
Spectral analysis of discrete elliptic operators and applications in
control theory

Morgan MORANCEY

I2M, Aix-Marseille Université

August 22, 2019

VIII Partial differential equations, optimal design and numerics, Benasque.

Thematic session ‘Numerics and control ’

Joint work with D. Allonsius & F. Boyer

Morgan MORANCEY Spectral analysis of discrete elliptic operators and applications in control theory 1



The problem under study

One dimensional Sturm Liouville operator on (0, 1)

A = −∂x(γ(x)∂x•) + q(x)•,

where q ∈ C0([0, 1];R) and γ ∈ C1([0, 1];R) with γmin := inf
x∈[0,1]

γ(x) > 0.

Finite difference scheme with N points

(AhU)j = − 1

h

(
γj+1/2

uj+1 − uj
h

− γj−1/2
uj − uj−1

h

)
+ qjuj ,

where U = (uj)1≤j≤N .

The associated parabolic control problems
(yh)′(t) +Ahyh(t) = 1ωv

h(t),

yh0 (t) = yhN+1(t) = 0,

yh(0) = y0,h,


(yh)′(t) +Ahyh(t) = 0,

yh0 (t) = 0, yhN+1(t) = vh(t),

yh(0) = y0,h,

with uniformly bounded controls (with respect to h).
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Some previous results

Uniform null controllability.

Lopez & Zuazua (1998) for the 1D Laplace operator.

A weaker controllability notion (φ(h)−null controllability).

Labbé & Trélat (2006).

Boyer, Hubert & Le Rousseau (2010).

Present work: controllability via the moment method.
Application to cascade systems of equations, for distributed and boundary
controls.
Limitation to 1D.
−→ need a careful spectral analysis of Ah.
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1 The continuous problem
The moment method
A strategy for spectral analysis

2 Spectral analysis of the discrete problem
The discrete setting
A rough estimate
A refined estimate

3 Application to controllability
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Setting


∂ty(t) +Ay(t) = 1ω(x)v(t, x),

y(t, 0) = y(t, 1) = 0,

y(0) = y0.

Eigenelements: Aϕk = λkϕk.
Complete family of normalized eigenvectors in L2(0, 1).
Solution by transposition.

〈y(t), z〉 − 〈y0, e−tA
∗
z〉 =

∫ t

0

〈v(τ), e−(t−τ)A∗
z〉L2(ω) dτ,

for any t ∈ [0, T ], and any z ∈ L2(0, 1).
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The moment problem

For any k ≥ 1,

〈y(T ), ϕk〉 − 〈y0, e−λkTϕk〉 =

∫ T

0

e−λk(T−t)〈v(t), ϕk〉L2(ω) dt.

The moment problem: y(T ) = 0 if and only if

∫ T

0

e−λk(T−t)〈v(t), ϕk〉L2(ω) dt = −e−λkT 〈y0, ϕk〉, ∀k ≥ 1.

Definition of a biorthogonal family: (qj)j≥1 ∈ L2(0, T ;R) such that∫ T

0

e−λktqj(t) dt = δk,j .

Existence of such biorthogonal family ⇐⇒
∑
k≥1

1

λk
< +∞.

−→ Restriction to 1D setting.
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Resolution of the moment problem

∫ T

0

e−λk(T−t)〈v(t), ϕk〉L2(ω) dt = −e−λkT 〈y0, ϕk〉, ∀k ≥ 1.

Lagnese (1983). Look for a control v in the form

v(t, x) =
∑
k≥1

αkqk(T − t)(1ωϕk)(x)

leads to the formal solution

v(t, x) = −
∑
k≥1

e−λkT 〈y0, ϕk〉qk(T − t) (1ωϕk)(x)

‖ϕk‖2L2(ω)

.

In the case of a boundary control

v(t) =
∑
k≥1

e−λkT
〈y0, ϕk〉
γ(1)ϕ′k(1)

qk(T − t).

