VIII Partial differential equations, optimal design and numerics, 2019, Aug 18 – Aug 30

Relaxed multimarginal costs and quantization effects

G. Bouchitté, IMATH, Université de Toulon (FRANCE)

joined work with:

G.Buttazzo (Pisa), L De Pascale (Firenze), T. Champion (Toulon)

preprint [bbcd19] available in arXiv:1907.08425

An asymptotic model in quantum chemistry, P. Gori-Giorgi)

In the framework of Strongly Correlated Electrons Density Functional Theory (SCE-DFT), a very challenging issue is the asymptotic behavior as $\varepsilon \rightarrow 0$ of the infimum problem

$$\inf \left\{ \varepsilon T(\rho) + C(\rho) - U(\rho) : \rho \in \mathcal{P} \right\}$$
(1_{\varepsilon})

where the parameter $\boldsymbol{\varepsilon}$ stands for the Planck constant and

- ρ ∈ P is a probability over ℝ^d associated with the random distribution of N-electrons (given by |ψ|², ψ ∈ L²((ℝ^d)^N))
- $T(\rho)$ is the kinetic energy

$$T(
ho) = \int_{\mathbb{R}^d} |
abla \sqrt{
ho}|^2 \, dx;$$

- $C(\rho)$ describes the electron-electron interaction;
- $U(\rho)$ is the potential term (created by M nuclei)

$$U(
ho) = \int_{\mathbb{R}^d} V(x)
ho \, dx;$$

The case
$$N=1$$
 , $V(x)=rac{Z}{|x|}$ and $d=3$

Then $C(\rho) \equiv 0$. The (negative) minimum in (1_{ε}) is reached for $\rho_{\varepsilon} = \psi_{\varepsilon}^2$ where the wave function ψ_{ε} satisfies $\|\psi^{\varepsilon}\|_{L^2} = 1$ and

$$-\varepsilon\Delta\psi^{\varepsilon} - rac{Z}{|x|}\psi^{\varepsilon} = \lambda_{1}^{\varepsilon}\psi^{\varepsilon}$$
 in \mathbb{R}^{3}

Then $\rho_{\varepsilon} = \varepsilon^{-3} \rho_1(x/\varepsilon)$ where

$$ho_1(x) = rac{Z^3}{8\pi} \exp\left(-Z|x|
ight) \ , \ \lambda_1^{arepsilon} = -rac{Z^2}{4arepsilon} \ = \min(1_{arepsilon}).$$

Thus $\rho_{\varepsilon} \stackrel{*}{\rightharpoonup} \delta_{X=0}$ and $\varepsilon \min(1_{\varepsilon}) \to -\frac{Z^2}{4}$

The case $C(\rho) \equiv 0$ and V associated with M-nuclei

Let X_1, X_2, \ldots, X_M the position of M nuclei in \mathbb{R}^3 with charges Z_1, Z_2, \ldots, Z_M . The Coulomb potential reads:

$$V(x) = \sum_{k=1}^{M} \frac{Z_k}{|x - X_k|}$$

Then owing to [bbcd18](the Γ - limit of energies is local):

$$ho^{arepsilon} \stackrel{*}{\rightharpoonup} \sum_{1}^{M} lpha_k \delta_{X_k} \quad , \quad arepsilon \, \min(1_{arepsilon}) \sim -\frac{1}{4} \sum_k lpha_k Z_k^2$$

Consequence: By minimizing with respect to the α_k 's subject to $\sum \alpha_k = 1$, we see that ρ_{ε} concentrates on the nuclei with maximal mass (not physically reasonable !) [bbcd18] Dissociating limit in Density Functional Theory with Coulomb optimal transport cost in arXiv:1811.12085

