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|. Introduction. Systems of conservation laws

» We consider the class of hyperbolic systems of conservation laws :
ur + f(u)x = 0 for (t,x) € Rt x R,
u:R*xR—>R%and f: QC RY - RY,
where for any u € Q :
df (u) has d distinct and real eigenvalues A\; < -+ < A
Denote (r;(u)) a family of corresponding eigenvectors of df (u).

» This class appears in many applications : gas dynamics (Euler
equations), shallow-water flows (Saint-Venant equations),
chromatography, traffic flows, etc.

» It is frequent to add conditions the characteristic fields. One says
that (A, r;) is genuinely nonlinear/linearly degenerate when :

VueQ, ri(u)- VAi(u) #0 / Yu e Q, ri(u) - VAi(u)=0.



A (much) simpler particular case : scalar conservation laws

» (1-D) scalar conservation laws correspond to d =1 :

ur + f(u)x = 0 for (t,x) € RT x R,
Ujg—o = tp on R,

where
u:R"xR—-Rand f:R > R.

» We will mainly consider the case where the flux f is of class C?
(though frequently, Lipschitz is sufficient).

» Genuine nonlinearity condition is transformed here into strict
uniform convexity :
f">a>0.



Singularities, entropy conditions

> |t is quite classical (and easy to see using characteristics) that in
general the solutions of this equation become singular in finite time.

» It is hence natural to consider possibly discontinuous weak solutions.
But in this framework uniqueness is lost.



Entropy conditions

» One introduces then entropy conditions :
1. Vanishing viscosity condition : one requires that solutions can be
obtained by vanishing viscosity : u is limit of u®, ¢ — 0T, where :
us + f(u®)x — eug, = 0.

2. One introduces the entropy couples (7, q) : Q@ — R? as functions
that satisfy :
dg = dndf.

One requires that for all (1, g) with n convex, u satisfies :

n(u)e + g(u)x < 0 in the sense of measures.



3. Conditions on the speed of propagation of discontinuities. Given a
discontinuity separating u; on the left and u, on the right, moving at
speed s given by Rankine-Hugoniot relations :

f(u) — () =s(u — u),
one introduces Lax's inequalities :
Ai(uy) <s < Xi(w),
so in the convex scalar case this gives :

uy > u.

> All these conditions are essentially equivalent in the convex/GNL
case.

» Regular solutions are in particular entropy solutions.



A general question

» Some of these systems present a form of nonlinear regularization
mechanism.

» Many references on the subject in the scalar case : Lax, Dafermos,
Lions-Perthame-Tadmor, Jabin-Perthame, De Lellis-Westdickenberg,
Cheverry, etc.

» The goal of this talk is not to prove of a new regularization property,
but to try to describe the compactification effect of this type of
equations, which is of course connected to this regularizing effect.



II. Simplest case : convex scalar equations

» Different authors, in particular E. Hopf, P.D. Lax and O. Oleinik,
have shown global existence and uniqueness of an entropy solution
for initial data in L' N L> (or even L), with

[u(®)ll2 < u(O)llz, [[u(®)llee < [[u(0)][r and TV (u(t)) < TV(u(0)).

» Moreover, P.D. Lax has shown a regularizing effect of the associated
nonlinear semi-group S(t). More precisely, given a bounded set
B C LY(R) and R > 0, one has :
{(S(t)uo)

(—R.R)> Uo € B} is relatively compact in L}(—R, R).



» The following question was raised by P.D. Lax in 2002 :
Is it possible to give a quantitative estimate of this regularizing

effect 7

» In 2005, C. De Lellis and F. Golse gave an answer to this question by
using the notion of e-entropy (a.k.a. Kolmogorov's entropy).



Kolmogorov's entropy

Definition

Let (X, d) a metric space, and let K a totally bounded subset of X.
We call an e-covering of K, a covering of K by subsets of diameter no
more than 2e.

Let N.(K) the minimal number of subsets in an e-covering of K. The
e-entropy of K is defined as

HE(K | X) = lng NE(K)'

Example. H-([0, L]" |R") ~ —nlog,(¢) as ¢ — 0T (whatever L and the
norm...)



Higher bound for the e-entropy

Theorem (De Lellis-Golse, 2005)
For L >0, m> 0 and M > 0, one defines

Comm = {uo € L°(R) / Suppug C [—L, L], ||uol|x < m, ||ugllree < /\/I}.

Then for T > 0 and € > 0 sufficiently small, the e-entropy of
S(T)Crmm in L1(R) satisfies

2 m
Ho(S(T)CLomm | L'(R)) < g (42(? +aL(T) jT) ’

with
LT)=L+2cum \/W where ¢y = : m/\/?)/f/l] .
(Reminder : ais such that f” > a > 0.)

