.

- Γ is noncharacteristic and $Char(X_1, \ldots, X_N)$ is a sympletic manifold.
- Systems of vector fields admitting, in general, singular time-optimal trajectories may have a better behaviour when Ω enjoys specific properties.

EXAMPLE (LIU-SUSSMAN'S EXAMPLE)

In \mathbb{R}^3 consider vector fields

$$X_1 = \partial_{x_1}, \quad X_2 = (1 - x_1)\partial_{x_2} + x_1^2 \partial_{x_3}$$

and let Ω be a bounded convex open set with C^{∞} boundary. Then, there are no singular time-optimal trajectory.

TERESA SCARINCI

What happens if singular-time optimal trajectories may appear?

```
DEFINITION

For any x \in \Omega and any k \in \mathbb{N} \cup \{\infty\},

x \notin \text{sing supp}_{Lip} T \iff \exists an open set U \ni x : T \in Lip(U).

x \notin \text{sing supp}_{C^k} T \iff \exists an open set U \ni x : T \in C^k(U).
```

```
Finally, sing supp T := \operatorname{sing supp}_{C^{\infty}} T.
```

Properties under Assumption (H)

- sing supp_{Lip} T is a closed set
- sing supp_{Lip} T has null Lebesgue measure (Nguyen, 2010).
- T is locally semiconcave on $\Omega \setminus \text{sing supp}_{Lip} T$.

THEOREM

Under Assumption (H), sing $supp_{C^{\infty}} T = sing supp_{C^{1,1}} T$.

Proof. We show that $\Omega \setminus \operatorname{sing supp}_{C^{1,1}} T \subseteq \Omega \setminus \operatorname{sing supp} T$.

- For any x ∈ Ω \ sing supp_{C11} T, there exists a unique (nonsingular) optimal trajectory starting from x, say y^{x,ux}.
- $*: \gamma^{e_1 h}(T(x)) := S$ is noncharacteristic point.
- st We introduce the system of characteristic: for $\xi \in V \subset \Gamma$ nghd of ξ_{i} ,
 - $-X(t) = -\nabla_{\rho} H(X(t), P(t)), \quad X(0) = \xi,$
 - $P(t) = \nabla_{x} H(X(t), P(t)), \quad P(0) = g(\xi) := H(\xi, v(\xi))^{-1} v(\xi)$
- Since $T \in \mathbb{C}^{|V|}$ in a righb of x, there are no conjugate times for x, and T is of class $\mathbb{C}^{|V|}$ on a neighborhood of $\gamma^{r,r}([0, T(x))]$ (Cannarsa-S.2015).

By the method of characteristics, $T\in C^\infty$ on a righb of x.

THEOREM

Under Assumption (H), sing $supp_{C^{\infty}} T = sing supp_{C^{1,1}} T$.

Proof. We show that $\Omega \setminus \operatorname{sing supp}_{C^{1,1}} T \subseteq \Omega \setminus \operatorname{sing supp} T$.

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・

THEOREM

Under Assumption (H), sing $supp_{C^{\infty}} T = sing supp_{C^{1,1}} T$.

Proof. We show that $\Omega \setminus \operatorname{sing supp}_{C^{1,1}} T \subseteq \Omega \setminus \operatorname{sing supp} T$.

- For any x ∈ Ω \ sing supp_{C^{1,1}} T, there exists a unique (nonsingular) optimal trajectory starting from x, say y^{x,ux}.
- $y^{x,u_x}(T(x)) := \xi_x$ is noncharacteristic point.
- We introduce the system of characteristic: for $\xi \in V \subset \Gamma$ nghd of ξ_x ,

$$\begin{cases} -\dot{X}(t) = \nabla_{\rho} H(X(t), P(t)), \quad X(0) = \xi, \\ \dot{P}(t) = \nabla_{x} H(X(t), P(t)), \quad P(0) = g(\xi) := H(\xi, \nu(\xi)) \end{cases}$$

• Since $T \in C^{1,1}$ in a nghb of x, there are no conjugate times for x, and T is of class $C^{1,1}$ on a neighborhood of $y^{x,u}([0, T(x))$ (Cannarsa-S. 2015).

By the method of characteristics, $T \in C^{\infty}$ on a nghb of *x*.

TERESA SCARINCI

SUBELLIPTIC EIKONAL EQUATIONS

AUGUST 2019 20 / 23

THEOREM

Under Assumption (H), sing $supp_{C^{\infty}} T = sing supp_{C^{1,1}} T$.

Proof. We show that $\Omega \setminus \operatorname{sing supp}_{C^{1,1}} T \subseteq \Omega \setminus \operatorname{sing supp} T$.