To prove it rigorously, need of spectral analysis of eigenelements of A
existence and estimate of the biorthogonal family;
lower bound on ‖ϕk‖2L2(ω)

and on |ϕ′k(1)|.
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Uniform bounds on biorthogonal family

Fattorini & Russell (1974)

Definition (A particular class of sequences)

Let ρ > 0 and N : (0,+∞)→ N. Let Λ = (λk)k≥1 ⊂ R+ an increasing sequence
satisfying

∑
k≥1

1
λk

< +∞. We say that Λ ∈ L(ρ,N ) if

λk+1 − λk > ρ, for any k ≥ 1;
we have for any ε > 0, ∑

k≥N (ε)

1

λk
< ε.

Uniform bound on biorthogonal sequences
Let T > 0, ρ > 0 and N : (0,+∞)→ N. For any ε > 0, there exists Cε > 0 such that
for any Λ ∈ L(ρ,N ), there exists (qj)j≥1 ⊂ L2(0, T ;R) such that∫ T

0

e−λktqj(t)dt = δk,j , ∀k, j ≥ 1,

and
‖qj‖L2(0,T ;R) ≤ Cεe

ελk , ∀j ≥ 1.
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Summary

v(t, x) = −
∑
k≥1

e−λkT 〈y0, ϕk〉qk(T − t) (1ωϕk)(x)

‖ϕk‖2L2(ω)

,

v(t) =
∑
k≥1

e−λkT
〈y0, ϕk〉
γ(1)ϕ′k(1)

qk(T − t).

Gap condition on Λ + asymptotic behaviour =⇒ ‖qk‖L2(0,T ;R) ≤ Cεeελk

Lower bounds on ‖ϕk‖L2(ω) and |ϕ′k(1)| to be compared to e−λkT .
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The Laplace operator

Assume that γ = 1 and q = 0 i.e. A = −∂xx.

λk = k2π2 and ϕk(x) =
√

2 sin(kπx).

Asymptotic behaviour:
∑
k≥1

1
λk

< +∞.

Gap property:
λk+1 − λk = (k + 1)2π2 − k2π2 ≥ C

√
λk.

Normal derivative: |ϕ′k(1)| = C
√
λk.

Localization of eigenvectors:∫ b

a

ϕ2
k(x)dx −→

k→+∞
b− a.
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The general case

Eigenelements not explicitely known but same results.

Proposition

Gap property: λk+1 − λk ≥ Ck, for every k ≥ 1.

Normal derivative: |ϕ′k(1)| ≥ Ck, for every k ≥ 1.

Localization of eigenvectors: there exists C(ω) > 0 such that

‖ϕk‖L2(ω) ≥ C(ω).
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A useful change of variables

Au(x) = λu(x) + f(x).

Let

U(x) :=

(
u(x)√
γ(x)
λ
u′(x)

)
.

Then,

U ′(x) =

 0
√

λ
γ(x)

−
√

λ
γ(x)

0


︸ ︷︷ ︸
evolution operator M(x)

U(x) +

(
0 0
q(x)√
λγ(x)

√
γ(x)

(
1√
γ

)′
(x)

)
︸ ︷︷ ︸

remainder Q(x)

U(x) +

(
0

− f(x)√
γ(x)λ

)
︸ ︷︷ ︸

F (x)

The resolvant operator associated with M is S(y, x) = exp
(∫ y
x
M(s)ds

)
and

satisfies ‖S(y, x)‖ = 1.

The remainder contains bounded terms in λ.

‖U(y)‖ ≤ C
(
‖U(x)‖+

∣∣∣∣∫ y

x

‖F (s)‖ds
∣∣∣∣) .
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Normal derivative and localization

Let u := ϕk.

U(x) :=

(
u(x)√
γ(x)
λ
u′(x)

)
, ‖U(y)‖ ≤ C‖U(x)‖.

Then,
|ϕk(y)|2 ≤ ‖U(y)‖2 ≤ C‖U(x)‖2 = C

(
|ϕk(x)|2 +

γ(x)

λk
|ϕ′k(x)|2

)
.