N -electrons (repulsive) interaction

It can be interpreted as a multi-marginal transport cost:

$$C(
ho) = \inf\left\{\int_{\mathbb{R}^{Nd}} c(x_1 \ldots, x_N) \, dP \; : \; P \in \Pi(
ho)
ight\}$$

when

$$c(x_1 \ldots, x_N) = \sum_{1 \le i < j \le N} \frac{1}{|x_i - x_j|}$$

and $\Pi(\rho)$ is the family of multi-marginal transport plans

$$\Pi(\rho) = \left\{ P \in \mathcal{P}(\mathbb{R}^{Nd}) : \pi_i^{\#} P = \rho \text{ for all } i = 1, \dots, N \right\}$$

being π_i the projections from \mathbb{R}^{Nd} on the *i*-th factor \mathbb{R}^d and $\pi_i^{\#}$ the push-forward operator

$$\pi_i^{\#} \mathsf{P}(\mathsf{E}) = \mathsf{P}ig(\pi_i^{-1}(\mathsf{E})ig) \qquad ext{for all Borel sets } \mathsf{E} \subset \mathbb{R}^d$$

Basic facts about $C(\rho)$

- $C : \rho \in \mathcal{P}(\mathbb{R}^d) \to]0, +\infty]$ is convex weakly* l.s.c. However $\rho_n \stackrel{*}{\rightharpoonup} \rho$, $\sup_n C(\rho_n) < +\infty \Rightarrow \rho \in \mathcal{P}$
- $C(\rho) < +\infty$ whenever $\rho \in L^{p}(\mathbb{R}^{d})$ for some p > 1, in particular if $T(\rho) < +\infty$ (since $\sqrt{\rho} \in W^{1,2} \Rightarrow \rho \in L^{3}$))
- $C(\rho) = +\infty$ if it exists x_0 such that $\rho(\{x_0\}) > \frac{1}{N}$.
- If $x_1, x_2, \ldots x_N$ are distincts, then

$$C\left(\frac{\delta_{x_1}+\delta_{x_2}+\ldots\delta_{x_N}}{N}\right)=c(x_1,\ldots,x_N)$$

• For every x, there exists $\rho_n \stackrel{*}{\rightharpoonup} \frac{\delta_x}{N}$ and $C(\rho_n) \to 0$. (apply above with $x_1 = x$ and $||x_i|| \to \infty$ for $2 \le i \le N$)

Asymptotic in the interacting case

The asymptotic in (1_{ε}) in presence of the *N*-interactions term $C(\rho)(=C_N(\rho))$ is open for N > 2. In [bbcd18], the Γ - limit of energies is derived in the case N = 2 (\rightsquigarrow inf $\sum g(\alpha_k, Z_k)$)

In fact the situation gets much simpler if one assume that

 $V \in C_0(\mathbb{R}^d).$

Then $inf(1_{\varepsilon})$ remains finite and by Γ -convergence, we get:

$$\inf(1_{arepsilon}) o \inf\left\{ C(
ho) - \int V \, d
ho \; : \;
ho \in \mathcal{P}
ight\}$$

Main questions

- Existence of an optimal probability ρ ? (non existence means "ionization")
- How to characterize the weak* limit of minimizing sequences in case of non existence ?
- Are they limit points ρ with fractional mass $\|\rho\| = \frac{k}{N}$? (k electrons among N remain at finite distance)

- 1. A non existence result.
- 2. Relaxed cost on \mathcal{P}^- (sub-probabilities)
- 3. Dual formulation and Kantorovich potential
- 4. Mass quantization of optimal measures
- 5. Open problems and perspectives

I- A case of non existence

For every $V \in C_0(\mathbb{R}^d)$, we denote

$$lpha_{N}(V) = \inf \left\{ C(
ho) - \int V d
ho \ : \
ho \in \mathcal{P}
ight\}$$

Remark If $\lim_{|x|\to\infty} V(x) = -\infty$ (confining potential), then the existence of an optimal probability is standard. The situation changes drastically when V is bounded from below.

In fact when $V \in C_0$, it is not restrictive to assume that $V \ge 0$.

Lemma 1 $\alpha_N(V) = \alpha_N(V^+) \leq -\frac{1}{N} \sup V^+$. In particular $\alpha_N(V) < 0$ for any non zero $V \geq 0$.