Above, L(T) is an estimate of the support width at time T.



Lower bound for the e-entropy

Theorem (Ancona-G.-Nguyen, 2012)
For L >0, m> 0 and M > 0, one defines as before

Cimm = {uo € L*(R) / Suppug C [—L, L], |uo|lix < m, ||ugl|re < M}.

Then for T > 0 and € > 0 sufficiently small, the e-entropy of
S(T)Crmm in LX(R) satisfies

H(S(T)CLmm | L'(R)) >

Lo
€ 48 In(2) |f"(0)| T~



Remarks

» As a consequence one has

Ho(S(T)CpLmm | L1(R)) =

™ | =

» A motivation for P.D. Lax’s question is numerical analysis of these
equations. Indeed, the result above gives an idea of the complexity
of a numerical scheme for such an equation (whatever its nature).

A scheme with precision £ in L' norm must use at least O(2)
operations. ..



[1l. Extensions.
1. Conservation laws with source term

» A generalization of scalar conservation laws consist in scalar
conservation laws with source term :

ug + f(u)x = g(t,X, U),

where f is as before and g is a source term of class C!, with at most
linear growth at infinity.

» Under reasonable assumptions, S. N. Kruzkov has shown global
existence and uniqueness of an entropy solution for initial data
up € L. (Kruzkov's result is actually much more general!)

» One can have in mind a flow in presence of external force, in
non-flat channels, etc.

> We denote E(t) the evolution operator which maps ug into u(t).



Assumptions
In what follows one supposes that :
V (t,x) € RT x R, g(t,x,0) =0,
JC>0tq.V(t,x,u) e RT xR xR, |gu(t, x,u)] < Clul,
Jwe L (R) t.q. p.p. tout t € RT, V (x,u) € R?, |gu(t, x, u)| < w(t).

loc

The first condition ensures that for a compactly supported initial data,
the corresponding solution remains compactly supported for all times.

It can be replaced in what follows by : g is independent of x and
g(~,0) € Llloc(R+)a

and obtain a similar result.



Higher e-entropy bound for conservation laws with source
term

Theorem (ibid.)
Under the above assumptions, for T > 0 and for e > 0 sufficiently small,

one has :
H(ETYComun | D) < 225 (1+20 +a7K) o (i)
€ L,m,M <2 - ’
where
K = maX{|gx(S,X, u)|; (s,x) € A, ue[-Mr, MT]},
with

Mr = exp (||lwllix) M, Ly = L+ [f"|lio(-my, mr) M7 T,

Ai{(s,x)|s€ [0, 7],

—Lr—(T=98)[|f'l| coo(=mr,mr) < x < L7 +(T —=5) ||f,||L°°(—MT,MT)}~



Lower e-entropy bounds for conservation laws with source
term

Theorem (ibid.)

Under the above assumptions, for T > 0 and for ¢ > 0 sufficiently small,
one has :

1 L2 exp (—[|lwl|ex)
€

He (E(T)Cemm) [L(R) > = gy oy oy T

Remark
Hence in that case also HE(E( T)(CL7,,,7M)) ~ %



2. Nonconvex conservation laws

» Now we consider the nonconvex case. In this situation, we use
instead the following nondegeneracy condition : f : R — R is a
smooth, non convex function with a single inflection point at zero
having polynomial degeneracy, i.e. such that

fU0) =0 forall j=2,....m,  fmY0) #£ 0,
f'(u) - u-sign(F™D0)) > 0 VweR\ {0}

» In this nonconvex situation, the entropy condition becomes at the
level of a discontinuity (ug, u,) :

flug) = f(u) _ fur) — f(u)

Up —u - u —u

for every u between v and u,. (Oleinik’s E-condition)



Nonconvex conservation laws, continued

Theorem (Ancona-G.-Nguyen, 2019)

For any given L, M, T > 0, and for every € > 0 sufficiently small, the
following estimates hold :

1

He(SriCum) | L'@®)) <75 - =
_ 1

He (SriCum) | L'(®)) = 7 - =

where
Cum = {uwo € L™(R) / Suppuo C [-L, L], [luole= < M},

2\ m+1
r;—c2<1+L+ T+T)

Lm+1
T

G_=:Q~

for some constant ¢, > 0 depending only on f and M.



3. Systems of conservation laws

» Now we consider systems of conservation laws. Here the functional
framework is different, and the standard one considers solutions with
(small) total variation in space.

» This goes back to Glimm (1965), and then T.P. Liu,
Bianchini-Bressan, etc.