Integrating for y ∈ (0, 1) and using ‖ϕk‖L2(0,1) = 1 it comes that

|ϕk(x)|2 +
γ(x)

λk
|ϕ′k(x)|2 ≥ C, ∀x ∈ [0, 1].

|ϕk(x)|2 +
γ(x)

λk
|ϕ′k(x)|2 ≥ C, ∀x ∈ [0, 1]. (∗)

Normal derivative. Taking x = 1 in (∗) implies

|ϕ′k(1)| ≥ C
√
λk, ∀k ≥ 1.

Localization. Caccioppoli-like inequality: for ω0 ⊂⊂ ω,∫
ω0

γ(x)|ϕ′k(x)|2dx ≤ Cλk‖ϕk‖2ω +
C

λk
‖ϕ′k‖2ω,

Integrating (∗) for x ∈ ω0 leads to

‖ϕk‖ω ≥ C, ∀k ≥ 1.
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The gap property

U(x) :=

(
u(x)√
γ(x)
λ
u′(x)

)
, ‖U(y)‖ ≤ C

(
‖U(x)‖+

∣∣∣∣∫ y

x

‖F (s)‖ds
∣∣∣∣) .

Let u(x) := ϕ′k(1)ϕk+1(x)− ϕ′k+1(1)ϕk(x). Thus U(1) = 0.

We have Au = λk+1u+ ϕ′k+1(1) (λk+1 − λk)ϕk. We have for any y ∈ [0, 1]

‖U(y)‖ ≤ C
∫ 1

y

‖F (s)‖ds ≤ C
∫ 1

0

‖F (s)‖ds

≤ C
√
γmin

(
λk+1 − λk√

λk+1

|ϕ′k+1(1)|

)∫ 1

0

|ϕk(s)| ds

Integrating for y ∈ (0, 1) and using
∫ 1

0
ϕk(y)ϕk+1(y)dy = 0 we get

|ϕ′k+1(1)|2 ≤ |ϕ′k+1(1)|2 + |ϕ′k(1)|2 ≤ C

γmin

(
λk+1 − λk√

λk+1

|ϕ′k+1(1)|

)2

,

Thus, λk+1 − λk ≥ C
√
λk+1.
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U(x) :=

(
u(x)√
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(
λk+1 − λk√

λk+1

|ϕ′k+1(1)|

)∫ 1

0

|ϕk(s)| ds

Using ‖ϕk‖L2(0,1) = 1 and the expression of U ,∣∣ϕ′k(1)ϕk+1(y)− ϕ′k+1(1)ϕk(y)
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γmin

(
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)2
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Form of the controls

h =
1

N + 1
, Ahϕhk = λhkϕ

h
k , ∀k ∈ J1, NK, ∂rϕ

h
k :=

0− ϕhk,N
h

.

Distributed control

vh(t) = −
N∑
k=1

e−λ
h
kT 〈y0,h, ϕhk〉 qhk (T − t) (1ωϕ

h
k)

‖1ωϕhk‖2h
∈ L2(0, T ;RN ).

Boundary control

vh(t) =

N∑
k=1

e−λ
h
kT

〈y0,h, ϕhk〉
γN+1/2∂rϕhk

qhk (T − t) ∈ L2(0, T ;R).

No problem of convergence of sums BUT we aim to design bounded controls !
Class L(ρ,N ) ensures uniform bounds for qk. Uses a uniform gap

λhk+1 − λhk ≥ C, ∀h > 0, ∀k ∈ J1, NK.

Estimate (not necessarily uniformly) the spectral quantities

‖1ωϕhk‖2h, ∂rϕ
h
k .
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Comparison with the continuous setting

Lopez & Zuazua (1998). The Laplace operator (γ = 1 and q = 0):

µhk =
4

h2
sin2

(
hkπ

2

)
, φhk =

(√
2 sin(kπjh)

)
j∈J1,NK.

