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An asymptotic model in quantum chemistry, P. Gori-Giorgi)

In the framework of Strongly Correlated Electrons Density
Functional Theory (SCE-DFT), a very challenging issue is the
asymptotic behavior as ¢ — 0 of the infimum problem

inf{eT(p) + C(p) — U(p) : peP} (1)

where the parameter ¢ stands for the Planck constant and
@ p € P is a probability over RY associated with the random
distribution of N-electrons (given by |¢|?, v € L2((R9)N))
e T(p) is the kinetic energy

T()= [ IV o

@ C(p) describes the electron-electron interaction;
@ U(p) is the potential term (created by M nuclei)

uw=@wwm
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ThecaseNzl,V(x):% and d =3

Then C(p) = 0. The (negative) minimum in (1.) is reached for
pe = 12 where the wave function 1. satisfies ||¢]|;2 = 1 and

—eAYF — Wwf =\  inR3

Then p. = e~ 3p1(x/e) where
z3 z? :
p1(x) = g &P (=Zx]) , A= = min(1.).

Thus Pe N O0x—o and ¢ min( ) N _Lz
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The case C(p) = 0 and V associated with M-nuclei

Let X1, Xo, ..., Xy the position of M nuclei in R3 with charges
21,25, ...,2Zp. The Coulomb potential reads:

Z ‘X—Xk’

Then owing to [bbcd18](the I'— limit of energies is local):

M
% . 1
p° = 51 akdx, , € min(l) ~ 2 gk aka

Consequence: By minimizing with respect to the ay's subject to
> ay =1, we see that p. concentrates on the nuclei with maximal
mass (not physically reasonable !)

[bbcd18] Dissociating limit in Density Functional Theory with
Coulomb optimal transport cost in arXiv:1811.12085
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N -electrons (repulsive) interaction

5/30

It can be interpreted as a multi-marginal transport cost:

C(p) :inf{/RNd c(x1...,xy)dP : Pe I'I(p)}

when

1
c(x1 ..., xn) = Z o — x|
i

1<i<j<N

and MM(p) is the family of multi-marginal transport plans
N(p) = {PEP(RN") ; 77,#P:pfor all i = 1,...,N}

being 7; the projections from RV on the i-th factor R and 7r,.#
the push-forward operator

7 P(E) = P(r;X(E))  for all Borel sets £ C RY.
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Basic facts about C(p)

C : p € P(RY) —]0, +00] is convex weakly* I.s.c.
However p, = p , sup, C(pn) < 400 % p€P

C(p) < +oo whenever p € LP(RY) for some p > 1, in
particular if T(p) < +oo (since \/p € Wh? = p € [?))

o C(p) = +oo if it exists xo such that p({xo}) > 4.

If x1,x2,...xn are distincts, then

c <5X1 —|—5X2N+ ..-5XN> — C(Xl,u-aXN)

o For every x, there exists p, — ‘Sﬁ and C(p,) — 0.

(apply above with x; = x and ||x;|| = oo for 2 < < N)
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Asymptotic in the interacting case

The asymptotic in (1.) in presence of the N-interactions term
C(p)(= Cn(p)) is open for N > 2. In [ bbcd18], the I'— limit of
energies is derived in the case N =2 (~ inf > g(ak, Zk))

In fact the situation gets much simpler if one assume that
Ve Cb(ﬂ@d).

Then inf(1.) remains finite and by '—convergence, we get:

inf(lE)—>inf{C(p)—/Vd,o : pep}

Main questions

e Existence of an optimal probability p ? (non existence means
“ionization”)
@ How to characterize the weak* limit of minimizing sequences
in case of non existence ?
@ Are they limit points p with fractional mass ||p|| = % ?
(k electrons among N remain at finite distance)
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Outline

. A non existence result.

