An optimal control problem governed by heat equation with non convex constraints applied to selective laser melting process

Tonia-Maria Alam

Joint work with Serge Nicaise and Luc Paquet

Université Polytechnique Hauts-de-France

VIII Partial differenial equations, optimal design and numerics

Benasque 2019

• A 3d object is sliced into thin layers,

- A 3d object is sliced into thin layers,
- one layer of powder is spread on the build plateform,

- A 3d object is sliced into thin layers,
- one layer of powder is spread on the build plateform,
- a high energy produced by a Gaussian laser beam scans the surface of the powder bed following a given trajectory,

- A 3d object is sliced into thin layers,
- one layer of powder is spread on the build plateform,
- a high energy produced by a Gaussian laser beam scans the surface of the powder bed following a given trajectory,
- 3d object created by melting metallic powder by a layer-by-layer process.

Main motivation : Control temperature gradient in laser melting process by acting on laser trajectory

- Thermal gradients, residual stresses, cracks and deformations has a strong dependence on laser scan strategy.
- Simulation results in literature show that thermal gradients are very disparate from one type of trajectory to another one.

- A. Haidar et al., Materials Science and Engineering A. (2018).
- B. Cheng et al., Additive Manufacturing. (2016).

Different type of trajectories studied in the literature

- L. Van Belle, Thesis. (2013).
- S. Catchpole-Smith et al., Additive Manufacturing. (2017).

Different type of trajectories studied in the literature

- L. Van Belle, Thesis. (2013).
- S. Catchpole-Smith et al., Additive Manufacturing. (2017).
- 🔋 G. Allaire and L. Jakabčin, Math. Models Methods Appl. Sci. (2018)

Different type of trajectories studied in the literature

- L. Van Belle, Thesis. (2013).
- S. Catchpole-Smith et al., Additive Manufacturing. (2017).
- G. Allaire and L. Jakabčin, Math. Models Methods Appl. Sci. (2018)

Main objective : Develop a mathematical optimization model to find an optimal trajectory minimizing thermal gradients Heat equation coupled with the Gaussian laser beam model

- 2 The optimal control problem
- O Necessary conditions of optimality
- 4 The penalized optimal control problem

Heat equation coupled with the Gaussian laser beam model

One layer model :

$$(\mathcal{P}_{\gamma}) \begin{cases} \rho c \partial_{t} y - \kappa \Delta y = 0 & \text{in} \quad Q = \Omega \times (0, T), \\ -\kappa \frac{\partial y}{\partial \nu} = h y - g_{\gamma} & \text{on} \quad \Sigma_{1} = \Gamma_{1} \times (0, T), \\ -\kappa \frac{\partial y}{\partial \nu} = h y & \text{on} \quad \Sigma_{2} = \Gamma_{2} \times (0, T), \\ y = 0 & \text{on} \quad \Sigma_{3} = \Gamma_{3} \times (0, T), \\ y(x, 0) = y_{0}(x) & \text{for} & x \in \Omega. \end{cases}$$

- $\Omega \subset \mathbb{R}^3$ bounded lipschitz domain
- $\partial \Omega = \overline{\Gamma_1} \cup \overline{\Gamma_2} \cup \overline{\Gamma_3}$
- $y_0 \in L^2(\Omega)$

- u outward normal vector
- ρ , c, κ and h positive constants

•
$$g_{\gamma}(x,t) \coloneqq \alpha \frac{2P}{\pi r^2} \exp\left(-2 \frac{|x-\gamma(t)|^2}{r^2}\right), \ \forall (x,t) \in \Sigma_1$$

- $\gamma: t \in [0, T] \to \Gamma_1$ the laser path which represents the displacement of the laser beam center on Γ_1 with respect to time
- r radius of the laser spot
- α and P positive constants

Theorem

For all $\gamma \in H^1(0, T; \mathbb{R}^2)$ the state equation (\mathcal{P}_{γ}) has a unique weak solution $y \in W(0, T) \cap L^{\infty}(0, T; L^2(\Omega))$.

$$\begin{split} & H^{1}_{\Gamma_{3}}(\Omega) := \{ y \in H^{1}(\Omega) \text{ such that } y_{|_{\Gamma_{3}}} = 0 \}, \\ & W(0,T) := \{ y \in L^{2}(0,T; H^{1}_{\Gamma_{3}}(\Omega)) \text{ such that } \frac{dy}{dt} \in L^{2}(0,T; (H^{1}_{\Gamma_{3}}(\Omega))^{*}) \}. \end{split}$$

Remark

If $y_0 \in C(\bar{\Omega})$ and $y_0 = 0$ on Γ_3 , then (\mathcal{P}_{γ}) has a unique solution in $W(0, T) \cap C(\bar{Q})$.