Proof: The first equality is deduced by duality techniques. For the second inequality, choose x_0 s.t. $V^+(x_0) = \max V^+$ and $\rho_n \stackrel{*}{\rightharpoonup} \frac{1}{N} \delta_{x_0}$ s.t. $C\rho_n) \to 0$.

Proposition 2 Let $V \in C_0(\mathbb{R}^d; \mathbb{R}^+)$ with spt $V \subset B_R$. Then the infimum $\alpha_N(V)$ is not attained on \mathcal{P} whenever

$$\max V \leq \frac{N(N-1)}{2R}$$

Proof: In a first step we show that if $\rho \in \mathcal{P}$ is optimal, then spt $\rho \subset \overline{B_R}$. As a consequence the optimal transport plan associated with ρ is supported in $(\overline{B_R})^N$ where $c(x) \geq \frac{N(N-1)}{2}$. Thus, if max $V \geq \frac{N(N-1)}{2R}$, we find contradiction with Lemma 1:

$$\alpha_N(V) = C(\rho) - \int V d\rho \ge \frac{N(N-1)}{2R} - \max V \ge 0$$

Consequence: there is a loss of mass at infinity !

2- Relaxed cost on \mathcal{P}^-

For every $ho \in \mathcal{P}^-$ (with mass $\|
ho\|$ in [0,1]), we need to characterize

$$\overline{C}(\rho) = \inf \left\{ \liminf_{n} C(\rho_{n}) : \rho_{n} \stackrel{*}{\rightharpoonup} \rho, \ \rho_{n} \in \mathcal{P} \right\}$$

We already know that $\overline{C}(\rho) = C(\rho)$ if $\rho \in \mathcal{P}$. A first guess would be that $\overline{C}(\rho) = C_N(\rho)$ for every $\rho \in \mathcal{P}^-$, being $C_N(\mu)$ the 1-homogneous extension:

$$\mathcal{C}_{N}(\mu) := \|\mu\| C\left(\frac{\mu}{\|\mu\|}\right) = \inf \left\{ \int_{\mathbb{R}^{Nd}} c(x_{1} \dots, x_{N}) dP : P \in \Pi(\mu) \right\}$$

We have indeed $\overline{C}(\rho) \leq C_N(\rho)$ but the converse inequality is untrue. In fact we have

$$\overline{C}(
ho) = 0 \iff \|
ho\| \le \frac{1}{N}$$
.

Stratification formula for $\overline{C}(\rho)$

Let us set $C_1 \equiv 0$ whereas, for $2 \le k \le N$, C_k denote the homogeneous version of the *k*-points interaction.

Theorem 3 For every $\rho \in \mathcal{P}^-$ it holds

$$\overline{C}(
ho) = \inf\left\{\sum_{k=1}^N \, \mathcal{C}_k(
ho_k) \; : \;
ho_k \in \mathcal{P}^-, \; \sum_{k=1}^N rac{k}{N}
ho_k =
ho, \; \sum_{k=1}^N \|
ho_k\| \leq 1
ight\}$$

Remarks:

If C(ρ) < +∞, the infimum is achieved and ∑_{k=1}^N ||ρ_k|| = 1. Open question: how many indices k are active (i.e. ρ_k ≠ 0) in an optimal decomposition. On numerical examples it seems that only k and k + 1 are involved if ^k/_N < ||ρ|| < ^{k+1}/_N.
Case of fractional masses: a useful inequality

$$\|\rho\| = \frac{k}{N} \Rightarrow \overline{C}(\rho) \le \frac{N}{k}C_k(\rho) \ (\ \rho_k = \frac{N}{k}\rho \text{ and } \rho_l = 0 \text{ if } l \ne k)$$