» In that case, one can define a semigroup S : [0, 00[xDy — Dy
defined on a closed domain Dy C L*(R,RM), with the properties :

(i)
{v e '(R,Q) | Tot.Var.(v) < 50} C Do
- {v € L'(R,Q) | Tot.Var.(v) < 250},

for suitable constant §p > 0.



(ii) For every T € Do, the semigroup trajectory t — S;u = u(t,-)
provides an entropy weak solution of the Cauchy problem, with initial
data

u(0,-) =1,
that satisfy

Liu stability condition. A shock discontinuity of the i-th family

(ue, uy), traveling with speed o;[ue, u/], is Liu admissible if, for any
state u lying on the i-th Hugoniot curve between u; and u,, the
shock speed oi[ug, u] of the discontinuity (ue, u) satisfies

oilue, u] > oilue, ur].



Result in the system case

Theorem (Ancona-G.-Nguyen, 2014)

Given any Lym,M, T >0, for any interval | C R of length |I| = 2L, and
for € > 0 sufficiently small, the following estimates hold.

(i)

)

N2L2 1
H. (ST (Cleman N Do) | LR, Q) > = - 2

where ¢ > 0 is an ugly explicit constant depending on f.
(i)
1
Ho(ST(Lgima N Do) | L(R,Q)) < 48NGo - Ly - — .

where

AV)‘~T

Lr=L+=""T,

AyX = sup {An(u) — Ai(v); u,veQ}.



Other results

» Other results concern :

> strictly convex (but not uniformly strictly convex) scalar equations
(op. cit.)

» Temple systems (op. cit.)

» Hamilton-Jacobi equations (Ancona-Cannarsa-Nguyen, 2015)



IV. ldeas of proof (scalar convex case).
Higher e-entropy bounds

» Let us begin by briefly describing De Lellis and Golse's proof of the
conservative case.

> We cite two important ingredients in the proof.
» On the one side, one has the following L!-to-L> estimate :

Proposition (Lax)
Iff" > a>0, for up € L*(R) and t > 0, one has :

2||uo |l
at

[S5(t)uolle <



» On the other side, another ingredient is Oleinik’s inequality :

Theorem (Oleinik)
Iff" > a>0, for all ug € L>°(R), one has, denoting u(t,-) = S(t)ug :

ut,y) —u(t,x) _

1
vt >0, Vx <y, =
y—X at

(In particular u is locally BV fort > 0.)

» One can see that the first ingredient can be deduced from the
second one.

» A way to prove these two results is to use Lax-Oleinik's formula
giving an explicit (yet nontrivial) form to solution of convex scalar
conservation laws scalaires.



» One deduces from what precedes and from the finite propagation
speed that

2m
S(T)Crmm C {UT € LY(R) / urlx <m, [lur|ie < ST
Supp(ut) C [-L —2cm/2mT /a, L+ 2cpy/2mT /3],

(ur) < ).

» In particular, denoting g : x — x/aT, one has

q—S(T)CLmm C Ttv
= {W C[=L/2,L/2) = [-V/2,V/2], w non—decreasing},

for L and V that can easily be computed.



> After translation, we are hence interested in the e-entropy of :

Iy = {W - [0,L] = [0, V], w non—decreasing}.

)

» Consequently the result is a consequence of :

Lemme (De Lellis-Golse)
For0<e< %, one has :

H-(Z;y | LH(0, L)) < 4 VEVJ



» One introduces N € N\ {0}, Ax =L/N and Ay = V/N.

» One considers suitable non-decreasing step-functions x on this grid :

o] —

Ax

» One introduces the subsets U consisting in non-decreasing functions
between two such step-functions y_ and x* satisfying

X~ (kAx) < x*(kAx) < x 7 ((k+1)Ax) + Ay.

» Choosing N so that these subsets are of diameter < 2¢ and counting
these subsets, we reach the result.



V. Ideas of proof in the convex scalar case.
Lower e-entropy bounds

» To establish a lower bound on H.(S(T)Crmm | L*(R)), we cut the
proof in two parts :

> We look for a class of functions A7, of simple form, and such that
Ar C S(T)Cim,m-

> One introduces next a finite family Z of functions of Ar, of cardinal
N large enough, and such that for each f € Z,

Card {f € T / ||f — Flla < 2} = N(F),

is sufficiently small. We can then conclude that the minimal number
of parts in a e-covering satisfies :

N
maxzg Nf'

Ne >

This last point uses arguments from Bartlett-Kulkarni-Posner (1997).



Part 1. Description of certain attainable states

» We know that states of the system at time T, associated to an
initial data in Cy m wm, satisfy naturally an L! estimate, an L™
estimate, Oleinik’s inequality, and are compactly supported.