F.Tröeltzsch, Graduate studies in Mathematics, AMS. (2010)

The control γ has a space-filling curve property

•
$$R(\gamma) := \gamma([0, T])$$

• $\epsilon \ge r$
• $\Gamma_{1,-\epsilon} := \{x \in \Gamma_1; dist(x, \partial \Gamma_1) \ge \epsilon\}$
• $R_{\sqrt{2\epsilon}}(\gamma) := \{x \in \Gamma_1; dist(x, R(\gamma)) \le \sqrt{2}\epsilon\}$

The control γ satisfy :

$$R(\boldsymbol{\gamma}) \subset \Gamma_{1,-\epsilon}$$
 and $R_{\sqrt{2}\epsilon}(\boldsymbol{\gamma}) = \Gamma_1$

PDE-constraints optimization problem

$$\begin{array}{ll} \text{Minimize} & J(y,\gamma) \coloneqq \frac{1}{2} \| \nabla y \|_{L^2(Q)}^2 + \frac{\lambda_Q}{2} \| y - y_Q \|_{L^2(Q)}^2 + \frac{\lambda_\gamma}{2} \| \gamma \|_{H^1(0,T;\mathbb{R}^2)}^2 \\ \text{subject to} & (\mathcal{P}_{\gamma}) & \text{PDE-constraint} \\ & R(\gamma) \subset \Gamma_{1,-\epsilon} \quad R_{\sqrt{2}\epsilon}(\gamma) = \Gamma_1 & \text{non convex constraints} \\ & \text{describing the space filling} \\ & \text{curve property of the control } \gamma \\ \text{and} & | \gamma'(t) | \leq c \text{ a.e. } t \in [0,T] & \text{convex constraint} \\ & (\lambda_Q \geq 0, \lambda_\gamma > 0, c > 0 \text{ fixed}) \\ \hline \text{Two sets of optimization variables} \\ & \gamma \in H^1(0,T;\mathbb{R}^2) \\ & y \in L^2(0,T;H^1_{\Gamma_3}(\Omega)) & \text{state variables} \\ & \text{state variables} \\ \hline \text{coupled through the PDE } (\mathcal{P}_{\gamma}). \end{array}$$

 \rightsquigarrow The set of admissible controls :

$$\begin{split} U_{ad} &\coloneqq \{ \boldsymbol{\gamma} \in H^1(0, T ; \mathbb{R}^2) \,; \, R(\boldsymbol{\gamma}) \subset \Gamma_{1,-\epsilon}, \, R_{\sqrt{2}\epsilon}(\boldsymbol{\gamma}) = \Gamma_1 \\ &\text{ and } \exists \, c > 0 \, \text{s.t} \ \mid \boldsymbol{\gamma}'(t) \mid \leq c \, \text{ a.e. } t \in [0, T] \} \end{split}$$

Proposition

 U_{ad} is a weakly sequentially closed subset of $H^1(0, T; \mathbb{R}^2)$.

• $H^1(0, T; \mathbb{R}^2) \stackrel{c}{\hookrightarrow} C([0, T]; \mathbb{R}^2)$

 \rightsquigarrow The set of admissible controls :

$$\begin{split} U_{ad} &\coloneqq \{ \boldsymbol{\gamma} \in H^1(0, T ; \mathbb{R}^2) \,; \, R(\boldsymbol{\gamma}) \subset \Gamma_{1,-\epsilon}, \, R_{\sqrt{2}\epsilon}(\boldsymbol{\gamma}) = \Gamma_1 \\ &\text{ and } \exists \, c > 0 \, \text{s.t} \ \mid \boldsymbol{\gamma}'(t) \mid \leq c \, \text{ a.e. } t \in [0, T] \} \end{split}$$

Proposition

 U_{ad} is a weakly sequentially closed subset of $H^1(0, T; \mathbb{R}^2)$.

