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Idea in finite dimension.

X.l — U, X]. = U]_,
Xo = X1, X2 = U,
X3 = X3 + X3. x3(T) = [y (53(¢) + u3(t)) dt.

» At order one:
X3L(t) =0,

» At order two:

.
xQ(T) :/O B(t)dt > 0.

» For the non-linear system: cubic remainder 7
When ||ul| i << 1,

/OT u3(t)dt << /T u3(t)dt.

0



Schrodinger equation.

{ iatw(tvx) = —63¢(t,x) - ”(t)ﬂ(x)w(t7x)v (t,X) S (07 T) X (07 1)7
P(t,0) =(t,1)=0, te(0,T).

Bilinear control system
> the state: ¢, such that ||¢(t)[;2(0,1) = 1 for all time,
» 1 :(0,1) — R dipolar moment of the quantum particle

» and v : (0, T) — R denotes a scalar control.



Schrodinger equation.

{ i3t¢(t7x) = —8§¢(t7x) - U(t)M(XW(t,X)v (ta

P(t,0) =(t,1) =0, te(0,T).

Notations:
» D(A) := H?(0,1) N H}(0,1), Ayp:= _d%p

dx?

> )= ()2, gi(x) = V2sin(jnx), Vj € N*.

x) €

(0, T) x

1

> Hy(0,1) = D(A?),  lellme (o) (zu <so,soj>|> .

(0,

1),



Question.

{ i0rp = =03 — u(t)u(x)y, (t,x) € (0,T) x (0,1), (1)
¥(t,0) =(t,1)=0, te€(0,T).

Definition (Small-time controllability around the ground state.)

Let (ET,| - ||e;) be a family of normed vector spaces of scalar
functions defined on [0, T], for T > 0. The system (1) is said to
be E-STLC around the ground state if:

dseN, VT >0, Ve>0, 3J>0,
Wor € S, e — ¥a(T) Il 01) <0, Fu € [2(0, T)N ET,
uller <&, ¥(0) =1, P(T)=1r.



Previous results.

Theorem (Ball, Marsden and Slemrod, 1982)
The system is not controllable in S H(20)((0. 1), C) with controls
in L2 ([0, +00),R).

loc

Theorem (Beauchard and Laurent, 2010)
Let T >0 and pn € H3((0,1),R) be such that

3¢ > 0 such that % < [(upr, i), Vk € N™.

Then, the system is controllable in & M H(30), locally around the
ground state in arbitrary time T > 0 with controls in L*((0, T),R).



Moment method.

First-order: i0:); = —023; — u(t)u(x)¥1
Explicit solution:

+o00 t ) )
bu(t) =i (ot ’~Pj>/ u(r)eN T drpe Nt e (0, T).
j=1 0
> If (up1, pk) =0, then
(i(t), pk) = 0.

» If for all j € N*, (1, ) # 0, the equality ¢ (T) = 1f is
equivalent to

T .
/ u(t)ei(Af_Al)tdt = _i7<711f,§0_/> eNT  vje N
0 (1e1, 9))



When the linear system is not controllable.

i0e(t, x) = =05 (t, x)—u(t)p(x)p(t,x), 9(t,0) = ¥(t,1) = 0.

Theorem (Beauchard and Morancey, 2014)
Let K € N*, u € H3((0,1),R) be such that

(1, oK) = 0 and Ak = (1, pk) # 0.

There exists Tj > 0 such that, for every T < Tg, there exists
€ > 0 such that, for every u < [?((0, T),R) with

lull 20,7y <&
the solution with initial condition 1 = /2sin(r) satisfies

Y(T)A[V1—0%p1 + isign(AK)&pK]e*’.’\lT, 0 €(0,1).



Goals of our work.

> First drift : already used to deny STLC with controls small in
L. New : deny STLC with controls small in W =1,

» Formulate assumptions to observe a drift quantified by the
H~*-norm of the control. Then, deny STLC with controls
small in H?"—3.



Theorem : First quadratic obstruction.

Theorem (First quadratic obstruction, B - 2019)
Let i € H3((0,1),R) satisfying that there exists K € N* such that

(o1, oK) = 0,
and

Ak = (1)1, 0K) # 0.

Then the Schrodinger system is not W ~1>°-STLC.

Rk: Quadratic obstruction to STLC in finite dimension for
& = fo(x) + uhi(x)

11 = [, [f, Bll(¢1), fo=02and i = p.



Theorem: First quadratic obstruction.

Theorem (First quadratic obstruction, B - 2019)
More precisely,

VO <A< |Ak|, VR>0, 3T*>0, VT e (0,T"),

I >0, Vuel?0,T) with ||ull 20,7y < R and ||t 10 1) < 1,

if the solution ) of (1), with initial data o1, satisfies

((T), ¢j) =0,

then

AK

HU1HL2O-’—) if Ak >0,
A+AK o0y i Ak <O

Im ((0(T), pre™T)) { i



The n-th quadratic obstruction.