Sketch of the proof

In a first step, we associate to ρ ∈ P⁻ a probability ρ̃ on X = ℝ^d ∪ {ω} the the Alexandrov's compactification of ℝ^d defined by ρ̃ = ρ + (1 - ||ρ||)δ_ω. Then, if č denotes the natural l.s.c. extension of the Coulomb cost to X^N,

$$\overline{C}(
ho) = \tilde{C}(\tilde{
ho}) := \min\left\{\int_{X^N} \tilde{c} \, d\tilde{P} \; : \; \tilde{P} \in \mathcal{P}(X^N), \; \tilde{P} \in \Pi(\tilde{
ho})
ight\}.$$

• Let $\tilde{P} \in \mathcal{P}(X^N)$ be an optimal symmetric plan for $\tilde{C}(\tilde{\rho})$ and set

$$\tilde{\mu}_k := \pi_1^{\#} \left(\tilde{P} \, \sqcup \, (\mathbb{R}^d)^k \times \{\omega\}^{N-k} \right)$$

Then the stratification formula holds with ρ_k given by

$$\rho_k := \binom{N}{k} \tilde{\mu}_k \, \lfloor \, \mathbb{R}^d$$

3- Dual formulation and Kantorovich potential

Duality: Let $\rho \in \mathcal{P}^{-}(\mathbb{R}^{d})$ and $\tilde{\rho} = \rho + (1 - \|\rho\|)\delta_{\omega} \in \mathcal{P}(X)$. It is natural to use the duality between $\mathcal{M}(X)$ and $C_{0}(\mathbb{R}^{d}) \oplus \mathbb{R}$ the set of continuous potentials u with a constant value u_{∞} at infinity:

$$< u, ilde{
ho} > = \int_X u \, d ilde{
ho} = \int_{\mathbb{R}^d} u \, d
ho + (1 - \|
ho\|) u_\infty \; .$$

Theorem 4 Let \mathcal{A} be the class of admissible functions defined by

$$\mathcal{A} = \Big\{ u \in C_0 \oplus \mathbb{R} : \frac{1}{N} \sum_{i=1}^N u(x_i) \le c(x_1, \dots, x_N) \quad \forall x_i \in (\mathbb{R}^d)^N \Big\}.$$

Then $\overline{C}(\rho) = \sup \Big\{ \int u \, d\rho + (1 - \|\rho\|) u_\infty : u \in \mathcal{A} \Big\}.$

For practical computations

In Theorem 4, the class \mathcal{A} of admissible u can be enlarged to

$$\mathcal{B} := \left\{ u \in \mathcal{S}(X) : \frac{1}{N} \sum_{i=1}^{N} u(x_i) \leq c(x_1, \dots, x_N) \quad \tilde{\rho}^{N \otimes} \text{ a.e. } x \in X^N \right\}$$

being S(X) the l.s.c. functions $X \to \mathbb{R} \cup \{+\infty\}$. This allows to reduce to a finite number of constraints in case of a discrete measure ρ . For instance if $\rho = \sum_{i=1}^{3} \alpha_i \delta_{a_i}$ where $|a_i - a_j| = 1$ for $i \neq j$ and $\|\rho\| = \sum \alpha_i < 1$, then we are reduced to an elementary LP problem

$$\overline{C}(\rho) = \sup \left\{ \begin{array}{ll} \sum_{i=1}^{3} \alpha_i \, y_i + (1 - \sum_j \alpha_j) \, y_4 \; : \; \frac{y_1 + y_2 + y_3}{3} \leq 3\\ y_k + 2y_4 \leq 0, \; k \in \{1, 2, 3\}, \; \frac{y_k + y_l + y_4}{3} \leq 1, \, k < l \end{array} \right\}$$

where $y_i = u(a_i)$ for $i \in \{1, 2, 3\}$ and $y_4 = u(\omega)$.