• $H^1(0, T; \mathbb{R}^2) \stackrel{c}{\hookrightarrow} C([0, T]; \mathbb{R}^2)$

Non linear control

$$g_{\gamma}(x,t) \coloneqq lpha rac{2P}{\pi r^2} \exp\left(-2rac{|x-\gamma(t)|^2}{r^2}
ight), \ orall (x,t) \in \Sigma_1$$

AIM :

We want to prove that the optimal control problem

$$(OC) \qquad \min_{\boldsymbol{\gamma} \in U_{ad}} J(\boldsymbol{\gamma}(\boldsymbol{\gamma}), \boldsymbol{\gamma})$$

admits at least one optimal control $ar{\gamma} \in U_{ad}$.

 $\rightsquigarrow y(\gamma)$ denotes the solution of (\mathcal{P}_{γ}) associated with the control γ .

The control-to-state mapping $G : \gamma \in U_{ad} \mapsto y(\gamma) \in W(0, T)$ is weakly sequentially continuous.

Sketch of the proof :

* Let $(\gamma_n)_{n \in \mathbb{N}} \subset U_{ad}$ be a weakly convergent sequence in $H^1(0, T; \mathbb{R}^2)$ to some $\gamma \in U_{ad}$,

The control-to-state mapping $G : \gamma \in U_{ad} \mapsto y(\gamma) \in W(0, T)$ is weakly sequentially continuous.

- * Let $(\gamma_n)_{n \in \mathbb{N}} \subset U_{ad}$ be a weakly convergent sequence in $H^1(0, T; \mathbb{R}^2)$ to some $\gamma \in U_{ad}$,
- * $(y(\gamma_n))_{n \in \mathbb{N}}$ is a bounded sequence in the space W(0, T), it possesses a weakly convergent subsequence $(y(\gamma_{n_i}))_{j \in \mathbb{N}}$ to y in W(0, T),

The control-to-state mapping $G : \gamma \in U_{ad} \mapsto y(\gamma) \in W(0, T)$ is weakly sequentially continuous.

- * Let $(\gamma_n)_{n \in \mathbb{N}} \subset U_{ad}$ be a weakly convergent sequence in $H^1(0, T; \mathbb{R}^2)$ to some $\gamma \in U_{ad}$,
- * $(y(\gamma_n))_{n \in \mathbb{N}}$ is a bounded sequence in the space W(0, T), it possesses a weakly convergent subsequence $(y(\gamma_{n_j}))_{j \in \mathbb{N}}$ to y in W(0, T),
- * $y = y(\gamma)$?

The control-to-state mapping $G : \gamma \in U_{ad} \mapsto y(\gamma) \in W(0, T)$ is weakly sequentially continuous.

- * Let $(\gamma_n)_{n \in \mathbb{N}} \subset U_{ad}$ be a weakly convergent sequence in $H^1(0, T; \mathbb{R}^2)$ to some $\gamma \in U_{ad}$,
- * $(y(\gamma_n))_{n \in \mathbb{N}}$ is a bounded sequence in the space W(0, T), it possesses a weakly convergent subsequence $(y(\gamma_{n_i}))_{j \in \mathbb{N}}$ to y in W(0, T),
- * $y = y(\gamma)$?
- * For $\frac{1}{2} < s < 1$, $W(0, T) \stackrel{c}{\hookrightarrow} L^2(0, T; H^s(\Omega)) \rightarrow L^2(0, T; H^{s-1/2}(\Gamma)) \hookrightarrow L^2(\Sigma) \coloneqq L^2(0, T; L^2(\Gamma))$,

The control-to-state mapping $G : \gamma \in U_{ad} \mapsto y(\gamma) \in W(0, T)$ is weakly sequentially continuous.

