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@ A. Petrosyan, H. Shahgholian, Nina Uraltseva, Regularity of free boundaries in
obstacle-type problems. Grad. Stud. Math., vol. 136, AMS (2012).
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Models in spatial segregation:

1- Adjacent segregation: Particles annihilate or interact on contact line
or, common surface of separation. Appears in modeling of population
density:
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2- Segregation at Distance: Components interact at a distance from
each other.

More complex geometric problem: Recent work by L. Caffarelli, S.
Partrizi, V. Quitalo..

3- Singularly perturbed elliptic systems
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Adjacent segregation model Problem (A):

m Let m be a fixed integer. We call the m-tuple U = (uy, -+, um) € (HX(RQ))™, pairwise
segregated states if
ui(x) - uj(x) =0, ae. for i#j, x€Q.

m Let Q C RY be a connected, bounded domain with smooth boundary.
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segregated states if
ui(x) - uj(x) =0, ae. for i#j, x€Q.
m Let Q C R? be a connected, bounded domain with smooth boundary.
m The density of i-th component u;j(x) : i =1,---, m with the internal dynamic is
prescribed by f;.
m The steady-states of m competing components in € is given by

—Auf = —*U (x)Z ajj ujs(x) + fi(x, uf (x)) in £2
w0 in Q &
ui(x) = éi(x) on 0f.

m The boundary values ¢; are non-negative and have disjoint supports on the boundary, i.e,

@ L. Caffarelli, F. Lin, Singularly perturbed elliptic systems and multi-valued harmonic
functions with free boundaries, J. Amer. Math. Soc. 21, no. 3, 847-862, (2008).

@ M. Conti, S. Terracini, and G. Verzini, Asymptotic estimate for spatial segregation of
competitive systems, Advances in Mathematics. 195, 524-560, (2005).
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An optimal partition problem

m Given Q we are looking for m-partition (21, s, - - - Q) such that it minimize the following

m
inf A Q,‘.
(nl,ng,---,nm),; )

m Here A;(D) is the first eigenvalue of —A in D with zero boundary condition.

m It can be reformulate as
m
Minimize E(uy,- -, um) = E / |V i |? dx,
; Q
i=1

over the set

K={(ut,-,um) € (H3(Q)™ : uj - uj = 0 fori # j, lluill 20,y = 1}-
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An Optimal Partition problem

If (u1,u2,--+ ,um) minimizes E on K and

Q={xeQ:u >0}

is a good candidate to be an optimal partition.
To penalization the condition u; - u; =0

m
1
E€:Z/|Vu,-|2+7/2u;2uj2dx
=179 R

Over the set over the set

K'={(u,...
The minimizer satisfies
1 m
—Auf = \juf — gufZ(ujs)2 in Q
J#i
u;.e >0 in Q
ui=0 on 0.
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Some references for numerics optimal partition problem

@ D. Bucur, G. Buttazzo, and A. Henrot, Existence results for some optimal partition
problems. Adv. Math. Sci. Appl. 8 (1998), no. 2, 571-579.

B. Bourdin, D. Bucur, and E. Oudet. Optimal partitions for eigenvalues. SIAM J. Sci.
Comput.31(2009), 4100-4114.

B. Helffer, On spectral minimal partitions: a survey. Milan J. Math. 78 (2010), no. 2,
575-590

F. Bozorgnia, Optimal partitions for first eigenvalues of the Laplace operator. NMPDE, 31
(2015) 923-949.
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B. Bogosel, D. Bucur, and |. Fragala, Phase Field Approach to Optimal Packing Problems
and Related Cheeger Clusters. Appl Math Optim (2018), 1-25.
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Adjacent segregation model (B)

Problem (B): Consider the following minimization problem

m
1
Minimize E(uy, -+, Um) = / Z <§\Vu,-|2 + f,-u,-) dx,
Q=1
over the set

K={(u1,...,um) € (H(Q))™: u; > 0,u;-uj =0inQ, fori # j, uj = ¢;on 9Q}.

Here ¢; - ¢; = 0, ¢; > 0 on the boundary 0. Also we assume that f; is uniformly continuous
and fi(x) > 0.

@ F. Bozorgnia, A Arakelyan, Numerical algorithms for a variational problem of the spatial
segregation of reaction-diffusion systems. Applied Mathematics and Computation 219,
(2013) 8863-8875.