Existence of a Kantorovich potential

In the case $\|\rho\| = 1$, existence of a Lipschitz dual potential appeared in [bcd16] under a non concentration assumption. For every $\rho \in \mathcal{P}^-$, we define

$$\mathcal{K}(
ho) = \sup \left\{
ho(\{x\}) : x \in \mathbb{R}^d \right\}.$$

After a technical and long proof, we extend [bcd16] as follows:

Theorem 5 Let $\rho \in \mathcal{P}^-$ such that $K(\rho) < \frac{1}{N}$. Then $\overline{C}(\rho)$ is finite and there exists an optimal Lipchitz potential $u \in C_0(\mathbb{R}^d) \oplus \mathbb{R}$. Any other optimal potential \tilde{u} satisfies $\tilde{u} = u \quad \tilde{\rho} - a.e.$

Remark If (ρ_n) is a sequence in \mathcal{P}^- such that $\sup_n K(\rho_n) < \frac{1}{N}$, then the Lipschitz constant of the associated potentials u_n is uniformly bounded. This happens in particular if $T(\rho_n) = \int |\nabla \sqrt{\rho_n}|^2 \leq C$.

4- Mass quantization of optimal measures

Let V be a given potential in $C_0(\mathbb{R}^d)$ and $N \ge 2$. We focus on the relaxed problem associated with

$$\alpha_{N}(V) = \inf \left\{ C(\rho) - \int V \, d\rho : \rho \in \mathcal{P} \right\}$$
$$= \min \left\{ \overline{C}(\rho) - \int V \, d\rho : \rho \in \mathcal{P}^{-} \right\}$$

As \mathcal{P}^- is compact for the weak* convergence, solutions to latter problem always exist. As they might be non unique, we consider the minimal mass among them

$$\mathcal{I}_{N}(V) := \min \left\{ \|\rho\| : \overline{C}(\rho) - \int V \, d\rho = lpha_{N}(V)
ight\}$$

 $(\mathcal{I}_N(v) = 1$ means that all minimizers are probabilities solving the non relaxed problem)

Quantization statement

Theorem 5. Let $V \in C_0(\mathbb{R}^d; \mathbb{R}^+)$ be such that sup V > 0. Then $\mathcal{I}_N(V) \in \left\{ \frac{k}{N} : 1 \le k \le N \right\} .$

The proof relies on primal-dual optimality conditions. Let us introduce, for $1 \le k \le N$:

$$M_{k}(V) = \sup_{x \in (\mathbb{R}^{d})^{N}} \left\{ \frac{1}{k} \sum_{i=1}^{k} V(x_{i}) - c_{k}(x_{1}, x_{2}, \dots, x_{k}) \right\}$$

The definition of $M_k(V)$ extends to unbounded potentials. In particular if $V(x) \to -\infty$ as $|x| \to \infty$, the supremum is attained on $(\mathbb{R}^d)^k$.

Systems of points with Coulomb interactions.

If V is confining , $M_N(V)$ is related to a hudge litterature about the systems of points interactions theory (see for instance Choquet (58) and the recent papers by Serfaty-Leblé, Serfaty-Petrache and references therein, M. Lewin.

$$-M_N(-N^2V) = \inf \left\{ \mathcal{H}_N(x_1, x_2, \dots, x_N) : x_i \in \mathbb{R}^d \right\}$$

where \mathcal{H}_N is of the form

$$\mathcal{H}_N(x_1, x_2, \dots, x_N) = \sum_{1 \le \langle i < j} \ell(|x_i - x_j|) + N \sum_{i=1}^N V(x_i).$$

In such a setting, the asymptotic limit as $N \to \infty$ is one of the main point of interest of the mathematical physics community.