. Relaxed cost on P~ (sub-probabilities)

1
2
3. Dual formulation and Kantorovich potential
4. Mass quantization of optimal measures

5

. Open problems and perspectives
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I- A case of non existence
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For every V € Go(R?), we denote

aN(V)inf{C(p)—/Vdp : pep}

Remark If lim . V(x) = —oo (confining potential), then the
existence of an optimal probability is standard. The situation
changes drastically when V is bounded from below.

In fact when V € (, it is not restrictive to assume that V > 0.

Lemma 1 apn(V) = an(VF) < —FsupVF. In particular
an(V) < 0 for any non zero V > 0.

Proof: The first equality is deduced by duality techniques. For the
second inequality, choose xp s.t. VT(x9) = max VT and
Pn — %5)(0 s.t. Cpp) — 0.



Case where V' has compact support

Proposition 2 Let V € Go(RY;R*) with spt V C Br. Then the
infimum ap(V) is not attained on P whenever

N(N —1)

2R
Proof: In a first step we show that if p € P is optimal, then
spt p C Bg. As a consequence the optimal transport plan
associated with p is supported in (Bg)"N where c(x) > N(N O
Thus, if maxV > (N 1)

max V <

, we finda contradiction with Lemma 1:

aN(V):C(p)—/VdeN(I\le_l)—maxVEO

Consequence: there is a loss of mass at infinity !
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2- Relaxed cost on P~
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For every p € P~ (with mass ||p|| in [0,1]), we need to characterize

C(p) = inf {limninf Clpn) : pn—p, pn€ 73}

We already know that C(p) = C(p) if p € P. A first guess would

be that C(p) = Cn(p) for every p € P, being Cy(i) the
1-homogneous extension:

Cn(p) = ”“”C<HZTI) :inf{/w c(xt ..., xn)dP Pen(ﬂ)}

We have indeed C(p) < Cn(p) but the converse inequality is
untrue. In fact we have
1

C(p) = £ =
Clp)=0 = ol =




Stratification formula for C(p)

Let us set C; = 0 whereas, for 2 < k < N, Cj denote the
homogeneous version of the k-points interaction.

Theorem 3 For every p € P~ it holds

N N N
. _ k
me{E Culpk) : Pk €PT, Y NPk =P > ||Pk\|§1}~
k=1 k=1 k=1

Remarks:

o If C(p) < 4o, the infimum is achieved and Zf(vzl llpkll = 1.
Open question: how many indices k are active (i.e. px # 0) in
an optimal decomposition. On numerical examples it seems
that only k and k + 1 are involved if & < [p|| < 5.

e Case of fractional masses: a useful mequahty

k = N :
loll = 5 = Tp) < 7.Chlp) (pr = Yo and py =01 I £ K)
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Sketch of the proof

@ In a first step, we associate to p € P~ a probalility g on
X = R? U {w} the the Alexandrov's compactification of R¢
defined by p = p+ (1 — ||p||)dw- Then, if ¢ denotes the natural
|.s.c. extension of the Coulomb cost to XV,

C(p) = €(p) := min {/ ¢dP . PepxV), Pe I'I(ﬁ)}.

o Let P ¢ P(XN) be an optimal symmetric plan for C(5) and

set
i = (PLRY* x {w}¥)

Then the stratification formula holds with pj given by

N\ .
Pk = <k>uk LR
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3- Dual formulation and Kantorovich potential

Duality: Let p € P=(RY) and p = p+ (1 — ||p]|)ds € P(X). It is
natural to use the duality between M(X) and Go(R9) @ R the set
of continuous potentials u with a constant value v, at infinity:

<u,ﬁ>:/udﬁ:/ udp+(1—|p|)too -
X RY

Theorem 4 Let A be the class of admissible functions defined by
1N
A= {u €eGoR —Zu(x;) < c(xq,...,xn) Vxi € (Rd)N}.

N 4
i=1

Then C(p):sup{/udp—i-(l—H,o”)uOo : uEA} .
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For practical computations
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In Theorem 4, the class A of admissible u can be enlarged to

N
1
B = {UES(X) : NZU(X;)gc(xl,...,xN) ﬁN® a.e. XEXN}

i=1

being S(X) the I.s.c. functions X — R U {+o0}.

