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What is selective laser melting ?

A 3d object is sliced into thin layers,

one layer of powder is spread on the build plateform,
a high energy produced by a Gaussian laser beam scans the surface of
the powder bed following a given trajectory,
3d object created by melting metallic powder by a layer-by-layer
process.

2 / 24



What is selective laser melting ?

A 3d object is sliced into thin layers,
one layer of powder is spread on the build plateform,

a high energy produced by a Gaussian laser beam scans the surface of
the powder bed following a given trajectory,
3d object created by melting metallic powder by a layer-by-layer
process.

2 / 24



What is selective laser melting ?

A 3d object is sliced into thin layers,
one layer of powder is spread on the build plateform,
a high energy produced by a Gaussian laser beam scans the surface of
the powder bed following a given trajectory,

3d object created by melting metallic powder by a layer-by-layer
process.

2 / 24



What is selective laser melting ?

A 3d object is sliced into thin layers,
one layer of powder is spread on the build plateform,
a high energy produced by a Gaussian laser beam scans the surface of
the powder bed following a given trajectory,
3d object created by melting metallic powder by a layer-by-layer
process.

2 / 24



Main motivation : Control temperature gradient in laser
melting process by acting on laser trajectory

Thermal gradients, residual stresses, cracks and deformations has a
strong dependence on laser scan strategy.

Simulation results in literature show that thermal gradients are very
disparate from one type of trajectory to another one.

A. Haidar et al., Materials Science and Engineering A. (2018).

B. Cheng et al., Additive Manufacturing. (2016).
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Different type of trajectories studied in the literature

L. Van Belle, Thesis. (2013).

S. Catchpole-Smith et al., Additive Manufacturing. (2017).

G. Allaire and L. Jakabčin, Math. Models Methods Appl. Sci. (2018)

Main objective : Develop a mathematical optimization model to find
an optimal trajectory minimizing thermal gradients
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Heat equation coupled with the Gaussian laser beam model

One layer model :

(Pγ)


ρ c ∂ty − κ∆y = 0 in Q = Ω× (0,T ) ,

−κ∂y∂ν = h y − gγ on Σ1 = Γ1 × (0,T ) ,

−κ ∂y
∂ν = h y on Σ2 = Γ2 × (0,T ) ,

y = 0 on Σ3 = Γ3 × (0,T ) ,
y(x , 0) = y0(x) for x ∈ Ω.

- Ω ⊂ R3 bounded lipschitz domain
- ∂Ω = Γ1 ∪ Γ2 ∪ Γ3
- y0 ∈ L2(Ω)

- ν outward normal vector
- ρ, c , κ and h positive constants

gγ(x , t) := α
2P
πr2

exp

(
−2 | x − γ(t) |2

r2

)
, ∀(x , t) ∈ Σ1

- γ : t ∈ [0,T ]→ Γ1 the laser path which represents the displacement of the
laser beam center on Γ1 with respect to time

- r radius of the laser spot
- α and P positive constants
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The state equation

Theorem
For all γ ∈ H1(0,T ;R2) the state equation (Pγ) has a unique weak
solution y ∈W (0,T ) ∩ L∞(0,T ; L2(Ω)).

H1
Γ3

(Ω) := {y ∈ H1(Ω) such that y|Γ3
= 0},

W (0,T ) := {y ∈ L2(0,T ;H1
Γ3

(Ω)) such that
dy

dt
∈ L2(0,T ; (H1

Γ3
(Ω))∗)}.

Remark
If y0 ∈ C (Ω̄) and y0 = 0 on Γ3, then (Pγ) has a unique solution in
W (0,T ) ∩ C (Q̄).

F.Tröeltzsch, Graduate studies in Mathematics, AMS. (2010)
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The control γ has a space-filling curve property

R(γ) := γ([0,T ])
ε ≥ r

Γ1,−ε := {x ∈ Γ1; dist (x , ∂Γ1) ≥ ε}
R√2ε(γ) := {x ∈ Γ1; dist (x ,R(γ)) ≤

√
2ε}

The control γ satisfy :

R(γ) ⊂ Γ1,−ε and R√2ε(γ) = Γ1
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PDE-constraints optimization problem

