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The problem under study

o One dimensional Sturm Liouville operator on (0,1)
A - _aw (’Y(x)ax.) + q(ZIf).,
where ¢ € C°([0,1];R) and v € C*([0, 1); R) with Ymin := 1rhf1]7(x) > 0.

o Finite difference scheme with N points

1 Ujt1 — Uy Uj — Uj—
(A"U); = -5 (’Yj+1/2% _’Yj—l/2]le) + gjuy,

where U = (uj)i<j<n-.

o The associated parabolic control problems

(") (t) + A"y (1) = 10" (1), "))+ A"y () =0,
Yo (t) = yryi(t) =0, Yo (t) =0, yr(t) =" (1),
y"(0) =y, y"(0) =y,

with uniformly bounded controls (with respect to h).
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Some previous results

Uniform null controllability.

e Lopez & Zuazua (1998) for the 1D Laplace operator.

A weaker controllability notion (¢(h)—null controllability).
e Labbé & Trélat (2006).
e Boyer, Hubert & Le Rousseau (2010).

o Present work: controllability via the moment method.
Application to cascade systems of equations, for distributed and boundary
controls.
Limitation to 1D.
— need a careful spectral analysis of A".
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@ The continuous problem
o The moment method
o A strategy for spectral analysis

© Spectral analysis of the discrete problem
o The discrete setting
@ A rough estimate
o A refined estimate

© Application to controllability
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@ The moment method
@ A strategy for spectral analysis
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Setting

Owy(t) + Ay(t) = Lu(z)v(t, 2),
y(tv 0) = y(t’ 1) =0,
y(0) =¢°.

o Eigenelements: Ay, = A\py.
Complete family of normalized eigenvectors in L*(0,1).

@ Solution by transposition.
t
(W(t),2) = e 2) = [ {olr) eI g dr,
0

for any t € [0,T], and any z € L*(0,1).

n MORANCEY  Spectral ar ste elliptic operators and applications in control theory



The moment problem

o For any £ > 1,

T
W(T), ox) — (yo, e T pp) = / e T ((t), o1 p2 () dt.
0

o The moment problem: y(7T') = 0 if and only if

T
/ gl =) (v(t), Pr) 2wy dt = —e T {yo, 1), Vk > 1. J
0

o Definition of a biorthogonal family: (g;);>1 € L?(0,T;R) such that

T
/ e Mq;(t) dt = bk ;.

0
Existence of such biorthogonal family <= Z — < +oo.

— Restriction to 1D setting.

n MORANCEY Spectral ar te elliptic operators and applica control theory



Resolution of the moment problem

T
/ oS (1), k) 2wy dt = —e T {yo, pi), Vk > 1. J
0

o Lagnese (1983). Look for a control v in the form
Z arqr (T —t)(Lwpr) ()
k>1
leads to the formal solution

U(t, :B) = - Z (3*>\19T<yo7 @k)Qk(T _ t)w

[
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Resolution of the moment problem

T
/ oS (1), k) 2wy dt = —e T {yo, pi), Vk > 1. J
0

o Lagnese (1983). Look for a control v in the form

Z argr(T — ) (1wer) ()
E>1
leads to the formal solution

U(t, iU) = - Z eﬂkT@/o, @k)Qk(T _ t)w

[

o In the case of a boundary control

t)—Ze_AkT % k>)q (T —1).

=1 Jek(
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Resolution of the moment problem

T
/ oS (1), k) 2wy dt = —e T {yo, pi), Vk > 1. J
0

o Lagnese (1983). Look for a control v in the form
= argi(T — 1) (Luipr) ()
k>1

leads to the formal solution

U(t, CU) = - Z eﬂkT@/o, @k)Qk(T _ t)w

[

o In the case of a boundary control

o) = e ’;ﬁﬂ (T - 1)

k>1

o To prove it rigorously, need of spectral analysis of eigenelements of A
o existence and estimate of the biorthogonal family;

o lower bound on ”‘pk”LQ(w) and on |¢} (1)].
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Uniform bounds on biorthogonal family

Fattorini & Russell (1974)

Definition (A particular class of sequences)

Let p > 0 and NV : (0,400) — N. Let A = (\g)

k)k>1 an increasing sequence
satisfying >, <, i < +oo. We say that A € L(p, )