Theorem (The n-th quadratic obstruction, B - 2019)
Let n€N, n>2. Let u € H>"*1((0,1),R) be such that
> jts first n — 1 odd derivatives are zero at x =0 and x = 1,

> there exists K € N* such that (up1, k) =0, for
p=1,....n—1, A} =0 and A} # 0, where Al is defined as

A= (-1 12 = (=252 wen o

X (e, o)) (wek, ),  p e N*,

> there exists J a finite subset of N* \ {1} of cardinal n such
that for all j € J, we have (up1, ¢j) # 0.

Then the system (1) is not H*"3-STLC.



Theorem (The n-th quadratic obstruction, B - 2019)
More precisely,

Vo< A< |Ak|, 3IT*>0, VT e€(0,T"),
In >0, Yue H>"30,T) with |[ul 2 30,7) < 15
if the solution 1) of (1), with initial data vy, satisfies
<¢(T)7SDJ> :03 V.je-/a

then

A-A

. < w2 10 IFAR >0,
—iMT 4 nll2(0,T) K ;
m (7). ene >>{ > 2K ulEaory AR <O.




Strategy of proof.

1. Study of the quadratic term.

Goal: Reveal coercive drift, quantified by the H~"-norm of the
control.

Im ((Wa(T), oxe™ 7)) = Qrk(un) ~ IlunllFz(o,7-

2. Estimation of the cubic remainder?

Goal: Find the functional setting allowing us to neglect it in
front of the drift.

1 (% =1 =9 = 9Q) (T)I| = o(llual[Z2)-



Estimate on the cubic remainder:

Pb: Seek estimates involving u;.

Idea: Introduction of an auxiliary system. For 1) a solution of the
system,

U(t, x) = (t, x)e O (1,x) € (0, T) xR,
which is a weak solution of,

0 = —02) — i () 20/ (x)0) + " (x)8] + un ()% (x)?.



Estimate on the cubic remainder.

Proposition
If [|ull 20,7y < R for some R >0, when ||u1|[;> — 0, we have,

1 = 1l oo o, 7y 0.1)) = Ollenlli2),
19 — 1 — ¥l (0, Ty 12(0,1)) = Ollun1Z2),
(& = 1 — o1 — 9)(T), pxe™ ™ T)| = O([lurll20.1)-



Estimate on the cubic remainder : linear remainder

@ 00)(®) = — [ D [un(r) (200.0() + u"5(0)

+ i (r)2()?0(r)|dr, e (0, T),

» First,

/Ot o—iA(t=T) [Ul () + I'U1(7')2(M/)2} J(T)dT

Hq
< C (I el o, ry + Pl 22) 2l oo, myoey

» Then,

t . ~
/e_’A(t_T)ul(T)/zlc‘)X’st(T)dT
0

. < Cllull 20,7y 19 o (0,7 2)-
0



And next?

Initial goal: Estimate the cubic remainder of the initial system.
Pb: Not enough to go back to the initial system.

(¥ — 1 — b — ¥Q)(T), pxe”™T)
= (" (T (§ =y — g — Q) (T)), ke ™ T > +...

Ideas:

» Seek L2 estimates on the cubic remainder. Ok if
' (0) = /(1) =0 and ... — Second obstructions and the
following + Gagliardo-Nirenberg inequalities

» State the quadratic drift on the auxiliary system and then try
to go back to the initial system. — First obstruction

» Choosing a better projection : drift on
(e~ (Diah(T), pxe~™T) instead — First obstruction



Study of the quadratic term.

Qu: Sign of Im{1o(T), pxe M1 T) ?
> First, (o(T), pxe™T) = [ u(t) [y u(7)h(t, 7)dtdr.
» Then, integrations by parts :

<¢Q(T)a @Ke_MlT> = Q(ul(T) ce Un(T)vala . aan)

—/ZA / up(t)?e et + Q(u,),

And there exists T > 0 such that, for every T < Tf,

4 fo us(t)?dt, if AR >0,

<-
Q(“”){ > TKJOT J(£)2de, if AL <.



"Proof" of the theorem.

Doing an expansion of the solution of Schrodinger around the
ground state (1heq = 91, Ueqg = 0),

Im{(T), e ) = Im(a(T), e Ty m(e(T), e ™)
+1m{o(T), pxe ™ T) + O(restecubique)
So,

Im((T), pxe™™7T) =040+ Q(un) + o(||unl|7),
< —%Hunﬂiz 0, if AL >0,
> 2K ||u|2, >0, if AL <O0.

VoA



Perspectives.

» On the contrary, using the cubic term to recover some missed
directions, and prove some controllability as done by
Beauchard and Marbach for parabolic equations.

» Applying this strategy to other equations: Kdv, Burgers, ...

Thank you !