> A first idea is to show that, changing the constants if necessary, one
can reach states that satisfy these conditions.

» More precisely, one has the following result.
Proposition
For L,m,M,b >0, we fix :

Amm = {ur € BVUR) | Supp(ur) € [-L, 1]

lurll, < m, lurl,.. <M, Dur < b},
Then for h > 0 sufficiently small, one has :

Ay, 2t b, @7 0)) -1 € S(T)CLimm),
where

L = L —2T|f"(0)| h.



Attainable states, continued

Remark
In the above statement, h is small, but not very small. If one replaces

Ay, ot b, @17 0)) 1] € S(T)CLimm),
with
.A[[_T’th’ B (TN loo)~1] C 5( T)(Clﬂva) with LT+ =L — T”f”Hoo h,

the only constraint on h is h < M and Lh < m.
But the above formula yields a better estimate in the end.

|deas of proof.

» To prove this resultat, one shows in a first time that

ALy, 2k, b, @TIF7(0))) 2] N CHR) C S(T)(CLom.m),



For ur € A, 21n, b, 271¢(0))-1] N C*(R), one applies the local
existence theory in C! to the initial data ur(—x).

If one shows that the corresponding solution w exists in C! (without
blow-up) until time T and that w(T, —x) € C,m m, by invariance of
the regular solutions with respect to

(t,x) = (T — t, —x),
one has etablished ur € S(T)(Cr,m,m)-

The question becomes : use the assumptions on ut to prove that
the solution remains regular till t = T.

It suffices to show that

Wy remains bounded in L>(R) on any compact of [0, T).



Denoting v = wy, we have the equation :
ve(t, x) + F(w(t, x)) - vi(t, x) = —F"(w(t,x)) - v(t,x)?

Along characteristics x(t) associated to f'(w(t, x)),
z(t) = v(t, x(t)) satisfies

2(t) = —F"(w(t, x(t))) - 23(¢).

It suffices to establish a lower bound for z. Oleinik’s condition gives
estimates on (z(0))_.

With the a priori estimates on w in L, one sees that this suffices to
avoid the blow up of v in C! before time T.

One finally deduces by a density argument that
ALy, 2Lk, b, 2717 (0)) -1 C S(T)(Crmm),
thanks to the classical property of L! contraction of the semi-group

S(t):
HS(T)UO — S(T)ﬁo”Ll S HUO — EOHLL



Part 2. Description of the finite family Z

» We consider h as in the above proposition.

» One introduces for n > 2, the family of functions F, : R — [—h, h]
for 1 € {—1,1}", supported in [—L, L] and defined in [—L, L] by

%(x—l—L—k%) if o =1,

g—(erLf(kJrl)%) if o =—1,

for x € [—L—i—k%, —L—l—(k—&-l)%),and ke{0,....,n—1}.

h :
—L 0 / L
n
—h g -

(The example corresponds to n =10 and ¢t = (—-1,-1,1,1,1,-1,1,-1,-1,1))



The functions F, belong to Aj; 21 4, 5 s soON as :

nh
— < b.
2L —
Clearly, there are 2" such functions.

It remains to estimate, fixed 7 € {—1,1}", the number of functions
F, such that :
||.FL — f;”p < 2e.

But
2

hL
|F, — Fellir = - Card{k e {1,...,n} | tk ZT}.
We want to count ¢ € {—1,1}" such that

Card{k € {1,....n} | Lkﬁk}g%.

Remark that this cardinal doe not depend on 7. Call it C(¢).



The number of ¢ differing from 7 for exactly k indices is (Z)

It follows that
L% ]

ce)=>" (Z)

k=0

We can interpret the right-hand side in terms of a random walk in
an elementary manner.

If X1,...,X, are i.i.d. Bernoulli variables with
P(X; = 0) = P(X; = 1) = 1, then for all £ < n one has :

4
]P>(X1+~-~+Xn§€)—21nz<z>.
k=0



» Weset S, = X; + --- + X,. One uses Chernoff-Hoeffding’s
inequality : for p > 0,

n

P(S, —E(S,) < —p) < exp (—2M2> ;

» We suppose (since ¢ is small!) that :

ne_n
hL ~ 2’
and we choose
_n {EJ
F=5 7 Lhe

» We obtain

zln(,’(a)<exp< oG~ LJ)2><GXP(_Z(1_/7€L)2>'



» [t remains to minimize the expression

(1)
exp| —= (1——
P\ 72 n) )
with respect to n and h under the constraint

nh

ne
— < — <
or Sboand o7

> After computation we obtain

C(s)<e>< _14bL?
on =P\ TC 7 )

n
5

» The result follows.



Thank you for your attention !