- * Let $(\gamma_n)_{n \in \mathbb{N}} \subset U_{ad}$ be a weakly convergent sequence in $H^1(0, T; \mathbb{R}^2)$ to some $\gamma \in U_{ad}$,
- * $(y(\gamma_n))_{n \in \mathbb{N}}$ is a bounded sequence in the space W(0, T), it possesses a weakly convergent subsequence $(y(\gamma_{n_i}))_{i \in \mathbb{N}}$ to y in W(0, T),
- * $y = y(\gamma)$?
- * For $\frac{1}{2} < s < 1$, $W(0, T) \stackrel{c}{\hookrightarrow} L^2(0, T; H^s(\Omega)) \rightarrow L^2(0, T; H^{s-1/2}(\Gamma)) \hookrightarrow L^2(\Sigma) \coloneqq L^2(0, T; L^2(\Gamma))$,
- * The traces on $\Sigma := \Sigma_1 \cup \Sigma_2 \cup \Sigma_3$ of $(y(\gamma_{n_j}))_{j \in \mathbb{N}}$ strongly converge to y in $L^2(\Sigma)$,

* we can pass to the limit in

$$\begin{split} \rho c & \int_0^T \langle \frac{dy}{dt} (\boldsymbol{\gamma}_{n_j})(.,t), v \rangle_{(H^1_{\Gamma_3}(\Omega))^*, H^1_{\Gamma_3}(\Omega)} \varphi(t) dt \\ &+ h \int_0^T \int_{\Gamma_1 \cup \Gamma_2} y(\boldsymbol{\gamma}_{n_j})(x,t) v(x) \varphi(t) dS(x) dt + \kappa \int_0^T \int_{\Omega} \nabla y(\boldsymbol{\gamma}_{n_j})(x,t) \cdot \nabla v(x) \varphi(t) dx dt \\ &- \alpha \frac{2P}{\pi R^2} \int_0^T \int_{\Gamma_1} \exp\left(-2 \frac{|x - \boldsymbol{\gamma}_{n_j}(t)|^2}{R^2}\right) v(x) \varphi(t) dS(x) dt = 0, \\ \forall v \in H^1_{\Gamma_3}(\Omega), \ \forall \varphi \in L^2(0,T). \end{split}$$

- * Any subsequence of $(y(\gamma_n))_{n \in \mathbb{N}}$ contains a further subsequence which converges weakly to $y(\gamma)$ in W(0, T).
- * Thus $(y(\gamma_n))_{n \in \mathbb{N}}$ itself converges weakly to $y(\gamma)$ in W(0, T).

The reduced cost functional is defined by

$$\begin{array}{ccc} \hat{J}: & U_{ad} & \longrightarrow & L^2(0,T;H^1_{\Gamma_3}(\Omega)) \\ & \boldsymbol{\gamma} & \longmapsto & J(G(\boldsymbol{\gamma}),\boldsymbol{\gamma}). \end{array}$$

Theorem

The optimal control problem (OC) admits at least one optimal control $\bar{\gamma} \in U_{ad}$.

 $\rightsquigarrow \bar{\gamma}$ denote a local solution and $\bar{y} \coloneqq G(\bar{\gamma})$ the associated state.

Sketch of the proof

*
$$\hat{J}(\gamma) \geq$$
 0, the infimum

$$L := \inf_{\boldsymbol{\gamma} \in U_{ad}} \hat{J}(\boldsymbol{\gamma}),$$

exists.

- * There exists a minimizing sequence $(\gamma_n)_{n \in \mathbb{N}} \subset U_{ad}$ such that $\hat{J}(\gamma_n) \to L$ as $n \to \infty$,
- * $(\gamma_n)_{n \in \mathbb{N}}$ being bounded in $H^1(0, T; \mathbb{R}^2)$, possesses a subsequence $(\gamma_{n_j})_{j \in \mathbb{N}}$ weakly convergent to some element $\overline{\gamma} \in U_{ad}$,
- * $\hat{J}(\bar{\gamma}) \leq \lim_{j \to \infty} \inf \hat{J}(\gamma_{n_j}) = L$,
- * $L \leq \hat{J}(\bar{\gamma})$,
- * since $\overline{\gamma} \in U_{ad}$, $L = \hat{J}(\overline{\gamma})$.

It is well known that an optimal control $\bar{\gamma}$ minimizing \hat{J} in U_{ad} has to obey the variational inequality

$$\hat{J}'(oldsymbol{\bar{\gamma}})(oldsymbol{\gamma}-oldsymbol{\bar{\gamma}})\geq 0$$
 for all $oldsymbol{\gamma}\in U_{ad},$

provided that \hat{J} is Gâteaux differentiable at $\bar{\gamma}$ and U_{ad} convex.