® Apy1 — Ap > p, for any k£ > 1;

e we have for any € > 0,

Uniform bound on biorthogonal sequences

Let T >0, p> 0 and N : (0,+00) — N. For any € > 0, there exists C: > 0 such that
for any A € L(p,N), there exists (g;);>1 C L*(0,T;R) such that

ar’
[ e awa=o,  vkiz1,
0

and
||qj||L2(O,T;R) < Cseskka vj > 1.
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Summ ary

v(t,2) = =Y e {yo, pr)ai(T — t)m

2 9
k>1 ||<Pk||L2(w)
£ = 2T <y07<Pk> T _ ).
M0 =2 S T Y

o Gap condition on A + asymptotic behaviour = ||gx | L2(0,7;r) < C.ek

o Lower bounds on [|¢x| 2.,y and |} (1) to be compared to e 7.
(w)
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The Laplace operator

Assume that vy =1 and ¢ =0 i.e. A= —0pz.

e = kn® and o) = V2sin(krz). J

o Asymptotic behaviour: >, ., v~ < +00.

1
Ak
o Gap property:

et — Ak = (k+ )27 — E*7° > CV .

o Normal derivative: |} (1)| = Cv/A.

o Localization of eigenvectors:

b
2
/a Pk (z)dz el b—a.
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The general case

Eigenelements not explicitely known but same results.

o Gap property: Agr1 — A\x > Ck, for every k > 1.

e Normal derivative: | (1)| > Ck, for every k > 1.

o Localization of eigenvectors: there exists C'(w) > 0 such that

lerllzew) = Clw)
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A useful change of variables

Au(z) = du(z) + f(z). J
Let . ( u(z) ) |
\/@u'(x)
Then,
U'(z) = ( ; ”@)U(m( 2 Ty >U(m>+ <_19<>>
S o A VA6 (F5) @ +&

evolution operator M(z) remainder Q(z) F(x)

o The resolvant operator associated with M is S(y,z) = exp ([’ M(s)ds) and
satisfies ||S(y, z)|| = 1.

@ The remainder contains bounded terms in .

Ul <C (IIU(fC)II + /y [ £(s)l|ds

) J
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Normal derivative and localization

Let u := pk.
Uuw=<,m>,>, V@I < U@
D (2)
Then,
P < W < V@I =¢ (lo@l + 52 jek(a)l).

Integrating for y € (0,1) and using [|px||12(0,1) = 1 it comes that

@)l + L i@P 20, e,
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Normal derivative and localization

Let u := pk.

U(w>:=< A ) @) < Clu@)].

K (@)

@l + XEig@r 20, veel,, (4

e Normal derivative. Taking z = 1 in (%) implies
lor(D)] > Cv/ Ak, vk > 1.
o Localization. Caccioppoli-like inequality: for wo CC w,

c
| 2@lieh@)ae < Oullenls + S leklE,
wo

Integrating (x) for z € wo leads to

leklle > C, Vk > 1.
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The gap property

Y
|F(s)]|ds

U“*:<¢K%am)’ lwwi < ¢ (1w +

o Let u(z) := ¢k (1)pr+1(z) — Phr1(1)pr(x). Thus U(1) = 0.
o We have Au = A\pyr1u + (,oﬁﬁ_l(l) (Mk+1 — Ak) @k We have for any y € [0, 1]

\W@M§0/IW@WBSC/HH®M8

C Akt1 — /
< s)|ds
N ( )\k+1 |<Pk+1 ) ln(s)]
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The gap property

U() = ( ﬁi@)) ol < ¢ (@i -+ ). J

o Let u(z) = ¢k (Dprs1(z) — $hir (Dpe(@). Thus U(1) =
o We have Au = Mgt 14 + @ry1 (1) Ak1 — Ax) px. We have for any y € [0,1]

Ul < ﬁ@’““ E o (1 ) / (o (s)] s

Using ||¢k||£2(0,1) = 1 and the expression of U,

ok (Dgrss () — Phir (D)) < —=— (A’““| mm) .

Ymin 4/ )\k+1

Integrating for y € (0,1) and using fo ek (Y)pr+1(y)dy = 0 we get

Yy
|F(s)llds

2
C A
@kt < kg1 (D + o (1)* < —— <k+190k+1(1)|> )

Ymin v/ )\k+1

Thus, A\ky1 — A = Cv/ Aky1.
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9 Spectral analysis of the discrete problem
@ The discrete setting
@ A rough estimate
@ A refined estimate

ations in control



Form of the controls

1 0— i N

h = Nal Aok = Nkpr, k€ [1, N, Orpn = h

Distributed control

_ 1,00
e MT (O oty gl (T — 1) % € L2(0,T;R™).
1 wPklln

M=

o (t) = —

£
Il

Boundary control

h S Wl 2
v(t) =) e kT TR (T —t) € L7(0,T;R).
; 'YN+1/26MPZ g

No problem of convergence of sums BUT we aim to design bounded controls !

o Class L(p,N') ensures uniform bounds for ;. Uses a uniform gap
Mig1 — A >0, Yh>0,Yke[1,N].
o Estimate (not necessarily uniformly) the spectral quantities

lopkll,  Orph.
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Comparison with the continuous setting

o Lopez & Zuazua (1998). The Laplace operator (y =1 and ¢ = 0):

/LZ = 4 sin? (hk—ﬂ-) , or = (\/isin(kmjh))

JEL,NT"

Uniform lower bounds on the considered spectral quantities.