This allows to reduce to a finite number of constraints in case of a
discrete measure p. For instance if p = Z?:l a0, where

lai —aj| = 1for i # j and ||p|| = > a; < 1, then we are reduced to
an elementary LP problem

— :E:: ajyi+(1— :E:: aj)ya z;;t%%;t)ﬁz <3

C(p) = sup
yk+2y4<0 ke{l 2,3}, Ltgms < k<

where y; = u(a;) for i € {1,2,3} and ya = u(w).



Existence of a Kantorovich potential
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In the case ||p|| = 1, existence of a Lipschitz dual potential
appeared in [bcd16] under a non concentration assumption. For
every p € P~, we define

K(p) =sup {p({x}) : x e R}.

After a technical and long proof, we extend [bcd16] as follows:

Theorem 5 Let p € P~ such that K(p) < 4. Then C(p) is finite
and there exists an optimal Lipchitz potential u € Co(RY) ©R. Any
other optimal potential i satisfies i =u p - a.e.

Remark If (p,) is a sequence in P~ such that sup, K(p) < 4.
then the Lipschitz constant of the associated potentials uj, is
uniformly bounded. This happens in particular if

T(pw) = J IVl < C.



4- Mass quantization of optimal measures
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Let V be a given potential in Co(R9) and N > 2. We focus on the
relaxed problem associated with

aN(V):inf{C(p)—/Vdp - peP}

_ min{C(p)—/Vdp : pGP_}

As P~ is compact for the weak* convergence, solutions to latter
problem always exist. As they might be non unique, we consider
the minimal mass among them

Z(v) = min{ ]|+ To)~ [ Vo= an(v)} J

(Zn(v) = 1 means that all minimizers are probabilities solving the
non relaxed problem)



Quantization statement

Theorem 5. Let V € Cy(RY; R*) be such that sup VV > 0. Then

IN(V)G{;\‘I : 1§k§N}.

The proof relies on primal-dual optimality conditions. Let us
introduce, for 1 < k < N:

k
M(V) = sup {ll(zV(x,-)—ck(xl,XQ,...,xk)}

x€(RIN i=1

The definition of Mi(V') extends to unbounded potentials. In

particular if V(x) — —o0 as |x| — oo, the supremum is attained on
(RO
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Systems of points with Coulomb interactions.

If V' is confining , My(V) is related to a hudge litterature about
the systems of points interactions theory (see for instance Choquet
(58) and the recent papers by Serfaty-Leblé, Serfaty-Petrache and
references therein, M. Lewin.

My (—N2V) = inf{%,v(xl,xz, XN) X € Rd}

where Hpy is of the form

N
Hn(xa,x, - oxw) = Y Ulxi—xl) + N V(x).
i=1

1<<i<j

In such a setting, the asymptotic limit as N — oo is one of the
main point of interest of the mathematical physics community.
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Useful
i)

ii)
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properties of functionals My : Gy — R*

The functional My (V) is convex, 1-Lipschitz on Cy and

. Mk(tV) - .
t—IlToo —— Mi(V)=sup V.
For every V € Cy and N € N*, we have:
% kV (k+1)V
Y< o< 7)) < SOV B TP
Mi() < _Mk<N)_Mk+1( N )_ < Mn(V)
For every p € P~, we have
T(p) = sup {/Vdp—MN(V)}
Ve
In particular an(V) = —My(V) < sup V and OMpy(V) is

the set of minimizers.
For every k € N*, p € P~ and V € (, it holds

M(V) = M(V2) . Culp) = sup { [ van— o)}

Vel



Optimality conditions

Theorem 6. Let p € P~ and V € Go(RY;R*) be s.t. supV > 0.
Let {pk} be an admissible decomposition of p i.e.:

N, N
P:ZNW o el < 1.
k=1 k=1

Then {px} is optimal for C(p) and V is an optimal potential for p
iff the following conditions hold:

N
> llowll =1,
k=1

kV
i) Forall k, Ck(pk)— / —dpx = —M(— )
iii) I\/Ik(TV) Mpn (V) holds whenever ||pk|| > 0.
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Additional comments

o As noticed in Sec 1, we have ay(V) < —f&sup V < 0. Thus
an optimal p satisfies ||p|| > 4
(otherwise C(p) — [ Vdp = — f Vdp > — 1 sup V)

e By the monotonicity property of the My's, the equality in iii)
holds whenever it exists | < k such that ||p/|| > 0.

o Let k denote the integer part of N||p||. Then
Nlpll = Sh_1 kllokl| and "3 [|pk]| = 1 imply the existence
of two integers /I < k < [ such that ||p;, || > 0. Accordingly
by iii):

kV

Mk(N)

Mn(V)  for all k > Njp| — 1.
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A quantitative criterium for existence in P

Corollary 7. Assume that the potential V satisfies the condition

My(V) > MN_I(NI; 1v). (+)

Then the supremum defining My(V) is achieved in (RY)N and all
optimal p satisfy ||p|| = 1.

Remarks:
@ Recall that My(V) > Mpy_1 (% V) is always true.
o If sup V > 0, condition (*) is satisfied for large V (i.e. by tV
for t >>1).

e If p is optimal and equality holds in (*), we do not know if
llpll < 1 except if IMn(V) = {p}
(OMp(V) = the set of optimal p associated with V)
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Proof and consequence of Corollary 7
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If an optimal p satisfies ||p|| < 1, then k the integer part of N||p| is
not larger than N — 1. This implies that My (V) = MN_l(% V)
in contradiction with (*). For the first statement we consider a

maximal N-uplet x € XV (X = RU {w}). If the supremum is not
reached on (R9)", this means that x; = w for at most one index i

and in this case we would have again My(V) = My_1 (%) V.
L]
Corollary 8 Let V be a potential V € C; such that:
B = limsup |x|V(x) > 0.

[x| =400

Then all optimal p are in P provided g > N(N — 1).




Proof of Theorem 5 (quantization)
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We introduce
k= max{k e{1,2,...,N} : Mk(% v) > Mk_l(k;ll v)}

With the convention Mo = 0 and since M1 () = & supV >0, k is
well defined. As Mz (f5V) > My_4 (_1%1 V), we apply Corollary 7
considering instead of C = Cy the k-multimarginal energy Cj and
choosing kV/ /N as a potential. We infer the existence of an
optimal proba pz such that

Crlpr) — / Vdpg = —/V’E(l;,\\,/)

Then p := %p; has a mass % and satisfies
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Let us prove now the opposite inequality. Let p optimal and let
{pk} be an optimal decomposition for p according to rhe
stratification formula
N
p=3
N
k=1

By using the monotonicity property of the M, 's and the definition
of k, we infer that I\/Ik(ﬁ V) < Mp(V) for every k < k — 1, thus
by the optimality condition iii) of Theorem 6, it holds px = 0 for

k<k-—1.

Recalling that )", ||p«|| = 1 (by optimality condition i)), we have

N

k k
= — >
o]l E NHPkH_ /v

|| p[(| >
N’
k=k

M=

hence Zy(V) > k/N. O



5- Open problems and perspectives

o Let C be the N-multimarginal cost and p a probability with
finite support such that C(p) < +o00. Then the function

p:te0,1] — C(tp)
is convex continous and vanishes on [0, 4]. It seems that in
addition ¢ is piecewise affine and that the jump set of the
k
slope is contained in {N c1<k<N-1
o If ||p|| = F, do we have C(p) = Ck(¥p) ? It seems that

counterexamples exist , M.Lewin -S Di Marino-L. Nenna in
progress

@ The quantization result hold merely for the minimal mass of a
minimizer. Can this be improved ?
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