In our case :

• \hat{J} is Fréchet differentiable

Proposition

The control-to-state mapping $G : \gamma \in H^1(0, T; \mathbb{R}^2) \longmapsto y(\gamma) \in L^2(0, T; H^1_{\Gamma_3}(\Omega))$ is Fréchet differentiable.

Proposition

The mapping $\gamma \in H^1(0, T; \mathbb{R}^2) \mapsto \hat{J}(\gamma) := J(G(\gamma), \gamma) \in \mathbb{R}$ is Fréchet differentiable.

In our case :

• \hat{J} is Fréchet differentiable

Proposition

The control-to-state mapping $G : \gamma \in H^1(0, T; \mathbb{R}^2) \longmapsto y(\gamma) \in L^2(0, T; H^1_{\Gamma_3}(\Omega))$ is Fréchet differentiable.

Proposition

The mapping $\gamma \in H^1(0, T; \mathbb{R}^2) \mapsto \hat{J}(\gamma) := J(G(\gamma), \gamma) \in \mathbb{R}$ is Fréchet differentiable.

• But U_{ad} is not convex \Rightarrow we must introduce the cone of amissible directions at the point $\bar{\gamma}$

Theorem (necessary conditions)

Let $ar\gamma$ be the solution of the optimal control problem (OC) then

$$\hat{J}'(oldsymbol{\bar{\gamma}})\cdot\delta\gamma\geq 0 \qquad orall\delta\gamma\in C(oldsymbol{\bar{\gamma}}).$$

 $C(\bar{\gamma})$ is the cone of admissible directions at $\bar{\gamma}$.

J. Jahn, Introduction to the theory of nonlinear optimization (2007).

The adjoint system :

(ad)
$$\begin{cases} \rho c \partial_t p + \kappa \Delta p = \Delta \bar{y} - \lambda_d (\bar{y} - y_d) & \text{in } Q, \\ \kappa \frac{\partial p}{\partial \nu} + h p = \frac{\partial \bar{y}}{\partial \nu} & \text{on } \Sigma_1, \\ \kappa \frac{\partial p}{\partial \nu} + h p = \frac{\partial \bar{y}}{\partial \nu} & \text{on } \Sigma_2, \\ p = 0 & \text{on } \Sigma_3, \\ p(., T) = 0 & \text{in } \Omega, \end{cases}$$

Theorem

The adjoint system (ad) has a unique weak solution in W(0, T).

Theorem

If $\overline{\gamma} \in U_{ad}$ is an optimal control with associated state \overline{y} , and $p \in W(0, T)$ the corresponding adjoint state that solves (ad), then the variational inequality

$$\begin{split} \lambda_{\gamma} \int_{0}^{T} \bar{\gamma}(t) \cdot (\gamma - \bar{\gamma})(t) dt + \lambda_{\gamma} \int_{0}^{T} \bar{\gamma}(t) \cdot (\gamma - \bar{\gamma})(t) dt \\ + 2ac_{R} \int \int_{\Sigma_{1}} \exp(w(\bar{\gamma})(x, t)) \tilde{\gamma}(x, t) \cdot (\gamma - \bar{\gamma})(t) p(x, t) dS(x) dt \geq 0 \end{split}$$

holds for $\gamma \in \{\overline{\gamma} + C(\overline{\gamma})\}.$

T-M. A., S. Nicaise and L. Paquet, submitted. (2019).

The penalized control problem

• Relax the non convex constraints $R(\gamma) \subset \Gamma_{1,-\epsilon}$ and $R_{\sqrt{2}\epsilon}(\gamma) = \Gamma_1$ by adding a penalization term in the cost functional