-10°
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(a) Discrete and continuous (b) N+ 8.¢h%.
eigenvalues.

o Different behaviour from the continuous setting (linear gap, growth of the
normal derivative). More similar results to be expected for low frequencies
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Discrete spectral analysis

Theorem [Allonsius, Boyer, Morancey (2018)]

There exists C > 0 such that

\/% drgh| > 0V, ke, N,
k
and _
@bl > Ce V%, Ve [1,N],
for any h > 0 sufficiently small.
Moreover, if v € C3([0,1];R) and ¢ € C2([0, 1];R), there exists C, @ > 0 such that

M1 — M >Ck, Vke[l,aN??].

o Lower bounds for eigenelements on the whole spectrum. Suitable for control

h

N h
_ah 1.
V(0 == YT ) (7 - ) [ € 120, 7iRY),
k=1 wW¥Ekllh

o Uniform gap-property but only for low frequencies.

. . . . maX;ec[o,N hi+1 2
o Extension to non-uniform meshes with a-priori bound on COTEl0NT Zid1/2

min;e [o,N] hi+1/2
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Let
h Pp—
Ul =
Then,
Utr = (1+hM}) U + hQJUS + hE}, J
where .
A X _p i
h . Vj+1/2 Yi+1/2 h ._ Yi+1/2
= 5 JO , and F}' = ijh ,
Tit1/2 VATV
and L
h 95 hﬁ Yji—1/2 \/’YJ+1/2 \/'Vj—l/2
Q}; ,_ Vit+1/2 Vit+1/2
b=

1
g5 Vv J+1/2 \/'Yj—l/2
Vo= A

tions in control tk
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A rough estimate

-Ah Ak @k

h
Pk, j
h o h h n\ &k
P, = < Yj—1/2 wi‘,j%,jﬂ) ’ Pk jt1 = (I +hMj + th) i, -
VA A
o Min-max principle and pf = 75 sin®(2E%): hy/A} is bounded.

1Q}II < C and |M]'|| < C/AL
Then,

N N -
(1+hMj +th) <exp (Chy/AL ).
This gives the lower bound on |0,¢}| and ||1.¢}||7 but cannot lead to a uniform
gap-property...

Discrete gap-property: uses the continuous gap property and the estimate

A — Ae| < Ch2AL.

Uses extra-regularity of v and q.
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A uniform bound for a part of the spectrum

Let
ko, = max{k e1,N]; Ar < %’Ymin(l —E)} > aNV1—e.

Theorem [Allonsius, Boyer, Morancey (2018)]
There exists C' > 0 such that

1
VAR

H]‘WSDZ”?L Z C: Vk € Hlkanaw,s]]a

Orpk| 2 C, Wk € [L, Kinasiel,

and
Mgt — A > C\ /A, VR €L Kae. — 1],

for any h > 0 sufficiently small.

o Uniform bound similar to the continuous case only for a portion of the spectrum
(numerically optimal). Hold for the whole spectrum if ~ is constant.
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On the optimality of the uniform bound: lower bound on eigenelemen

I I
0 0.2 0.4 0.6 0.8 1

0

(¢) The diffusion coefficient y

kfnax,oi same definition as kfﬁmx’o with

Ymin xe[l(?l]\ﬂ(m)




On the optimality of the uniform bound: the gap property

3,000 ‘
Klhazo
2,000
1,000
0.5 ]
o ‘ ‘ ‘ :
0 02 04 06 08 1 20 40 60 80 100
fusi ; h h
(f) The diffusion coefficient (g) k= |Afyq — AL
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Comparison between continuous and discrete setting

Continuous setting.

Au(x) = M) + (@)

rewritten as

U'(z) = M(2)U () + Q(z)U(x)
+ F(z).

Evolution operator

0 A

v(x)

. 0

v(x)

M(x) =

Associated resolvant operator

() = exo ([ w(syas)

satisfying ||S(y, z)|| = 1.
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Comparison between continuous and discrete setting

Continuous setting.