Uniform lower bounds on the considered spectral quantities.

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

·105

4
h2 sin2(hkπ

2
)

k2π2

(a) Discrete and continuous
eigenvalues.

0 5 10 15 20 25 30
2

3

4

5

∂rφ
h∗
N

(b) N 7→ ∂rφ
h
N .

Different behaviour from the continuous setting (linear gap, growth of the
normal derivative). More similar results to be expected for low frequencies
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Discrete spectral analysis

Theorem [Allonsius, Boyer, Morancey (2018)]
There exists C > 0 such that

1√
λhk

∣∣∣∂rϕhk∣∣∣ ≥ Ce−C√λhk , ∀k ∈ J1, NK,

and
‖1ωϕhk‖2h ≥ Ce−C

√
λh
k , ∀k ∈ J1, NK,

for any h > 0 sufficiently small.
Moreover, if γ ∈ C3([0, 1];R) and q ∈ C2([0, 1];R), there exists C,α > 0 such that

λhk+1 − λhk ≥ Ck, ∀k ∈ J1, αN2/5K.

Lower bounds for eigenelements on the whole spectrum. Suitable for control

vh(t) = −
N∑
k=1

e−λ
h
kT 〈y0,h, ϕhk〉 qhk (T − t) (1ωϕ

h
k)

‖1ωϕhk‖2h
∈ L2(0, T ;RN ).

Uniform gap-property but only for low frequencies.

Extension to non-uniform meshes with a-priori bound on
maxi∈J0,NK hi+1/2

mini∈J0,NK hi+1/2

.
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Back to the change of variables

Ahuh = λuh + fh.

Let

Uhj :=

(
uhj√

γj−1/2

λ

uhj−u
h
j−1

h

)
.

Then,

Uhj+1 =
(

I + hMh
j

)
Uhj + hQhjU

h
j + hFhj ,

where

Mh
j :=

−h λ
γj+1/2

√
λ

γj+1/2

−
√

λ
γj+1/2

0

 , and Fhj :=

 −h fhj
γj+1/2

−
fhj√

γj+1/2λ

 ,

and

Qhj :=


h

qj
γj+1/2

h
√
λ

√
γj−1/2

γj+1/2

1√γj+1/2
− 1√γj−1/2

h

qj√
λγj+1/2

√
γj−1/2

1√γj+1/2
− 1√γj−1/2

h

 .
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A rough estimate

Ahϕhk = λhkϕ
h
k .

Φhk,j :=

(
ϕhk,j√

γj−1/2

λ

ϕhk,j−ϕ
h
k,j−1

h

)
, Φhk,j+1 =

(
I + hMh

j + hQhj

)
Φhk,j .

Min-max principle and µhk = 4
h2

sin2(hkπ
2

): h
√
λhk is bounded.

‖Qhj ‖ ≤ C and ‖Mh
j ‖ ≤ C

√
λhk .

Then, ∥∥∥∥(I + hMh
j + hQhj

)±1
∥∥∥∥ ≤ exp

(
Ch
√
λhk

)
.

This gives the lower bound on |∂rϕhk | and ‖1ωϕhk‖2h but cannot lead to a uniform
gap-property...

Discrete gap-property: uses the continuous gap property and the estimate

|λhk − λk| ≤ Ch2λ3
k.

Uses extra-regularity of γ and q.
Morgan MORANCEY Spectral analysis of discrete elliptic operators and applications in control theory 21



A uniform bound for a part of the spectrum

Let
khmax,ε := max

{
k ∈ J1, NK ; λhk <

4

h2
γmin(1− ε)

}
≥ αN

√
1− ε.

Theorem [Allonsius, Boyer, Morancey (2018)]
There exists C > 0 such that

1√
λhk

∣∣∣∂rϕhk∣∣∣ ≥ C, ∀k ∈ J1, khmax,εK,

‖1ωϕhk‖2h ≥ C, ∀k ∈ J1, khmax,εK,

and
λhk+1 − λhk ≥ C

√
λhk+1, ∀k ∈ J1, khmax,ε − 1K,

for any h > 0 sufficiently small.