- For any x ∈ Ω \ sing supp_{C1,1} T, there exists a unique (nonsingular) optimal trajectory starting from x, say y^{x,ux}.
- $y^{x,u_x}(T(x)) := \xi_x$ is noncharacteristic point.
- We introduce the system of characteristic: for ξ ∈ V ⊂ Γ nghd of ξ_x,

$$\begin{cases} -\dot{X}(t) = \nabla_{\mathcal{P}} H(X(t), P(t)), & X(0) = \xi, \\ \dot{P}(t) = \nabla_{X} H(X(t), P(t)), & P(0) = g(\xi) := H(\xi, \nu(\xi))^{-1} \nu(\xi). \end{cases}$$

• Since $T \in C^{1,1}$ in a nghb of x, there are no conjugate times for x, and T is of class $C^{1,1}$ on a neighborhood of $y^{x,u}([0, T(x))$ (Cannarsa-S. 2015).

By the method of characteristics, $T \in C^{\infty}$ on a nghb of *x*. TERESA SCARINCI

SUBELLIPTIC EIKONAL EQUATIONS

AUGUST 2019 20 / 23

THEOREM

Under Assumption (H), sing $supp_{C^{\infty}} T = sing supp_{C^{1,1}} T$.

Proof. We show that $\Omega \setminus \operatorname{sing supp}_{C^{1,1}} T \subseteq \Omega \setminus \operatorname{sing supp} T$.

- For any x ∈ Ω \ sing supp_{C^{1,1}} T, there exists a unique (nonsingular) optimal trajectory starting from x, say y^{x,ux}.
- $y^{x,u_x}(T(x)) := \xi_x$ is noncharacteristic point.
- We introduce the system of characteristic: for ξ ∈ V ⊂ Γ nghd of ξ_x,

$$\begin{cases} -\dot{X}(t) &= \nabla_{\mathcal{P}} H(X(t), \mathcal{P}(t)), \quad X(0) = \xi, \\ \dot{\mathcal{P}}(t) &= \nabla_{X} H(X(t), \mathcal{P}(t)), \quad \mathcal{P}(0) = g(\xi) := H(\xi, \nu(\xi))^{-1} \nu(\xi). \end{cases}$$

Since T ∈ C^{1,1} in a nghb of x, there are no conjugate times for x, and T is of class C^{1,1} on a neighborhood of y^{x,u}([0, T(x)) (Cannarsa-S. 2015).

THEOREM

Under Assumption (H), sing $supp_{C^{\infty}} T = sing supp_{C^{1,1}} T$.

Proof. We show that $\Omega \setminus \operatorname{sing supp}_{C^{1,1}} T \subseteq \Omega \setminus \operatorname{sing supp} T$.

- For any x ∈ Ω \ sing supp_{C^{1,1}} T, there exists a unique (nonsingular) optimal trajectory starting from x, say y^{x,ux}.
- $y^{x,u_x}(T(x)) := \xi_x$ is noncharacteristic point.
- We introduce the system of characteristic: for ξ ∈ V ⊂ Γ nghd of ξ_x,

$$\begin{cases} -\dot{X}(t) = \nabla_{p} H(X(t), P(t)), & X(0) = \xi, \\ \dot{P}(t) = \nabla_{x} H(X(t), P(t)), & P(0) = g(\xi) := H(\xi, \nu(\xi))^{-1} \nu(\xi). \end{cases}$$

• Since $T \in C^{1,1}$ in a nghb of x, there are no conjugate times for x, and T is of class $C^{1,1}$ on a neighborhood of $y^{x,u}([0, T(x))$ (Cannarsa-S. 2015).

THEOREM

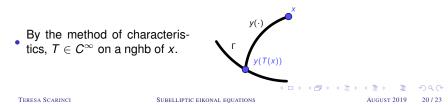
Under Assumption (H), sing $supp_{C^{\infty}} T = sing supp_{C^{1,1}} T$.

Proof. We show that $\Omega \setminus \operatorname{sing supp}_{C^{1,1}} T \subseteq \Omega \setminus \operatorname{sing supp} T$.

- For any x ∈ Ω \ sing supp_{C^{1,1}} T, there exists a unique (nonsingular) optimal trajectory starting from x, say y^{x,ux}.
- $y^{x,u_x}(T(x)) := \xi_x$ is noncharacteristic point.
- We introduce the system of characteristic: for ξ ∈ V ⊂ Γ nghd of ξ_x,

$$\begin{cases} -\dot{X}(t) = \nabla_{p} H(X(t), P(t)), & X(0) = \xi, \\ \dot{P}(t) = \nabla_{x} H(X(t), P(t)), & P(0) = g(\xi) := H(\xi, \nu(\xi))^{-1} \nu(\xi). \end{cases}$$

• Since $T \in C^{1,1}$ in a nghb of x, there are no conjugate times for x, and T is of class $C^{1,1}$ on a neighborhood of $y^{x,u}([0, T(x))$ (Cannarsa-S. 2015).



In the complement of a closed set of measure zero T has the same regularity of the data of the Dirichlet problem:

THEOREM

sing supp T is a closed set of Lebesgue measure zero.

Proof. We show that $sing supp_{C^{1,1}} T$ has null Lebesgue measure.

sing supp_{C^{1,1}} $T = \operatorname{sing supp}_{Lip} T \cup (\operatorname{sing supp}_{C^{1,1}} T \smallsetminus \operatorname{sing supp}_{Lip} T)$.