Useful properties of functionals $M_k : C_0 \mapsto \mathbb{R}^+$

i) The functional $M_k(V)$ is convex, 1-Lipschitz on C_0 and

$$\lim_{t\to+\infty}\frac{M_k(tV)}{t}=M_1(V)=\sup V\;.$$

ii) For every $V \in C_0$ and $N \in \mathbb{N}^*$, we have:

$$M_1(\frac{V}{N}) \leq \cdots \leq M_k\left(\frac{kV}{N}\right) \leq M_{k+1}\left(\frac{(k+1)V}{N}\right) \leq \cdots \leq M_N(V).$$

iii) For every $ho \in \mathcal{P}^-$, we have

$$\overline{C}(\rho) = \sup_{V \in C_0} \left\{ \int V \, d\rho - M_N(V) \right\}$$

In particular $\alpha_N(V) = -M_N(V) \le -\frac{1}{N} \sup V$ and $\partial M_N(V)$ is the set of minimizers.

iv) For every $k \in \mathbb{N}^*$, $ho \in \mathcal{P}^-$ and $V \in C_0$, it holds

$$M_k(V) = M_k(V_+) , \ C_k(\rho) = \sup_{V \in C_0} \left\{ \int V \, d\rho - \|\rho\| M_k(V) \right\}$$

Optimality conditions

Theorem 6. Let $\rho \in \mathcal{P}^-$ and $V \in C_0(\mathbb{R}^d; \mathbb{R}^+)$ be s.t. sup V > 0. Let $\{\rho_k\}$ be an admissible decomposition of ρ i.e.:

$$\rho = \sum_{k=1}^{N} \frac{k}{N} \rho_k \quad , \quad \sum_{k=1}^{N} \|\rho_k\| \le 1.$$

Then $\{\rho_k\}$ is optimal for $\overline{C}(\rho)$ and V is an optimal potential for ρ iff the following conditions hold:

i)
$$\sum_{k=1}^{N} \|\rho_{k}\| = 1,$$

ii) For all k , $C_{k}(\rho_{k}) - \int \frac{kV}{N} d\rho_{k} = -M_{k}(\frac{kV}{N})$
iii) $M_{k}(\frac{kV}{N}) = M_{N}(V)$ holds whenever $\|\rho_{k}\| > 0.$

Additional comments

- As noticed in Sec 1, we have $\alpha_N(V) \leq -\frac{1}{N} \sup V < 0$. Thus an optimal ρ satisfies $\|\rho\| \geq \frac{1}{N}$ (otherwise $\overline{C}(\rho) - \int V d\rho = -\int V d\rho > -\frac{1}{N} \sup V$)
- By the monotonicity property of the M_k's, the equality in iii) holds whenever it exists I ≤ k such that ||ρ_I|| > 0.
- Let \overline{k} denote the integer part of $N \|\rho\|$. Then $N \|\rho\| = \sum_{k=1}^{N} k \|\rho_k\|$ and $\sum_{k=1}^{N} \|\rho_k\| = 1$ imply the existence of two integers $l_{-} \leq \overline{k} \leq l_{+}$ such that $\|\rho_{l_{\pm}}\| > 0$. Accordingly by iii):

$$M_k(rac{k\ V}{N})=M_N(V) \quad ext{for all } k>N\|
ho\|-1.$$

A quantitative criterium for existence in ${\cal P}$

Corollary 7. Assume that the potential V satisfies the condition

$$M_N(V) > M_{N-1}\left(\frac{N-1}{N}V\right). \tag{(*)}$$

Then the supremum defining $M_N(V)$ is achieved in $(\mathbb{R}^d)^N$ and all optimal ρ satisfy $\|\rho\| = 1$.

Remarks:

• Recall that
$$M_N(V) \geq M_{N-1} \Big(rac{N-1}{N} V \Big)$$
 is always true.

- If sup V > 0, condition (*) is satisfied for large V (i.e. by tV for t >> 1).
- If ρ is optimal and equality holds in (*), we do not know if $\|\rho\| < 1$ except if $\partial M_N(V) = \{\rho\}$ $(\partial M_N(V) = \text{the set of optimal } \rho \text{ associated with } V)$

Proof and consequence of Corollary 7

If an optimal ρ satisfies $\|\rho\| < 1$, then \bar{k} the integer part of $N\|\rho\|$ is not larger than N-1. This implies that $M_N(V) = M_{N-1}\left(\frac{N-1}{N}V\right)$ in contradiction with (*). For the first statement we consider a maximal *N*-uplet $x \in X^N$ ($X = \mathbb{R} \cup \{\omega\}$). If the supremum is not reached on $(\mathbb{R}^d)^N$, this means that $x_i = \omega$ for at most one index *i* and in this case we would have again $M_N(V) = M_{N-1}\left(\frac{N-1}{N}\right)V$.