@ M. Conti, S. Terracini, and G. Verzini, A varational problem for the spatial segregation of
reaction-diffusion systems, Indiana Univ. Math. J. 54, no 3, (2005) 779-815.
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Different cases for minimization Problem (B)

m m = 1: One phase Obstacle problem

Minimize E(u) = / (%\VUF + fu) dx,
Q

over the admissible set K = {u € HY(Q): u>0,u=¢ on 0Q}.
m m = 2 : Two-phase membrane problem

1
E(v) = / <§|Vv\2 + fimax(v,0) — famin(v, 0)) dx,
Q
over
K={ve Hl(Q), v =gondfQ, g changes sign on 9.}

m Minimizer solves
Au= le{u>0} - f2X{u<O} in Q,
u=g on 09.

m In E(v) set up = vT = max(v,0) w = v~ = max(—v,0) then

1
E(v):E(ul,uz):/Q<§(|Vu1\2+|Vu2\2)+f1u1+f2U2> dx.

@ G.S . Weiss, An obstacle-problem-like equation with two phases: pointwise regularity of the
solution and an estimate of the Hausdorff dimension of the free boundary. Interfaces Free
Bound 2001, 3:121-128.
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Segregation at distance

m System has similarity with system in Problem (A)
m But: Annihilation of coefficients for uj(x) is based on values on us in full neighborhood so
— we have to prescribe u; and up in a neighborhood of €.
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The Model of segregation at distance

The model is described by the following system

—Auf(x) = —éu,.s(x) L HW)(x) xeq,
" @
ui(x) = ¢i(x) x € (0Q)1,

i=1,--,m.
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The Model of segregation at distance

The model is described by the following system

{ —Auf(x) = —éu,.s(x) ;H(uf)(x) x €,
J#i

ui(x) = ¢i(x) x € (99)1, @)
i=1,---,m.
where
H(u)(x) = /B L2
or

)0 = sup uF ().
yEB1(x)
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The Model of segregation at distance

The model is described by the following system

—Auf(x) = —%u,.s(x) ;H(uf)(x) x € Q,
Jj#i

ui(x) = ¢i(x) x € (99)1, )
i=1,---,m
where
@ = [ )y,
By (x)
or
H(E)(x) = sup uf(y).
yEB1(x)
Assumptions: ¢;(x) for i = 1,--- , m are non-negative C1'® functions such that have disjoint

supports in distance more than two
(supp ¢i(x))1 N (supp $j(x))1 = 0.
L. Caffarelli, S. Patrizi, and V. Quitalo, On a long range segregation model. J. Eur. Math.
Soc. 19,(2017) 3575-3628.

F. Bozorgnia, Uniqueness result for long range spatially segregation elliptic system. Acta
Applicandae Mathematicae, (2017), 1-14.
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A class of Singular Perturbed Elliptic system:

u The m-tuple U = (uy,- -, um) are called mutually segregated if

Hu_,-(x):O x € Q.
j=1

= Consider the following system,

ut >0, in Q, (3)

Au =2 FE i) inQ,
u:-(x) = ¢i(x) on 09,

where

m
F(ug, -, um) :Hujaj, a; > 0.
=1

= (Al) ¢; are non-negative C1* and [, ¢; =0 ondQ.
n (A2) The functions A;(x) are smooth, nonnegative and

Ailx) < 37 A(x)
J#i

Aim: Existence, Uniqueness and numerical simulation for Systems (1), (2)and (3) for fixed ¢
and the limit as ¢ tends to zero.
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The system (3) and the limiting system for € | 0 appear in theory of flames and are
related to a model called Burke-Schumann approximation.

Oxidizer and reactant mix on a thin sheet and the flame precisely occurs there.

Introduce a large parameter called Damkohler number, denoted by D,, which is the
parameter measuring the intensity of the reaction

Then, the a chemical reaction is described by

Oxidizer + Fuel — Products.
Let Yo and Y, respectively, denote the mass fraction of the oxidizer and the fuel:

—AYo + V(X).VYO =D,Yo Yr in Q,
—AYr + V(X).VYF =D,Yo Yr in Q,

with given incompressible velocity field v and a Dirichlet boundary condition on 9%2.

L. Caffarelli and J. Roquejoffre, Uniform Hélder estimate in a class of elliptic systems and
applications to singular limits in models for diffusion flames, Arch. Ration. Mech. Anal.
183, no. 3, (2007) 457-487.