Au(x) = M) + (@)

rewritten as

U'(z) = M(2)U () + Q(z)U(x)
+ F(z).

Evolution operator

0 A

v(x)

. 0

v(x)

M(x) =

Associated resolvant operator

() = exo ([ w(syas)

satisfying ||S(y, z)|| = 1.

Discrete setting.
Al = x4 "
rewritten as
Uy = (14 WM ) US4+ hQUUS + hF)

S(xj,x;j4+1) replaced by (I+ hM") with

_ A BN
h . _ Yi+1/2 Vit+1/2
Mj = 5
— 0
Yj4+1/2

Discrete resolvant S{LL . defined by
(1+hM,-h_1,k) (I+hM;jk) for i > j,
I fori=j,

(S ix)™t fori<j.

Goal: estimate the norm of Sﬁ—j,k-
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Uniform estimate of the discrete resolvant operator

4
Recall that kfmm’s = max{k e[1,N]; M < ﬁ'ymm(l — s)}

C
HSu—J,k” S Cexp (g) ) VZaJ € [[19N+ 1]]7 vk € Hlak:’lna:c,s]]' J

o SI_, Ul =Ul. Let U = @)

o Define the hamiltonian

VA

Hiomad+o? -2 o,
% Yiri)2 iYi

o equivalent to the norm of U; if i € [1, k!,

max, 6]

S (e 4+9?) SH <O (af +4d),

o conserved (H;+1 = H;) if 7 is constant. Otherwise

C
|Hi+1| < |Hz| + Ch (Z‘ +yz) < exp (h;) |Hz|
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e Application to controllability
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A uniform null controllability result

@ Uniform null controllability of

") () + A"y (t) = 1.0"(1), ") (1) + A"y (t) =0,
Yo (t) = yha(t) = 0, Yo (t) = 0, Yy (t) = 0" (1),
y"(0) = y*", y"(0) =y,

if 7 is constant (and the mesh is uniform).

l h
Ak 1,
vh(t) = _Ze )\kT<yO7h7(p’I;> q]k?(T - t) ”(1 ;Phk”)2 € L2(07T; ]RN)
wWrkllh

Z9)
Ze 7”“q,’§(T—t)€L2(O,T;R).
= 7N+1/28r<ﬂk

e Application of uniform lower bounds on the whole spectrum and uniform bounds
on the biorthogonal family associated with

I A for k € [1,N],
A 4k for k> N 41
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A weaker controllability notion

Definition of ¢(h)-null controlability

Let ¢ : (0,400) — (0,400) be a function such that limj_,o ¢(h) = 0.

We say that we have uniform ¢(h)-null controllability if there exists C' > 0, such
that, for any h small enough and any y>" € RY, we can find a control

" € L2(0,T;RY) (resp. v" € L?(0,T;R)) that satisfies

T 1/2
([ houtiar) <l (resp. 1o lancoriy < Ol )
0

and such that the associated solution y” satisfies

ly" (DIl < CoR)y™" -

o Different weakening of the uniform null controllability property than the filtering
process.
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Uniform ¢(h)-null controlability results

o Uniform mesh. We have uniform ¢(h)-null controllability for

T
o(h) o C1 exp (— W2 ) .

o Quasi-uniform mesh. We have uniform ¢(h)-null controllability for
T
d)(h) h:o C] exp (—W> .

Use the (possibly non-uniform) lower bounds on eigenelements and the uniform
bound on biorthogonal families associated with

. A for k€ [1, klas.cl,
° )\Zh woe + 4'sznk2 for k > kﬁmx,s + 1.
or

in A for k € [[1,aN2/5—1]],
A4 dymink? for k> aN?/®.

to set to 0 the considered frequencies and then use dissipation.
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Control of cascade systems

Direct extension to systems of coupled equations in cascade form

wro+(F a)ve=(tY).

or
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Conclusion and perspectives

Conclusion:

e Optimal spectral analysis of discretized 1D elliptic operators

o ¢(h)-null controllability results for 1D semi-discretized parabolic problems
including systems of coupled equations with distributed or boundary control.

Perspectives:

o More general systems. Not in cascade form ? With a minimal time on the
continuous problem ?

o Higher dimension.
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Conclusion and perspectives

Conclusion:

e Optimal spectral analysis of discretized 1D elliptic operators

o ¢(h)-null controllability results for 1D semi-discretized parabolic problems
including systems of coupled equations with distributed or boundary control.

Perspectives:

o More general systems. Not in cascade form ? With a minimal time on the
continuous problem ?

o Higher dimension.

Thank you for your attention
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