• If γ is a submanifold of Γ_1 then $2r \times length(\gamma) - area(Tub(\gamma)) = 0$

$$2r\int_0^{ au}\midoldsymbol{\gamma}'(t)\mid dt-\mid ar{\Gamma}_1\mid=0$$

The penalized optimal control problem

$$\begin{split} \underset{\boldsymbol{\gamma} \in U_{ad}^{p}}{\text{Minimize}} \quad & J^{\delta}(\boldsymbol{y}(\boldsymbol{\gamma}), \boldsymbol{\gamma}) \coloneqq \frac{1}{2} \| \nabla \boldsymbol{y}(\boldsymbol{\gamma}) \|_{L^{2}(Q)}^{2} + \frac{\lambda_{Q}}{2} \| \boldsymbol{y}(\boldsymbol{\gamma}) - \boldsymbol{y}_{Q} \|_{L^{2}(Q)}^{2} \\ & \quad + \frac{\lambda_{\gamma}}{2} \| \boldsymbol{\gamma} \|_{H^{2}(0,T;\mathbb{R}^{2})}^{2} + \frac{1}{\delta^{2}} \left(2r \int_{0}^{T} \sqrt{| \boldsymbol{\gamma}'(t) |^{2} + \delta^{2}} dt - | \Gamma_{1} | \right)^{2} \end{split}$$

subject to (\mathcal{P}_{γ}) PDE-constraint

$$U_{ad}^{p} = \{ \boldsymbol{\gamma} \in H^{2}(0, T; \Gamma_{1}); \text{ exists } c > 0 \text{ s.t } | \boldsymbol{\gamma}'(t) | \leq c \text{ a.e. } t \in [0, T]$$

and $2r \int_{0}^{T} | \boldsymbol{\gamma}'(t) | \leq |\Gamma_{1}| + 2diam(\Gamma_{1})r \}$

 $\rightsquigarrow U^p_{ad}$ is closed and convex \Rightarrow weakly closed

The penalized optimal control problem

$$\begin{split} \underset{\boldsymbol{\gamma} \in U_{ad}^{p}}{\text{Minimize}} \quad J^{\delta}(y(\boldsymbol{\gamma}), \boldsymbol{\gamma}) \coloneqq \frac{1}{2} \|\nabla y(\boldsymbol{\gamma})\|_{L^{2}(Q)}^{2} + \frac{\lambda_{Q}}{2} \|y(\boldsymbol{\gamma}) - y_{Q}\|_{L^{2}(Q)}^{2} \\ + \frac{\lambda_{\gamma}}{2} \|\boldsymbol{\gamma}\|_{H^{2}(0,T;\mathbb{R}^{2})}^{2} + \frac{1}{\delta^{2}} \left(2r \int_{0}^{T} \sqrt{|\boldsymbol{\gamma}'(t)|^{2} + \delta^{2}} dt - |\Gamma_{1}|\right)^{2} \end{split}$$

subject to (\mathcal{P}_{γ}) PDE-constraint

$$\begin{aligned} U_{ad}^{p} &= \{ \boldsymbol{\gamma} \in H^{2}(0, T; \Gamma_{1}); \text{ exists } c > 0 \text{ s.t } | \boldsymbol{\gamma}'(t) | \leq c \text{ a.e. } t \in [0, T] \\ &\text{ and } 2r \int_{0}^{T} | \boldsymbol{\gamma}'(t) | \leq |\Gamma_{1}| + 2 \textit{diam}(\Gamma_{1})r \end{aligned} \end{aligned}$$

$$\rightsquigarrow U^p_{ad}$$
 is closed and convex \Rightarrow weakly closed

Theorem

The penalized optimal control problem admits at least one optimal control $\bar{\gamma}^{\delta} \in U^{p}_{ad}$.

Theorem (A.-Nicaise-Paquet, 2019)

Let $\bar{\gamma}^{\delta}$ be an optimal control of the penalized control problem. If there exists $\gamma_1 \in U^p_{ad}$ and a constant c independant of δ such that $\hat{J}^{\delta}(\gamma_1) \leq c$, then there is a subsequence $(\bar{\gamma}^{\delta_j})_{j \in \mathbb{N}}$ such that $\bar{\gamma}^{\delta_j}$ converges strongly to some $\gamma \in H^1(0, T; \mathbb{R}^2)$ as $j \to +\infty$ and

$$2r\int_0^T |\boldsymbol{\gamma}'(t)| dt = |\Gamma_1|.$$

- Work in progress :
 - Numerical tests using the projected gradient method
 - convergence analysis
- Further work :
 - Complex geometries

Thank you for your attention