F. Bozorgnia, M. Burger,On a Class of Singularly Perturbed Elliptic Systems with
Asymptotic Phase Segregation. arXiv(2019):1901.08750.
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Existence and Uniqueness

For each € > 0, there exist a unique positive solution (u§,- - - , u,) of system in (1), (2) and (3).
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Existence and Uniqueness

For each € > 0, there exist a unique positive solution (us, - - -

, us,) of system in (1), (2) and (3).

u Consider the harmonic extension u? fori=1,---,m given by
—AWd = in Q
i )
L oo @

u Given u;‘, consider the solution of the following linear system for system (1)

Kook okl k K oo ok+l. k1l kD K K
k1 _ Ai(x) YntUiq U Uiyl Uy Tl T U g Uy .
Au™ = in Q
k41 £ 2 ’ (5)
ui T (x) = ¢i(x) on 99Q.

u The following inequalities hold:

u? > u,-2 > > u,-2k > .. Zu?kJrl > > u,-3 Zu,-l, inQ,
which implies
u?* - T and u,-2k+1 — u; uniformly in Q.
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Existence and Uniqueness

» We have : T; > u;.
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Existence and Uniqueness

= We have : U; > u;. We will show that in fact the equality holds. To do this, first consider
the equations for the mt?

— Am — — — .
Aty = % x) Um (Ul"'UiUi+1"'Um—1 +Hl"'ﬂiﬂ,’+1"'£m_1) in Q,
Am(x) — — — — .
Aum: ’56 u, (ul”'giﬂiﬁ»l”'gmfl + Ty---up Ui+1"'um—1) in Q, (6)
Um = U, = ¢m(x) on 01,
which implies
Um = Up,-

= The argument is repeated backward which shows equality for every i.

= Assume there exist another positive solution (wi, -+, wy), then by induction:
uI.ZkJrl <w < u,-zk, for k>0, (7)

which shows

uj = w;.
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Assume aj; = 1, fi(x, uj) = 0. The case of two components m = 2:

Auf = Lus(x)u5(x) in Q
Aus = iug(x)uf(x) in Q

B
+ Boundary conditions.

Easy fact: A(uf —u5) =0, Ve. This remains true when ¢ tends to zero.

£
Uy
\ Z uiag
LN

&
=Usy
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Theorem Let W be harmonic with the boundary data ¢1 — ¢p. Let uy = W up = —W—,
then the pair(uy, u2) is the limit configuration of any sequences (v, u5) and:

| uf = ui )< C(e)/® ase—0, i=1,2.

up = W+/‘

@ M. Conti, S. Terracini, and G. Verzini, Asymptotic estimate for spatial segregation of
competitive systems, Advances in Mathematics. 195, 524-560, (2005).
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Theoreml[CTV]:
Let U® = (uf, ..., u,) be the solution of system at fixed . Let € — 0, then there exists
U € (HY(Q))™ such that forall i =1,--- , m:

up to a subsequences, uf — u; strongly in HY(Q),

ui-u;=0ifi#£jaein Q,

Au; =0 in the set {u; > 0}.

1 Let x belongs to interface such that m(x) = 2 then

yll_)n;n( Vui(y) = —yll_)n; Vuj(y) Free boundary condition.

Figure:
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Relation between problem A and B for m = 3

m The case m = 3: Uniqueness of the limiting configuration as ¢ tends to zero on a planar

domain, with appropriate boundary conditions

1 u .
—Au; = —EU?(X); uf(x) i=1,2,3,

= Moreover the limiting configuration minimizes
21
Minimize E(uy, up, u3) = / Z (—|Vu,-|2) dx,
Qi3 \2

among all segregated states u; - u; = 0 a.e. with the same boundary conditions.

M. Conti, S. Terracini, and G. Verzini, Uniqueness and least energy property for solutions
to strongly competing systems. Interfaces and Free Boundaries 8 (2006), 437-—446.
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Examples for the first model

m Let Q = By, m = 3. The boundary values ¢; for i = 1,2,3 are

_ [ Isin(30)] 0<O<EF _ [ Isin(30)] F<o<Ht
#1(1,0) = { 0 elsewhere #2(1,0) = 0 elsewhere.

_ [ 4sin(30)] ¥ <o <o2m,
¢3(1,0) = { 0 elsewhere.

_ . L ,
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1D segregation example
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2D segregation example
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2D segregation example
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Relation between interfaces in model (1) and (2)
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Examples for Singular Perturbed system

Let Q = B;, m = 3. The boundary values ¢; for i = 1,2, 3 are defined by
sin(30)] 0<O< gy [sn(30) F<o<eom
0 elsewhere, 245 - 0 elsewhere.

n(1.0) = {

Isin(30)] T <o <2r+ 2,
0 elsewhere.

n(1,0) = {

Here the boundary conditions satisfy

@1 P2 ¢3=0.
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Example for the singular perturbed system

Figure: surface of uy
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Example for the singular perturbed system

Figure: up 4+ up + us.
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Thanks for your attention