Uniform bound similar to the continuous case only for a portion of the spectrum
(numerically optimal). Hold for the whole spectrum if γ is constant.
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On the optimality of the uniform bound: lower bound on eigenelements

0 0.2 0.4 0.6 0.8 1
0

1

2

3

(c) The diffusion coefficient γ

k̃hmax,0: same definition as khmax,0 with

γmin ← inf
x∈[0,1]\ω

γ(x).

100 200 300 400

200

400

600

khmax,0
k

(d) Normal derivative

100 200 300 400

0.5

1

1.5

khmax,0 k̃hmax,0
k

(e) L2(ω) norm
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On the optimality of the uniform bound: the gap property

0 0.2 0.4 0.6 0.8 1
0

0.5
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(f) The diffusion coefficient γ
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khmax,0

(g) k 7→ |λhk+1 − λ
h
k |
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Comparison between continuous and discrete setting

Continuous setting.

Au(x) = λu(x) + f(x)

rewritten as

U ′(x) = M(x)U(x) +Q(x)U(x)

+ F (x).

Evolution operator

M(x) =

 0
√

λ
γ(x)

−
√

λ
γ(x)

0

 .

Associated resolvant operator

S(y, x) = exp

(∫ y

x

M(s)ds

)
satisfying ‖S(y, x)‖ = 1.

Discrete setting.

Ahuh = λuh + fh

rewritten as

Uhj+1 =
(

I + hMh
j

)
Uhj + hQhjU

h
j + hFhj .

S(xj , xj+1) replaced by (I + hMh
j ) with

Mh
j :=

−h λ
γj+1/2

√
λ

γj+1/2

−
√

λ
γj+1/2

0

 .

Discrete resolvant Shi←j,k defined by
(

I + hMh
i−1,k

)
· · ·
(

I + hMh
j,k

)
for i > j,

I for i = j,

(Shj←i,k)−1 for i < j.

Goal: estimate the norm of Shi←j,k.
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Comparison between continuous and discrete setting

Continuous setting.

Au(x) = λu(x) + f(x)

rewritten as

U ′(x) = M(x)U(x) +Q(x)U(x)

+ F (x).

Evolution operator

M(x) =

 0
√

λ
γ(x)

−
√

λ
γ(x)

0

 .

Associated resolvant operator

S(y, x) = exp

(∫ y

x

M(s)ds

)
satisfying ‖S(y, x)‖ = 1.

Discrete setting.

Ahuh = λuh + fh

rewritten as

Uhj+1 =
(

I + hMh
j

)
Uhj + hQhjU

h
j + hFhj .

S(xj , xj+1) replaced by (I + hMh
j ) with

Mh
j :=

−h λ
γj+1/2

√
λ

γj+1/2

−
√

λ
γj+1/2

0

 .

Discrete resolvant Shi←j,k defined by
(

I + hMh
i−1,k

)
· · ·
(

I + hMh
j,k

)
for i > j,

I for i = j,

(Shj←i,k)−1 for i < j.

Goal: estimate the norm of Shi←j,k.
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Uniform estimate of the discrete resolvant operator

Recall that khmax,ε := max

{
k ∈ J1, NK ; λhk <

4

h2
γmin(1− ε)

}
.

‖Shi←j,k‖ ≤ C exp

(
C

ε

)
, ∀i, j ∈ J1, N + 1K, ∀k ∈ J1, khmax,εK.

Shi←j,kU
h
j = Uhi . Let Uhi =

(
xi
yi

)
.

Define the hamiltonian

Hi := x2i + y2i −
h
√
λ

√
γi+1/2

xiyi.

equivalent to the norm of Ui if i ∈ J1, khmax,εK:
ε

2

(
x2i + y2i

)
≤ Hi ≤ C

(
x2i + y2i

)
,

conserved (Hi+1 = Hi) if γ is constant. Otherwise

|Hi+1| ≤ |Hi|+ Ch
(
x2i + y2i

)
≤ exp

(
h
C

ε

)
|Hi|.