Corollary 8 Let V be a potential $V \in C_0^+$ such that:

 $\beta := \limsup_{|x| \to +\infty} |x| V(x) > 0.$

Then all optimal ρ are in \mathcal{P} provided $\beta > N(N-1)$.

Proof of Theorem 5 (quantization)

We introduce

$$\bar{k} := \max\left\{k \in \{1, 2, \dots, N\} : M_k\left(\frac{k}{N}V\right) > M_{k-1}\left(\frac{k-1}{N}V\right)\right\}$$

With the convention $M_0 = 0$ and since $M_1(\frac{V}{N}) = \frac{1}{N} \sup V > 0$, \bar{k} is well defined. As $M_{\bar{k}}(\frac{\bar{k}}{N}V) > M_{k-1}(\frac{\bar{k}-1}{N}V)$, we apply Corollary 7 considering instead of $C = C_N$ the \bar{k} -multimarginal energy C_k and choosing $\bar{k}V/N$ as a potential. We infer the existence of an optimal proba $\rho_{\bar{k}}$ such that

$$C_{\bar{k}}(
ho_{\bar{k}}) - \int V d
ho_{\bar{k}} = -M_{\bar{k}}\Big(rac{\bar{k}V}{N}\Big)$$

Then $ho:=rac{ar{k}}{N}
ho_{ar{k}}$ has a mass $rac{ar{k}}{N}$ and satisfies

$$\overline{C}(\rho) - \int V \, d\rho \leq C_{\overline{k}}(\rho_{\overline{k}}) - \int \frac{\overline{k}V}{N} \, d\rho_{\overline{k}} = -M_{\overline{k}}\left(\frac{\overline{k}V}{N}\right) = -M_N(V).$$

Thus $\mathcal{I}_N(V) \leq \frac{\overline{k}}{N}$.

25/30

Let us prove now the opposite inequality. Let ρ optimal and let $\{\rho_k\}$ be an optimal decomposition for ρ according to rhe stratification formula

$$\rho = \sum_{k=1}^{N} \frac{k}{N} \rho_k.$$

By using the monotonicity property of the M_k 's and the definition of \bar{k} , we infer that $M_k(\frac{k}{N}V) < M_N(V)$ for every $k \leq \bar{k} - 1$, thus by the optimality condition iii) of Theorem 6, it holds $\rho_k = 0$ for $k \leq \bar{k} - 1$.

Recalling that $\sum_k \|\rho_k\| = 1$ (by optimality condition i)), we have

$$\|\rho\| = \sum_{k=\bar{k}}^{N} \frac{k}{N} \|\rho_k\| \ge \frac{\bar{k}}{N} \sum_{k=\bar{k}}^{N} \|\rho_k\| \ge \frac{\bar{k}}{N},$$

hence $\mathcal{I}_N(V) \geq \overline{k}/N$.

5- Open problems and perspectives

• Let C be the N-multimarginal cost and ρ a probability with finite support such that $C(\rho) < +\infty$. Then the function

$$\varphi: t \in [0,1] \mapsto \overline{C}(t\rho)$$

is convex continous and vanishes on $[0, \frac{1}{N}]$. It seems that in addition φ is piecewise affine and that the jump set of the slope is contained in $\left\{\frac{k}{N} : 1 \le k \le N - 1\right\}$

- If $\|\rho\| = \frac{k}{N}$, do we have $\overline{C}(\rho) = C_k(\frac{N}{k}\rho)$? It seems that counterexamples exist, M.Lewin -S Di Marino-L. Nenna in progress
- The quantization result hold merely for the minimal mass of a minimizer. Can this be improved ?

THANK YOU