Now note that

- sing supp_{Lip} T has null Lebesgue measure by Nguyen, 2010.
- T is locally semiconcave in Ω ~ sing $\sup_{D_{R}} T \rightarrow T$ has a second-order expansion a.e. on Ω ~ sing $\sup_{D_{R}} T$ by Alexandroff → There exists a set of full measure in Ω ~ sing $\sup_{D_{R}} T$ which lies in the complement of sing $\sup_{D_{R}} T$ ~ sing $\sup_{D_{R}} T$ (follows from Cannarsa - S. 2015).

In the complement of a closed set of measure zero T has the same regularity of the data of the Dirichlet problem:

THEOREM

sing supp T is a closed set of Lebesgue measure zero.

Proof. We show that sing $supp_{C^{1,1}} T$ has null Lebesgue measure.

sing supp_{C^{1,1}} $T = sing supp_{Lip} T \cup (sing supp_{C^{1,1}} T \setminus sing supp_{Lip} T)$.

Now note that

- sing supp_{Lip} T has null Lebesgue measure by Nguyen, 2010.
- *T* is locally semiconcave in $\Omega < sing supp_{Lp} T \Rightarrow T$ has a second-order expansion a.e. on $\Omega < sing supp_{Lp} T$ by Alexandroff \Rightarrow There exists a set of full measure in $\Omega < sing supp_{Lp} T$ which lies in the complement of sing supp_{CL} T < sing supp_{Lp} T (follows from Cannarsa- S. 2015).

In the complement of a closed set of measure zero T has the same regularity of the data of the Dirichlet problem:

THEOREM

sing supp T is a closed set of Lebesgue measure zero.

Proof. We show that sing $supp_{C^{1,1}} T$ has null Lebesgue measure.

sing supp_{C^{1,1}} $T = sing supp_{Lip} T \cup (sing supp_{C^{1,1}} T \setminus sing supp_{Lip} T)$.

Now note that

- sing supp_{Lip} T has null Lebesgue measure by Nguyen, 2010.
- *T* is locally semiconcave in Ω < sing supp_{Lip} T ⇒ T has a second-order expansion a.e. on Ω < sing supp_{Lip} T by Alexandroff ⇒ There exists a set of full measure in Ω < sing supp_{Lip} T which lies in the complement of sing supp_{C1,1} T < sing supp_{Lip} T (follows from Cannarsa- S. 2015).

In the complement of a closed set of measure zero T has the same regularity of the data of the Dirichlet problem:

THEOREM

sing supp T is a closed set of Lebesgue measure zero.

Proof. We show that sing $supp_{C^{1,1}} T$ has null Lebesgue measure.

sing supp_{C^{1,1}} $T = \text{sing supp}_{Lip} T \cup (\text{sing supp}_{C^{1,1}} T \setminus \text{sing supp}_{Lip} T)$.

Now note that

- sing supp_{Lip} T has null Lebesgue measure by Nguyen, 2010.
- *T* is locally semiconcave in Ω \ sing supp_{Lip} T ⇒ T has a second-order expansion a.e. on Ω \ sing supp_{Lip} T by Alexandroff ⇒ There exists a set of full measure in Ω \ sing supp_{Lip} T which lies in the complement of sing supp_{C1,1} T \ sing supp_{Lip} T (follows from Cannarsa- S. 2015).

Some Known facts and Open Problems when the target is a singleton

- Known fact: semiconcavity for the sub-Riemannian distance for vector fields admitting no singular minimizing controls in a bracket generating subRiemannian manifold.¹
- At a point *x* along a *strictly* abnormal minimizer leaving from *x*₀, the distance from *x*₀ can not be expected to be Lipschitz at *x*.
- Lack of semiconcavity for some classes of problems with normal-abnormal minimizers.²
- Open Problem: "Sard conjectures" in sub-Riemannian geometry: the distance from a point is not smooth on a set that is the complement of an open and dense set, but it is not known whether it has measure zero. ³



A sub-Riemannian sphere

¹P. Cannarsa and L. Rifford, Semiconcavity results for optimal control problems admitting no singular minimizing controls, 2008.

²A. Montanari, D. Morbidelli. On the lack of semiconcavity of the sub- Riemannian distance in a class of Carnot groups, 2016.

³See A. Figalli and L. Rifford. Mass transportation on sub-Riemannian manifolds, 2010, and L. Rifford and E. Trélat, Morse-Sard type results in sub-Riemannian geometry, 2005.

TERESA SCARINCI

SUBELLIPTIC EIKONAL EQUATIONS

AUGUST 2019 22 / 23

Thank you for the attention!

References

- P. Albano, P. Cannarsa, T. Scarinci. Regularity Results for the Minimum Time Function with Hörmander Vector Fields. Journal of Differential Equations (2018).
- P. Albano, P. Cannarsa, T. Scarinci. Partial regularity for solutions to subelliptic eikonal equations. Comptes Rendus Mathematique (2018).

TERESA SCARINCI

SUBELLIPTIC EIKONAL EQUATIONS

AUGUST 2019 23 / 23