Minimize J(y ,γ) :=
1
2
‖∇y ‖2L2(Q) +

λQ
2
‖y − yQ ‖2L2(Q) +

λγ
2
‖γ ‖2H1(0,T ;R2)

subject to (Pγ) PDE-constraint

R(γ) ⊂ Γ1,−ε R√2ε(γ) = Γ1 non convex constraints
describing the space filling
curve property of the control γ

and | γ ′(t) |≤ c a.e. t ∈ [0,T ] convex constraint

(λQ ≥ 0, λγ > 0, c > 0 fixed)

Two sets of optimization variables
γ ∈ H1(0,T ;R2) control variables
y ∈ L2(0,T ;H1

Γ3
(Ω)) state variables

coupled through the PDE (Pγ).
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PDE-constraints optimization problem

 The set of admissible controls :

Uad := {γ ∈ H1(0,T ;R2) ; R(γ) ⊂ Γ1,−ε, R√2ε(γ) = Γ1

and ∃ c > 0 s.t | γ ′(t) |≤ c a.e. t ∈ [0,T ]}

Proposition

Uad is a weakly sequentially closed subset of H1(0,T ;R2).

H1(0,T ;R2)
c
↪→ C ([0,T ];R2)

Non linear control

gγ(x , t) := α
2P
πr2

exp

(
−2 | x − γ(t) |2

r2

)
, ∀(x , t) ∈ Σ1
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PDE-constraints optimization problem

AIM :

We want to prove that the optimal control problem

(OC) min
γ∈Uad

J(y(γ),γ)

admits at least one optimal control γ̄ ∈ Uad .

 y(γ) denotes the solution of (Pγ) associated with the control γ.
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Analysis of the control-to-state mapping

Proposition

The control-to-state mapping G : γ ∈ Uad 7−→ y(γ) ∈W (0,T ) is weakly
sequentially continuous.

Sketch of the proof :

∗ Let (γn)n∈N ⊂ Uad be a weakly convergent sequence in H1(0,T ;R2)
to some γ ∈ Uad ,

∗ (y(γn))n∈N is a bounded sequence in the space W (0,T ), it possesses
a weakly convergent subsequence (y(γnj ))j∈N to y in W (0,T ),

∗ y = y(γ) ?

∗ For 1
2 < s < 1, W (0,T )

c
↪→ L2(0,T ;Hs(Ω))→

L2(0,T ;Hs−1/2(Γ)) ↪→ L2(Σ) := L2(0,T ; L2(Γ)),
∗ The traces on Σ := Σ1 ∪ Σ2 ∪ Σ3 of (y(γnj ))j∈N strongly converge to

y in L2(Σ),
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Analysis of the control-to-state mapping

∗ we can pass to the limit in

ρ c

∫ T

0
〈dy
dt

(γnj )(., t) , v〉(H1
Γ3

(Ω))∗,H1
Γ3

(Ω) ϕ(t)dt

+ h

∫ T

0

∫
Γ1∪Γ2

y(γnj )(x , t) v(x)ϕ(t) dS(x) dt + κ

∫ T

0

∫
Ω
∇y(γnj )(x , t) · ∇v(x)ϕ(t) dx dt

− α 2P
πR2

∫ T

0

∫
Γ1

exp

(
−2
| x − γnj (t) |2

R2

)
v(x)ϕ(t) dS(x) dt = 0,

∀v ∈ H1
Γ3

(Ω), ∀ϕ ∈ L2(0,T ).

∗ Any subsequence of (y(γn))n∈N contains a further subsequence which converges
weakly to y(γ) in W (0,T ).

∗ Thus (y(γn))n∈N itself converges weakly to y(γ) in W (0,T ).
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Existence of an optimal control

The reduced cost functional is defined by

Ĵ : Uad −→ L2(0,T ;H1
Γ3

(Ω))

γ 7−→ J(G (γ),γ).

Theorem
The optimal control problem (OC) admits at least one optimal control
γ̄ ∈ Uad .

 γ̄ denote a local solution and ȳ := G (γ̄) the associated state.
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Sketch of the proof

∗ Ĵ(γ) ≥ 0, the infimum

L := inf
γ∈Uad

Ĵ(γ),

exists.
∗ There exists a minimizing sequence (γn)n∈N ⊂ Uad such that

Ĵ(γn)→ L as n→∞,
∗ (γn)n∈N being bounded in H1(0,T ;R2), possesses a subsequence

(γnj )j∈N weakly convergent to some element γ̄ ∈ Uad ,

∗ Ĵ(γ̄) ≤ lim
j→∞

inf Ĵ(γnj ) = L,

∗ L ≤ Ĵ(γ̄),
∗ since γ̄ ∈ Uad , L = Ĵ(γ̄).
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Necessary conditions of optimality

It is well known that an optimal control γ̄ minimizing Ĵ in Uad has to obey
the variational inequality

Ĵ ′(γ̄)(γ − γ̄) ≥ 0 for all γ ∈ Uad ,

provided that Ĵ is Gâteaux differentiable at γ̄ and Uad convex.
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In our case :

Ĵ is Fréchet differentiable

Proposition

The control-to-state mapping
G : γ ∈ H1(0,T ;R2) 7−→ y(γ) ∈ L2(0,T ;H1

Γ3
(Ω)) is Fréchet

differentiable.