�
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1 The continuous problem

2 Spectral analysis of the discrete problem

3 Application to controllability
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A uniform null controllability result

Uniform null controllability of
(yh)′(t) +Ahyh(t) = 1ωv

h(t),

yh0 (t) = yhN+1(t) = 0,

yh(0) = y0,h,


(yh)′(t) +Ahyh(t) = 0,

yh0 (t) = 0, yhN+1(t) = vh(t),

yh(0) = y0,h,

if γ is constant (and the mesh is uniform).

vh(t) = −
N∑
k=1

e−λ
h
kT 〈y0,h, ϕhk〉 qhk (T − t) (1ωϕ

h
k)

‖1ωϕhk‖2h
∈ L2(0, T ;RN ).

vh(t) =
N∑
k=1

e−λ
h
kT

〈y0,h, ϕhk〉
γN+1/2∂rϕhk

qhk (T − t) ∈ L2(0, T ;R).

Application of uniform lower bounds on the whole spectrum and uniform bounds
on the biorthogonal family associated with

Λ̃h :=

{
λhk for k ∈ J1, NK,

λhN + 4γk2 for k ≥ N + 1.
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A weaker controllability notion

Definition of φ(h)-null controlability

Let φ : (0,+∞)→ (0,+∞) be a function such that limh→0 φ(h) = 0.
We say that we have uniform φ(h)-null controllability if there exists C > 0, such
that, for any h small enough and any y0,h ∈ RN , we can find a control
vh ∈ L2(0, T ;RN ) (resp. vh ∈ L2(0, T ;R)) that satisfies(∫ T

0

‖vh‖2hdt

)1/2

≤ C‖y0,h‖h,
(
resp. ‖vh‖L2(0,T ;R) ≤ C‖y

0,h‖h
)
,

and such that the associated solution yh satisfies

‖yh(T )‖2h ≤ Cφ(h)‖y0,h‖2h.

Different weakening of the uniform null controllability property than the filtering
process.
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Uniform φ(h)-null controlability results

Uniform mesh. We have uniform φ(h)-null controllability for

φ(h) ∼
h→0

C1 exp

(
−C2T

h2

)
.

Quasi-uniform mesh. We have uniform φ(h)-null controllability for

φ(h) ∼
h→0

C1 exp

(
−C2T

h2/5

)
.

Use the (possibly non-uniform) lower bounds on eigenelements and the uniform
bound on biorthogonal families associated with

Λ̃hε :=

{
λhk for k ∈ J1, khmax,εK,

λhkhmax,ε + 4γmink
2 for k ≥ khmax,ε + 1.

or

Λ̃h :=

{
λhk for k ∈ J1, αN2/5 − 1K,

λhk + 4γmink
2 for k ≥ αN2/5.

to set to 0 the considered frequencies and then use dissipation.
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Control of cascade systems

Direct extension to systems of coupled equations in cascade form
(yh)′(t) +

(
Ah 0

1 Ah
)
yh(t) =

(
1ωv

h(t)
0

)
,

yh(0) = yh,0 ∈ (RN )2,

yh0 (t) = 0,

or 

(yh)′(t) +

(
Ah 0

1 Ah
)
yh(t) = 0,

yh(0) = yh,0 ∈ (RN )2,

yh0 (t) = 0, yhN+1(t) =

(
vh(t)

0

)
.
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Conclusion and perspectives

Conclusion:
Optimal spectral analysis of discretized 1D elliptic operators

φ(h)-null controllability results for 1D semi-discretized parabolic problems
including systems of coupled equations with distributed or boundary control.

Perspectives:

More general systems. Not in cascade form ? With a minimal time on the
continuous problem ?
Higher dimension.

Thank you for your attention
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