Proposition

The mapping γ ∈ H1(0,T ;R2) 7→ Ĵ(γ) := J(G (γ),γ) ∈ R is Fréchet
differentiable.

But Uad is not convex ⇒ we must introduce the cone of
amissible directions at the point γ̄
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Necessary conditions of optimality

Theorem (necessary conditions)

Let γ̄ be the solution of the optimal control problem (OC) then

Ĵ ′(γ̄) · δγ ≥ 0 ∀δγ ∈ C (γ̄).

C (γ̄) is the cone of admissible directions at γ̄.

J. Jahn, Introduction to the theory of nonlinear optimization (2007).
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Necessary conditions of optimality

The adjoint system :

(ad)


ρ c ∂tp + κ∆p = ∆ȳ − λd(ȳ − yd) in Q,

κ∂p∂ν + h p = ∂ȳ
∂ν on Σ1,

κ∂p∂ν + h p = ∂ȳ
∂ν on Σ2,

p = 0 on Σ3,
p(.,T ) = 0 in Ω,

Theorem
The adjoint system (ad) has a unique weak solution in W (0,T ).
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Necessary conditions of optimality

Theorem
If γ̄ ∈ Uad is an optimal control with associated state ȳ , and p ∈W (0,T )
the corresponding adjoint state that solves (ad), then the variational
inequality

λγ

∫ T

0
γ̄(t) · (γ − γ̄)(t)dt + λγ

∫ T

0
γ̄(t) · (γ − γ̄)(t)dt

+2acR

∫ ∫
Σ1

exp(w(γ̄)(x , t))γ̃(x , t) · (γ − γ̄)(t)p(x , t)dS(x)dt ≥ 0

holds for γ ∈ {γ̄ + C (γ̄)}.

T-M. A., S. Nicaise and L. Paquet, submitted. (2019).
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The penalized control problem

Relax the non convex constraints R(γ) ⊂ Γ1,−ε and R√2ε(γ) = Γ1 by
adding a penalization term in the cost functional

If γ is a submanifold of Γ1 then 2r × length(γ)− area(Tub(γ)) = 0

2r
∫ T

0
| γ ′(t) | dt− | Γ1 |= 0
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The penalized optimal control problem

Minimize
γ∈Up

ad

Jδ(y(γ),γ) :=
1
2
‖∇y(γ)‖2L2(Q) +

λQ
2
‖y(γ)− yQ ‖2L2(Q)

+
λγ
2 ‖γ ‖

2
H2(0,T ;R2) +

1
δ2

(
2r
∫ T

0

√
| γ ′(t) |2 +δ2dt− | Γ1 |

)2

subject to (Pγ) PDE-constraint

Up
ad = {γ ∈ H2(0,T ; Γ1) ; exists c > 0 s.t | γ ′(t) |≤ c a.e. t ∈ [0,T ]

and 2r
∫ T
0 | γ

′(t) |≤| Γ1 | +2diam(Γ1)r}

 Up
ad is closed and convex ⇒ weakly closed

Theorem
The penalized optimal control problem admits at least one optimal control
γ̄δ ∈ Up

ad .
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The penalized control problem

Theorem (A.-Nicaise-Paquet, 2019)

Let γ̄δ be an optimal control of the penalized control problem. If there
exists γ1 ∈ Up

ad and a constant c independant of δ such that Ĵδ(γ1) ≤ c ,
then there is a subsequence (γ̄δj )j∈N such that γ̄δj converges strongly to
some γ ∈ H1(0,T ;R2) as j → +∞ and

2r
∫ T

0
| γ ′(t) | dt =| Γ1 | .

22 / 24



Conclusion

Work in progress :
- Numerical tests using the projected gradient method
- convergence analysis

Further work :
- Complex geometries
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Thank you for your attention
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